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We prove that a closed submanifold M of real dimension 2n with parallel mean curvature vector fields and equal

Kihler angles, immersed into a complex projective space CP?" of dimension 2n, must be either a holomorphic

or a Lagrangian submanifold, while such a submanifold immersed into a 2n-dimensional complex Euclidean space
C? must have constant Kahler angles for any positive integer n. As a corollary, we also obtain the same

conclusion for a slant submanifold M *" immersed into CP 2" without assuming it being closed, which generalizes
a result of Chen and Tazawa for minimal submanifolds.
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1. INTRODUCTION AND MAIN THEOREM
Let (N, J, g) be a Kihler manifold of complex dimension 2n, complex structure J, Riemannian metric
g, and x :M — N be an immersed submanifold M of real dimension 2n. Denote by Vy the Levi-Civita
connection of N, we note that we use the sign convention for curvature tensors R of
N:RX,Y)Z=Vy _V—YZ_VYVXZ'V[X, Y]Z’ where X, Y, Z are tangent vector fields of N. Denote
by TpM the tangent space of M at p. For any vector Xe TPM, the angle 6(X) such that
0<cos 8(x)<1, is independent of X e TPM, we call M the submanifold with equal Kihler angles
(in this case, wirtinger angles agree with Kiahler angles). This concept was first introduced by Chern
and Wolfson® for real surfaces immersed into Kihler surfaces N, giving, in this case, a single Kihler

angles are some functions that at each point p of M measure the deviation of the tangent space
TPM from a complex subspace Tx(p) N. The slant submanifolds introduced by B-Y. Chen® are Just

submanifolds with constant and equal Kihler angles. Holomorphic and Lagrangian submanifolds are

just special slant submanifolds with cos 8 = 1 and cos 8 = 0, respectively.
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A natural question is to ask when the submanifold with equal Kéhler angles is holomorphic
or Lagrangian. Obviously there are obstructions to the existence of slant submanifolds. For instance,
there does not exist totally geodesic proper slant submanifolds (0 < cos 8 < 1) in non-trivial complex
space forms by codazzi equations. So the above question has been exhaustedlgl studied in the past
few years. Examples are given in complex space forms by Chen and Tazawa~, where they proved

that minimal surfaces immersed into CP2 and CH? must be either holomorphic or Lagrangian
surfaces. By Hopf’s fibration, they3’5 also gave the concrete examples of proper slant submanifolds
immersed into complex space forms. Ing, the author also studied slant submanifolds satisfying some
equalities. Making use of the weitzenbock formula for the Kéihler form of N restricted to M,
Wolfsonl2 studied the real surfaces immersed into a Kihler surface, without the assumption that
Kihler angles being constant. Using the Bochner-twe technique, Salavessa and Valli'®!! swudied the
same question and generalized Wolfson’s theorem “ to higher dimensions. More precisely,

Proposition 1.1 — Let x: M 2 _5N? be a real 2n-dimensional minimal submanifold with
equal Kahler angles, immersed into a Kéhler-Einstein manifold with Ricciy = Rg.

12 1f n = 1, M is closed, R > 0, and has no holomorphic points, then x is Lagrangian.

21 If n =2 and R# 0, then x is either a holomorphic or a Lagrangian submanifold.

3 yf n23, M is closed, and R > 0O, then x is either a holomorphic or a Lagrangian
submanifold.

4" If n>3, M is closed, and R = 0, then the common Kahler angles must be constant.

Under the assumption of Proposition 1.1, it is unknown if the common Kihler angle is
constant when n = 2 and R = 0. In this paper, we consider the submanifold with parallel mean
curvature vector fields case, but assuming the ambient space restricting to the complex space forms.
We will see that the above conclusion still holds when the holomorphic sectional curvature of the
ambient space is non-negative. Namely, we have

Theorem 1.2 — Let N be a 2n-dimensional complex space form with constant holomorphic
sectional curvature 4c, and M a real 2n-dimensional closed submanifold with equal Kdihler angles,
immersed into N. If the mean curvature vector field of M is paralle, then

1. When ¢ > 0, M is either a holomorphic or a Lagrangian submanifold.
2. When ¢ = 0, the common Kihler angles of M must be constant.

Remark 1.3 : 1. When restricting to complex space forms, the above theorem generalizes the
conclusions in Proposition 1.1, moreover the case n = 2 and ¢ = 0 now holds in our theorem.

2. We only need the assumption N is a complex space form in the last step of Theorem

1.2’s proof (see Section 3 below). So we conjecture that Theorem 1.2 is also true for Kiahler-Einstein
manifolds.

In Section 2, we list some basic formulae that will be used later. The main theorem’s proof
is given in Section 3, together with an important corollary.

2. SOME FORMULAS

Let (N, J, g) be a Kihler manifold .. complex dimension 2n, complex structure J, and x : M —- N

be an immersed submanifold M of real dimension 2n. Denote by (,) the Riemannian metric g of

N compatible with the complex structure J, as well as the induced metric of M from N. We denote
1

by V,V,A and B the induced Levi-Civita connection, the induced normal connection from N, the

Weingarten operator and the second fundamental form of the submanifold M, respectively. As usually,

4
T™ and T M are the tangent and normal bundles of M in N, respectively.
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For any X, Y,Ze TM, the codazzi equation is given by (cf.l).

1
(VyB) (Y, 9)-(VyB)X,))=R (X, 1) 2), . (2.1)
where Vy B is defined by

L
(Vi B) (Y, 2) =V (B(Y, Z)) - B(Vy, Y, Z) ~ B(Y, V 2).

The Weingartén form A and the second fundamental form B are related by
L
(Ap X, Y)=(B(X,1,v), veT M.
1 .
For any Xe€ TM, and ve T M, we write
JX=PX+NX, Ju=tv+fu.

Where PX (resp. t v) and NX (resp. fv) denote the tangent and the normal components of
JX (resp. J v), respectively.

As the complex structure J is g orthogonal, the following are known. facts (cf.]3).
P2=—I-IN, NP+fN =0, . (22)
Pt+tf=0, f2=-I-Nt . (23)

Because J is parallel with respect to V in N, differentiate it along a tangent vector field
X e TM and compare the tangent and normal components, we have (cf.13).

(Vi P) Y=Ay, X +1B(X, 1), . (2.4)

(Vy N)Y=—-B(X, PY) +fB(X, ). . (2.5)

Where Vy P and Vy N are the covariant derivatives of P and N, respectively defined by

(VyP) Y=V, (PY)-PV,7, w (26)
4
(VyN) Y=V, (NY) =NV, Y. - @)

Now let us assume that x: M — N is an immersion with Kéhler angle 6, then (cf2’3).

(PX,PY)=cos® 8(X,Y),, X,Ye TM,

vith cos 0 a locally Lipschitz function on M, smooth on the open set where it does not vanish. On
an open set without holomorphic and lagrangian points, we can choose a locally orthonormal frame
{el,..., e2n} of TM, such that

Pei=cos Oe Pe , .=-cos E)ei, i=1, .., n,

n+op n+i
1
and a local orthonormal frame {e2n T e4n} of T M such that

Ne,.= sin 0e2n+i, Ne

4 = SN 6e3n+i, i=1, .., n
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Obviously by the definition of ¢ and f, using (2.2) and (2.3), we have

tey, . ;== sin Oei, tey, . ;== sin 6en+i,

feyppj=—cosOes, ;, fey, ;=cosbe, .
By (2.4), for any X, Y, Ze TM

((VxP)Y,Z) = (Ayy X+t B(X, Y), Z). .. (2.8)
The following index onvention is o, B, % ....,€ {1, .., 2n} and i, j, k, ..,€ {1, .., n}. The

2n+y
component of the second fundamental form is denoted by B g . Let X = ey Y=¢; and

Z = e, in (2.8), making use of (2.6), by a direct calculation we have

2n+k 3n+l n+l i e (cos 6)
) .. 2.9

Bonsi = B ZCtge(ra,n+k_Fa,k t e kb
Y . - .
where I" 8 is the connection coefficient of M, defined by
Y
Veaeﬁ—raﬁey, T

When N is a 2n-dimensional complex space form with constant holomorphic sectional

curvature 4c, for any X,Y,Ze TM, the curvature tensor is given by

RXNZ=c{{(Y,Z)X~(X,Z)Y+(JY,Z)
JX=(JX,Z)JY+2(X,JY)JZ}. . (2.10)
3. PROOF OF THEOREM 1.2

Let L = {pe Mlcos 8(p) = 0}, and L° denotes the largest open set contained in L.

Theorem 3.1 — Let N be a 2n-dimensional complex space form with constant holomorphic

sectional curvature 4c, and M a 2n-dimensional submanifold immersed into N with equal Kdhler

angles. If the mean curvature vector field of M in N is paurallel, then on L° U M-L)

Acos 8 < —6 ¢ sin’ cos 6. .. 3.1

PROOF : First we assume 0 < cos 8 < 1, so that we can choose the orthonormal frame fields
given in Section 2. Define a function F by

n

F= Y < Pe,Pe>=ncos” 6. - (32)
k=1

The Laplacian of F is given as follows
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2n
AF=tr(VdF) = Y (& F=dF(V, ey).

a=1

By (2.4)~(2.8), we can do the following calculations:

eg 2 e, { Pey, Pe, )
k

eﬁeaF

A, Y, 2( A, (Pe), Pe, )
k a

= v, Yy 2¢ (8, Pl + PA, e Pey)
k

=V z 2{<ANeA"‘°a+tB(ea’ek)’Pek> + (PVeaek,Pek)}
k o

=V, ¥ 2{sin9(Aezn+kea,Pek) - (B(ea,ek),NPek)}
k

B
. 2n+k 3n+k
= VeB z 2 sin 6 cos G(Ba,’ﬂ_k - B, ]
k
. 2n+k 3n+k
= z 2eﬁ(sm O cos G)(Ba',wk - By )
k
. 2n+k 3n+k
+2 2s1n0cosO{Veﬁ Ba,n+k”VeB B, } .. 33)
K
Similar calculation as above gives
dF (V, e,) = D, 2sin6cos 6
k k
{(B(Veﬂea, € s 2sk) = (B, g €. e3n+k)}. e (34)

Let us denote the last two terms in (3.3) by A; and B,. For A; we get

2n+k
Al = Veﬁ Bot,n+k = Ve,3 <B(eoﬁen+k)’62n+k>

1 1
= <VeB (B (eg en+k)’eZn+k>+<B(ea’en+k)’vepe2n+k>
= ((VeﬁB) (ea’ en+k)+B(Veﬁea‘ en+k)+B(ea’ Veﬁen+k)’ 62n+k>

1
+ (B(ea, en+k)’ Veﬁe2n+k>
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— 1
= (Ver B) (e, eﬁ) + (R (eﬁ, e, 1) €

+ B(Veﬁea’en+k)+B(eot’ Veﬂen+k)’ e2n+k>

L
+ <B(e(t’ en+k)’ Veﬁe2n+k>

1 _ L
- (Ve“k(B g eﬁ))+(R(el3’ €n+1) €l -B(Ven+kea, eﬁ)_B(e“’ Ve'”keﬁ)

L
+ B(Vepea’ en+k)+B(ea’ Veﬁen+k)’ e2n+k>+<B(ea’ en+k)’ Veﬁe2n+k>

1 _ 1
= <Ve H((B (ea’ eﬁ))+(R(eB’en+k)ea)’62n+k>+<B(Veﬂeot’ en+k)’62n+k>

+ B(eot’ Veﬂen+k)_B(Ven+keO(’ eﬁ)—B(ew Ve”+keﬁ)’ 62n+k>

1
+ (Bleg e, 1 Ve[i €n sk ) ... (3.5

Where we have used the codazzi eq. (2.1) in the fifth equality. By a similar calculation we
also have

3n+k

B] = Ve[3 Ba,k = Vel3 <B(eo!’ ek)’ e3n+k>

1 . L
= (Vek (B (eop eﬁ))"'(R (eﬁ’ ek) ea) ’e3n+k>+<B(VeBea’ ek)’ e3n+k>

+ (B (e, Veﬁek)—B(Vekea, eﬁ)—B(ea, Vekeﬁ),- €3y k!

4
+ (B (e, €), Vep €34k ) .. (3.6)
Combining (3.3), (3.4), (3.5) and (3.6) and using the definition of A F we have

2n+k 3n+k
AF = 2 Zea(sinecose)(B B )

on+k - P ak
a, k

. 1 _ L
+ Z 2sinfBcos 6 {(V, k(B(ea,ea))+(R(ea,en+k),e2n+k)
a,k n+

1 L
- < Vek (B (ea’ ea))) + (E (ea’ ek) ea) s e3n +k >}

+ Z 2 sin Bcos O

a, k

{< (B (ea’,vt'“ erz+k));_2B (Verea’ ea)’ 62n+k>
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—( B(ey V"’a e, ),—2B (Vek € €0 €34 i)

+ 2 2 sin O cos 8

ak

1 1
{(B(ea, €1 k) Veme2n+k> — Bley ) Veme3n+k>}' - 37)

We denote the last two terms by A, and B,, respectively, in the above equation. For A,,

. L
Ay = 25in 0003 0 (B(eg €y 4 Ve €nsic)

a, k

1
= Z 2sinBcos 8 (B ey e,, ).V, (smBNekJ>

o, k

= 2 2 sin B ¢cos 8

ok

—e, (sin 6) 1
(Bleg e, 1) Nek+sin6((VeaN)ek+NVeaek)>

sm2 6

—e,, (sin 6)

Z 2Sin 90059{<B(€wen+k), Sine eZn—}-k)

o, k

i 3<B(ea’ €, 1)~ Bey, Pe)+fB (e, ek)+NVeaek)}

2n+k
= 2 {—2cos Oe,(SnO)B .\ — 2cos? (B ey e, 1) Blege, 1))
ok

+ 2cos 8(B(eye, . ) fB(ea,ek)+NVeaek)}.

In the above calculation, we have used (2.5), (2.7) and the property of the chosen frame.
Similarly,

1]

B, Z 2 sin Bcos @ (B (e, ek)V e3n+k>

o, k

. 3n+k 2
2 {—ZCoseea(sm@Bak + 2cos” 0B (e, ¢,), B ey, €))
a, k

+ 2005 0¢B (g €SB egre, , )N, €, 1)}

Therefore
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a.n+k—Ba,k

Ay-B, =3, {~2c0s6e,(sin O

2n+k 3n+k
(B
ak

) — 2cos Q1 BII?

+ Y 2050[(Blege,, ) fB (e e))~(Blege)SBleg. e, )}

o, k

+ Y 2cos 9{(B(ea, ens NV, )—(B(ea,ek),NV"‘,e’Hk)}. . (3.8)

o, k

As f is skew-symmetric, inserting (3.8) into (3.7) gives

2n+k 3n+k
AF = Y 2sin0ea(0059)(Ban+k—Bak ) . (39)
a, k
L 1
+ 2 25in60056{(V€ kﬁ+(ﬁ(ea,en+k)ea),ezn+k)
a k n+

1 1
<Vek H+(R (e e eg) ve3n+k>}

+ z 2 sin O cos 9{(3(80,, Vea€n+k)—23 (Ven+kea’ €a)> €on i)

o, k
- (B(ea,Veaek)—ZB(Vekea,ea),e3n+k)} ... (3.10)
+ Y 4cosO{(Bleye,, )WfBlege))) —2cos? 8IIBIP . (3.11)
ok

+ 2005 0 {(Beg ey, )NV, ) ~(Blege) NV, €,,,))

o, k *
.. (3.12)

Where F is the mean curvature vector field of M, defined by H = trB. Since
Z (B (Ve’Hk € ea)’ 62n+k>
a k

B 2n+k o 2n+k
= z 1“n+k,ozBﬁoc == Z 1—‘n+k,,BB[305
a Bk o Bk

After rearranging indices in the last term we see that this term vanishes. Similarly

Z < B (Vek Cor ea)’ €n+k >=O'

a k

Therefore

(3.10) = 2 sin fcos & Z KB(eO(’ Ve en+k)’ e2n+k>—<B(ea’ Ve ek)’ e3n+k>}
ok * *
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B 2n+k B 3n+k
an+k Caf T ok a/i}

= 2sin Ocos O 2 {F
a Bk

By the property of the chosen frame fields and using the basic inequality, we have

2n+1 3n+1 3n+l 2n+1
@.11) = 4cos’ 6 Y (Ba,,”k Byv ~Boynik Box )— 2 cos® 61 BI*"

a, k1
<2cos’ 6 Z

o, k!

2 2 2 2

. 2n+1 3n+1 3n+l 2n+1
(mert) +(mad") o(me) (2] |
— 2cos? QI BI? <0. . (3.13)

By the property of the chosen frame fields again

(3.12) = 2sin B¢cos 8 z

(32n+[3 B BZn+ﬂ B )
o Bk

oan+k * ak ~ ok an+k

Let £k = [ in (2.9) we see that

2n+k 3n+k ey (cos 6)
- B = e
a,n+k ok sin 6

This leads

(39 =23 [egcos®) =2n1VcosoI2

ok

Inserting (3.9)~(3.12) into A F and using (3.2), we get

L L
A (ncos® 6) < 2sin fcos 6 ), {(Ve kﬁ’ez"*k)_(Vek I_1>.e3,,+k)}

a, k

. — 1 — 1
2 sin Bcos 6 Z {((R(ea,e,1+k)ea) ’eZn+k>_(R(ea’ek)ea) ’e3n+k>}
a, k

+2n11V cos 6117 + F), . (3.14)
where

F,=2sin6cos 6

a k

an+k “af T ok P of 0 on+k b oak ok o,n+k

{Fﬁ 2n+k B 3n+k 2n+ B B B2n+ﬁ B }
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Now we assume N is a complex space form with constant holomorphic sectional curvature
4c. By (2.10) we have

— 4
z ((Rlegpe,i) €y »€msk? = — 3 ncsin Bcos 6,
o, k

1
S ((Rlegpey ey »e3,45) = — 3 nsin Ocos 6.
ok

Therefore, when the mean curvature vector field  is parallel, (3.14) reads
A (ncos® 6) < 2n 11V cos O — 12 ncsin® 6 cos” 6.+ F. .. (3.15)

It is easy to see that formula (3.15) is independent of the chosen local frame fields. Thus

Y
for any pe M, we can choose a local normal coordinate for M at p such that I'y g(p) = 0 and

so Fy = 0. An easy calculation shows that

A (ncos2 0 =2nlVcosb 1 +2 ncos 8 A cos .

Plugging these into (3.15) we get

A cos 8 < — 6 csin® G cos 6.
Generally, cos 6 is only locally Lipschitz on M, but smooth on the open set of Lagrangian
points. Obviously the last formula also holds on holomorphic points and the largest open set of

Lagrangian points. Therefore, it surely holds on L° U M-L).

PROOF OF THE THEOREM 1.2 — From Theorem 3.1, we see that, (3.1) is valid on all M
but the set of Lagrangian points with no interior. Now M is closed and so cos 8 extends smoothly
on all M, ie. (3.1) holds on the whole submanifold M.

1. When ¢ > 0, integrating (3.1) over M and noting that cos 8 2 0, we have

- J. 6csin2 Ocos 8dV olM 2 0,
M

which implies either sin 8 = 0, or cos 6 = 0, that is M is either a holomorphic or a Lagrangian
submanifold.

2. When ¢ = 0, (3.1) takes the form
A cos 8L 0.

By the maximum principle of Hopf, we see that cos 8 is constant and therefore M has
constant Kahler angles.

When M has constant Kéhler angles, as an immediate result of Theorem 3.1, we have the

following corollary which generalizes a theorem of Chen and Tazawa".
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Corollary 32 — Let M 2% be a slant submanifold with parallel mean curvature vector field,

immersed into a complex projective space CP 2" Then M is either a holomorphic or a Lagrangian

submanifold.
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