ON THE DIOPHANTINE EQUATION $x^2 + 3 = py^n$

KH. HESSAMI PILEHROOD* AND T. HESSAMI PILEHROOD**

*Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran, Iran
E-mail: hessamik@ipm.ir, hessamit@ipm.ir

(Received 13 July 2004; after final revision 30 August 2005; accepted 12 November 2005)

Let p be an odd prime such that $p - 3$ is not a perfect square. In this paper we prove that the equation $x^2 + 3 = py^{p-1}$ has no solutions in rational numbers x, y. The proof depends on the unique factorization in the ring of algebraic integers of $\mathbb{Q}(\sqrt{-3})$ and on certain congruence arguments. Furthermore, the equations $x^2 + 3 = py^\frac{p-1}{2}$ and $x^2 + 3 = py^6$ in rationals x, y are also considered.

Key Words: Diophantine Equation; Quadratic Field; Prime

1. INTRODUCTION

In the present paper we prove two results.

Theorem 1.1 — Suppose p is an odd prime and $p - 3$ is not a perfect square. Then

a) the equation

$$x^2 + 3 = py^{p-1}$$

has no solutions in rational numbers x, y.

b) In particular, if a prime $p \equiv 1 \pmod{4}$, then the equation

$$x^2 + 3 = py^{\frac{p-1}{2}}$$

has no solutions in rational numbers x, y.

Theorem 1.2 — Let $p > 3$ be a prime. If the equation

$$x^2 + 3 = py^6$$

Present address: Mathematics Department, Shahrekord University, Shahrekord, P. O. Box 115. Iran

This research was in part supported by a grant from IPM (No. 83110021 and 83110020).
is soluble in rational numbers \(x, y \), then there exist positive integers \(A, B \) such that
\[p = A^2 + 3B^2 \text{, } B \text{ is a cubic residue modulo } p, \text{ and either } B \equiv 0 \pmod{9} \text{ or } B \equiv \pm 1 \pmod{9}. \]

Remark 1.3 : In Theorem 1.1, for primes \(p \) that can be written as the sum \(p = a^2 + 3 \), where \(a \in \mathbb{Z} \), one already has a trivial solution for equation (1.1) just taking \(y = 1 \).

When \(p = 5 \), eq. (1.2) reduces to \(x^2 + 3 = 5y^2 \), for which it is known that it has no rational solutions by Legendre's theorem (see [2, p.269]).

Equations similar to (1.1), (1.2) were considered in [1], [5], where it was proved that the equation \(x^2 + 3 = y^n \) is not solvable in positive integers \(x, y, n \geq 3 \), and the complete set of positive integer solutions \((x, q, m, n) \) for the equation \(x^2 = 4q^m - 4q^n + 1 \) and in particular for the equation \(x^2 + 3 = 4q^m \) was found.

Note that eqs. (1.1), (1.2), (1.3) are special cases of the equation \(ax^2 + bx + c = dy^n \) with \(b = 0, acd \neq 0 \) and \(n \geq 3 \), which has only a finite number of integer solutions by Landau's, Ostrowski's [4] and Thue's [8] results (see [6]). Moreover it follows from ([7, Theorem 12.2]) that these solutions are effectively computable, in the usual sense, i.e., that it is possible to find all them by considering all values of say \(x \), up to some bound \(M(a, b, c, d) \) which can be explicitly calculated. In practice, the power of that method is limited by the huge size of the \(M \) that arises, but it does provide a theoretical method for solving such problems.

Note also that for \(p \geq 11 \), by Faltings' theorem [3, p. 269], eqs. (1.1), (1.2), considered as curves of genus at least two have finitely many rational solutions.

The following lemma is needed for the sequel.

Lemma 1.4 — Let \(V, S \in \mathbb{Z} \). If 3 does not divide \(V(S^2 - V^2) \), then \(S \equiv 0 \pmod{3} \).

Proof : If \((S, 3) = 1 \), then \(S^2 \equiv 1 \pmod{3} \). Since for any integer \(V \), either \(V \equiv 0 \pmod{3} \) or \(V^2 \equiv 1 \pmod{3} \), we conclude that \(V(S^2 - V^2) \equiv 0 \pmod{3} \). Hence, we obtain a contradiction, from which the lemma follows. \[\square \]

2. **Proof of Theorem 1.1**

Proof : Assume that \(x = X/Q, y = Y/T \) is a solution of (1.1) or (1.2) for some integers \(X, Y, Q, T \)
with $Q \geq 1$, $T \geq 1$ and

$$ (X, Q) = (Y, T) = 1 $$

... (2.1)

Put

$$ n = \begin{cases}
0, & \text{if } p \equiv 3 \pmod{4}, \\
1, & \text{if } p \equiv 1 \pmod{4}.
\end{cases} $$

Then eqs. (1.1) and (1.2) can be written in the form

$$ x^{p-1}y^{p-1}z^{p-1} + 3Q^2z^n = pQ^2y^zn $$

... (2.2)

or

$$ x^{p-1}z^n = Q^2 \left(pY^{p-1} - 3T^{p-1} \right) $$

whence taking into account (2.1), we get

$$ T^{p-1}z^n \equiv 0 \pmod{Q^2}. $$

... (2.3)

In the same way, from (2.1) and the relation

$$ \frac{p-1}{pQ^2y^zn} = T^{p-1}z^n (X^2 + 3Q^2) $$

we have

$$ pQ^2 \equiv 0 \pmod{T^{p-1}z^n} $$

... (2.4)

Since $(p-1)/2^n$ is even, it follows from (2.3) and (2.4) that $Q^2 = T^{p-1}z^n$. Then from (2.2) we deduce that

$$ x^{p-1}y^{p-1}z^{p-1} + 3T^2z^n = pY^2z^n $$

... (2.5)

whence it follows that

$$ (X, p) = (T, p) = (X, T) = (Y, T) = (X, Y) = (X, 3) = 1 $$

... (2.6)

Rewrite equation (2.5) as
\[
\left(X + i \sqrt{3} T \, 2^n \right) \left(X - i \sqrt{3} T \, 2^n \right) = pY \, 2^n.
\] ...

(2.7)

It is easy to see from (2.6) that the two algebraic integers appearing in the left-hand side of eq. (2.7) are coprime in the ring of algebraic integers of \(\mathbb{Q} [i \sqrt{3}] \).

Indeed, if we put
\[
\delta = \left(X + i \sqrt{3} T \, 2^{n+1}, X - i \sqrt{3} T \, 2^{n+1} \right),
\] then \(\delta \mid 12X, \delta \mid 2i \sqrt{3} T \, 2^{n+1} \).

According to \((X, T) = 1\) we may take \(\delta = 1, 2, i \sqrt{3}, 2i \sqrt{3} \). It is obvious that the case \(2i \delta \) is impossible by \((X, T) = 1\). We cannot also have \(\delta = i \sqrt{3} \). For then \(X \equiv 0 \pmod{i \sqrt{3}} \) \(X \equiv 0 \pmod{3} \) and we have a contradiction with \((X, 3) = 1\). So \(\delta = 1 \).

Since the ring of algebraic integers \(\mathbb{Q} \left[\frac{1 + i \sqrt{3}}{2} \right] \) of \(\mathbb{Q} [i \sqrt{3}] \) is euclidean, it follows that there exist four integers \(a, b, S, V \) with \(a \equiv b \pmod{2} \), \(S \equiv V \pmod{2} \) and a unit \(\varepsilon \) in \(\mathbb{Z} \) such that

\[
X + i \sqrt{3} T \, 2^n = \varepsilon \cdot \frac{a + i \sqrt{3} b}{2} \cdot \left(\frac{S + i \sqrt{3} V}{2} \right)^{2^n}.
\]

Since there are just six units, \(\pm 1, \pm \omega, \pm \omega^2 \), where \(\omega = \exp(i \pi/3) = (-1 + i \sqrt{3})/2 \), it follows that these can be absorbed into the fraction \((a + i \sqrt{3} b)/2\). Thus for some rational integers \(A \) and \(B \) with the same parity

\[
X + i \sqrt{3} T \, 2^n = \frac{A + i \sqrt{3} B}{2} \cdot \left(\frac{S + i \sqrt{3} V}{2} \right)^{2^n},
\] ...

(2.8)

where

\[
p = \frac{A^2 + 3B^2}{4}.
\] ...

(2.9)

Multiplying both parts of (2.8) by \(2^{2^n} \), we get

\[
\frac{p-1}{2} \left(\frac{p-1}{X \, 2^n} + i \sqrt{3} T \, 2^{n+1} \frac{p-1}{B \, 2^n} \right).
\]
ON THE DIOPHANTINE EQUATION $x^2 + 3 = py^n$

\[
\frac{p-1}{2^n} = (A + i \sqrt{3} B) \left(SB + AV - (A - i \sqrt{3} B) V \right)
\]

\[
= (A + i \sqrt{3} B) \left(\frac{p-1}{2^n} \right)
\]

\[
U^{2^n} + (A - i \sqrt{3} B) (K + i \sqrt{3} R)
\]

for some U, K, R in \mathbb{Z}. Comparing imaginary parts and taking into account that $p \mid A^2 + 3B^2$, we obtain

\[
\frac{p-1}{2^n} + 1 = \frac{p-1}{2^n} \cdot T^{2^n+1} \cdot B^{2^n} \equiv B \cdot U^{2^n} \pmod{p}.
\]

Raising both sides of the last congruence to the power $2^n + 1$, by Fermat’s Little Theorem, we get

\[
2^{2^n+1} \equiv B^{2^n+1} \pmod{p}, \quad n \in \{0, 1\}.
\]

This implies that

\[
(B^2 - 4)(B^2 + 4) = 0 \pmod{p}.
\]

If $B^2 - 4 \equiv 0 \pmod{p}$, then $B^2 = 4 + pk \geq 0$ for some integer k. Now taking into account (2.9), we have $4p = A^2 + 3B^2 = A^2 + 12 + 3pk$ and hence, $0 \leq k \leq 1$.

For $k = 0$, we have $B^2 = 4$ and therefore,

\[
p = \frac{A^2 + 3B^2}{4} = \left(\frac{A}{2} \right)^2 + 3,
\]

i.e., $p - 3$ is a perfect square and we obtain a contradiction.

If $k = 1$, then $B^2 = 4 + p$ and from (2.9) we have $4p = A^2 + 12 + 3p$ or $p = A^2 + 12 = B^2 - 4 = (B - 2)(B + 2) > 12$ that is impossible since p is a prime.

If $B^2 + 4 \equiv 0 \pmod{p}$, then $B^2 = -4 + pk_1 \geq 0$ for some k_1 in \mathbb{Z}. Using (2.9), we get

\[
4p = A^2 + 3B^2 = A^2 - 12 + 3pk_1 \quad \text{or} \quad 4p - 3pk_1 + 12 \geq 0 \quad \text{that implies} \quad 4 - 3k_1 \geq -12/p \geq -12/5.
\]

Hence, $2 \geq k_1 \geq 1$.

If \(k_1 = 2 \), then \(B^2 = -4 + 2p \) and \(4p = A_2^2 + 3B_2^2 = A_2^2 - 12 + 6p \) or \(0 = A_2^2 - 12 + 2p \) \(\geq A_2^2 - 2 \). This implies that \(A = 0 \) or \(A = 1 \). For \(A = 0 \), we have \(0 = -12 + 2p \) and this contradicts that \(p \) is a prime. For \(A = 1 \), we have \(0 = -11 + 2p \) that is impossible. Hence, the unique case \(k_1 = 1 \) remains. Therefore, \(B^2 = -4 + p \) and \(4p = A^2 + 3B^2 = A^2 - 12 + 3p \) or \(p = A^2 - 12 = B^2 + 4 \). The last relation is equivalent to the following

\[
A^2 - B^2 = (A - B)(A + B) = 16,
\]

whence it follows \(B = \pm 3, A = \pm 5, n = 1, p = 13 \). For this case, from (2.8), we get

\[
X + i\sqrt{3}T^3 = \frac{\pm 5 \pm 3i\sqrt{3}}{2} \left(\frac{S + i\sqrt{3}V}{2} \right)^6
\]

so that

\[
128X + 128i\sqrt{3}T^3 = (\pm 5 \pm 3i\sqrt{3})(S_1 + i\sqrt{3}V_1)^3
\]

\[
= (\pm 5 \pm 3i\sqrt{3}) \left(S_1^3 - 9S_1 V_1^2 + i \left(3S_1^2 V_1 - 3V_1^3 \right) \sqrt{3} \right), \quad (2.10)
\]

where \(S_1 + i\sqrt{3}V_1 = (S + \sqrt{3}V)^2 = S^2 - 3V^2 + 2i\sqrt{3}SV \). Comparing imaginary parts of (2.10), we obtain

\[
128T^3 = \pm 3 \left(S_1^3 - 9S_1 V_1^2 \right) \pm 15 \left(S_1^2 V_1 - V_1^3 \right).
\]

This implies that \(T = 3T_1 \) for some \(T_1 \) in \(\mathbb{Z} \) and therefore,

\[
128 \cdot 9T_1^3 = \pm \left(S_1^3 - 9S_1 V_1^2 \right) \pm 5V_1 \left(S_1^2 V_1 - V_1^3 \right).
\]

whence, by Lemma 1.4, we conclude that \(S_1 \equiv 0 \) (mod 3) and hence, \(V_1 \equiv 0 \) (mod 3). Comparing real parts of (2.10), we conclude that \(X \equiv 0 \) (mod 3), so that \(3 | (X, T) \), contradicting \((X, T) = 1 \).

This completes the proof of Theorem 1.1. \(\square \)

3. PROOF OF THEOREM 1.2.

Proof: Let \((x, y) = (X/Q, Y/T)\) be a rational solution of (1.3), where \(X, Y, Q, T \) are integers, \(Q > 0, T > 0 \), and

\[
(X, Q) = (Y, T) = 1 \quad \ldots (3.1)
\]

Then from (1.3) we have
\[X^2 T^6 + 3Q^2 T^6 = pQ^2 Y^6, \] ... (3.2)

whence it follows that

\[T^6 \equiv 0 \pmod{Q^2}, \quad pQ^2 \equiv 0 \pmod{T^6}. \]

Therefore,

\[T^6 = Q^2 \]

and eq. (3.2) takes the form

\[X^2 + 3T^6 = pY^6. \] ... (3.3)

Now it is readily seen from (3.1) and (3.3) that

\[(3, X) = (X, Y) = (T, X) = (X, p) = (T, p) = 1\]

and therefore the algebraic integers \(X + i\sqrt{3}T^3, X - i\sqrt{3}T^3\) are coprime in the ring \(\mathbb{Z}\left[\frac{1 + i\sqrt{3}}{2}\right]\)

Arguing as above, we see that there exist rational integers \(A, B, S, U\) such that

\[X + i\sqrt{3}T^3 = \frac{A + i\sqrt{3}B}{2} \cdot \left(\frac{S + i\sqrt{3}U}{2}\right)^3, \] ... (3.4)

\[p = \frac{A^2 + 3B^2}{4}, \]

and

\[A \equiv B \pmod{2}, \quad S \equiv U \pmod{2}. \] ... (3.5)

Multiplying both sides of (3.4) by \(16B^3\), we get

\[16X B^3 + 16i\sqrt{3}T^3B^3 = (A + i\sqrt{3}B) (SB + i\sqrt{3}UB)^3 \]

\[= (A + i\sqrt{3}B) (SB + AU - (A - i\sqrt{3}B)U)^3. \]

Comparing imaginary parts and taking into account that \((p, T) = (p, B) = (p, 2) = 1\), we obtain

\[16T^3B^3 \equiv B \cdot (SB + AU)^3 \pmod{p}, \]

whence it follows that \(4B\) is a cubic residue modulo \(p\).

In addition, from (3.4) we find

\[16T^3 = A (3S^2 U - 3U^3) + B (S^3 - 9SU^2) \] ... (3.6)

\[16X = A (S^3 - 9SU^2) + 9B (U^3 - S^2 U). \] ... (3.7)
Note that \((S, 3) = 1\). Otherwise, if \(S \equiv 0 \pmod{3}\), then, by (3.6), (3.7), we obtain \(T \equiv 0 \pmod{3}\) and \(X \equiv 0 \pmod{3}\). This gives a contradiction as \((T, X) = 1\). Since \((S, 3) = 1\), by Lemma 1.4, we conclude that 3 divides \(U(S^2 - U^2)\). Then it follows from (3.6) that
\[
-2T^3 = BS^3 \pmod{9}.
\]
Since \((S, 3) = 1\), the last congruence implies that
\[
\text{either } B \equiv 0 \pmod{9} \quad \text{or} \quad B \equiv \pm 2 \pmod{9}. \quad \ldots (3.8)
\]
To conclude the proof, it remains to note that \(A\) and \(B\) are even, i.e., \(A = 2A_1, B = 2B_1\), where \(A_1, B_1 \in \mathbb{Z}\), and therefore, \(p = A_1^2 + 3B_1^2\); since 4B is a cubic residue modulo \(p\), so is \(B_1\), and congruences (3.8) take the form
\[
\text{either } B_1 \equiv 0 \pmod{9} \quad \text{or} \quad B_1 \equiv \pm 1 \pmod{9}.
\]
Indeed, if by (3.5), \(S\) and \(U\) are both even, i.e., \(S = 2S_1, U = 2U_1\) then from (3.6), (3.7) we have
\[
2T^3 = 3AU_1 \left(S_1^2 - U_1^2 \right) + BS_1 \left(S_1^2 - 9U_1^2 \right) \quad \ldots (3.9)
\]
\[
2X = AS_1 \left(S_1^2 - 9U_1^2 \right) + 9BU_1 \left(U_1^2 - S_1^2 \right). \quad \ldots (3.10)
\]
If \(U_1 + S_1\) is odd, then (3.9), (3.10) imply that \(2\mid B\) and \(2\mid A\).

If \(U_1 + S_1\) is even, then from (3.9), (3.10) we conclude that \(2\mid T\) and \(2\mid X\), contradicting \((X, T) = 1\).

If \(S\) and \(U\) are both odd, rewrite (3.6) in the form
\[
16T^3 - B(S + AU/B)^3 - 3AU^3 - 9BSU^2 - 3A^2U^2/B - A^3U^3/B^2,
\]
or
\[
16B^2T^3 = (BS + AU)^3 - 3AB^2U^3 - 9B^3SU^2 - 3BA^2SU^2 - A^3U^3.
\]
If we replace \(BS + AU\) by \(Z\) in the last relation, we obtain
\[
Z^3 - 3(A^2 + 3B^2)ZU^2 + 2A(A^2 + 3B^2)U^3 = 16B^2T^3. \quad \ldots (3.11)
\]
Taking into account that \(A^2 + 3B^2 = 4p\), we conclude that \(Z\) is even, i.e., \(Z = 2Z_1, Z_1 \in \mathbb{Z}\), and then (3.11) takes the form
ON THE DIOPHANTINE EQUATION

\[Z_1^3 - 3pZ_1 U^2 + ApU^3 = 2B^2 T^2. \]

Since \(p \) and \(U \) are odd, it follows easily that \(A \) is even and therefore, by (3.5), \(B \) is even. This completes the proof of Theorem 1.2.

REFERENCES