AN APPLICATION OF DIFFERENTIAL SUBORDINATIONS AND SOME CRITERIA FOR STARLIKENESS

NENG XU

Department of Mathematics, Changshu Institute of Technology, Changshu, Jiangsu 215500, Peoples' Republic of China
E-mail: xunengll@pub.sz.jsinfo.net

AND

DINGGONG YANG

Department of Mathematics, Suzhou University, Suzhou, Jiangsu 215006, Peoples' Republic of China

(Received 10 January 2005; accepted 9 January 2006)

Let $-1 \leq b < a \leq 1$, $0 < \gamma \leq 1$, and let $p(z)$ be analytic in the unit disk with $p(0) = 1$. By using the method of differential subordinations, we derive certain conditions connecting $p(z)$ and $z p'(z)$ under which the functions $p(z)$ are subordinate to $\left(\frac{1 + az}{1 + bz} \right)^\gamma$. Some useful consequences of these results are also given.

Key Words: p-Valently Starlike Function; Strongly Starlike Function; Subordination

1. INTRODUCTION

Let $f(z)$ and $g(z)$ be analytic in the unit disk $U = \{z : |z| < 1\}$. The function $f(z)$ is subordinate to $g(z)$ in U, written $f(z) \prec g(z)$, if $g(z)$ is univalent in U, $f(0) = g(0)$ and $f(U) \subset g(U)$.

Let $A_p (p \in N = \{1, 2, 3, \ldots\})$ be the class of functions $f(z)$ of the form

$$f(z) = z^p + \sum_{m=1}^{\infty} a_{p+m} z^{p+m} \quad \ldots \quad (1.1)$$

which are analytic in U. A function $f(z) \in A_p$ is called p-valently starlike of order α in U if it satisfies

...
\[\text{Re} \left(\frac{zf'(z)}{f(z)} \right) > p \alpha \quad (z \in U) \quad \cdots \quad (1.2) \]

for some \(\alpha (0 \leq \alpha < 1) \). We denote by \(S_p^*(\alpha) \) \((0 \leq \alpha < 1)\) the subclass of \(A_p \) consisting of all \(p \)-valently starlike functions of order \(\alpha \) in \(U \). For \(-1 \leq a \leq 1, -1 \leq b \leq 1, a \neq b \) and \(0 < \gamma \leq 1 \), a function \(f(z) \in A_p \) is said to be in the class \(S_p^*(\gamma, a, b) \) if it satisfies

\[\frac{zf'(z)}{f(z)} < p \left(\frac{1+az}{1+bz} \right) ^\gamma. \quad \cdots \quad (1.3) \]

It is easy to know that each function in the class \(S_p^*(\gamma, a, b) \) is \(p \)-valently starlike in \(U \). Also, we write

\[S_p^*(\gamma, 1, -1) = S_p^*(\gamma), S_p^*(1, a, b) = S_p^*(a, b), S_p^*(1, -1) = S_p^*. \quad \cdots \quad (1.4) \]

Note that \(S_p^*(\gamma) \) is the class of strongly starlike \(p \)-valent functions of order \(\gamma \) in \(U \) and \(S_p^*(1-2\alpha, -1) = S_p^*(2\alpha-1, 1) = S_p^*(\alpha) \) \((0 \leq \alpha < 1)\).

Let \(P \) be the class of functions \(p(z) \) of the form

\[p(z) = 1 + \sum_{n=1}^{\infty} p_n z^n \quad \cdots \quad (1.5) \]

which are analytic in \(U \). If \(p(z) \in P \) satisfies \(\text{Re} p(z) > 0 \) \((z \in U)\), then we say that \(p(z) \) is the Carathéodory function. For Carathéodory functions, Miller [2] has shown some sufficient conditions applying the differential inequalities. Recently, Nunokawa et al. [6] have given some improvements of results by Miller [2]. In the present paper, using the method of differential subordinations, we derive certain conditions under which we have

\[p(z) < \left(\frac{1+az}{1+bz} \right) ^\gamma, \]

where \(-1 \leq b < a \leq 1\) and \(0 < \gamma \leq 1 \). In particular, we obtain some criteria for \(p \)-valently starlikeness and strongly starlikeness.

To prove our results, we need the following lemma due to Miller and Mocanu [3].

Lemma — Let \(g(z) \) be analytic and univalent in \(U \) and let \(\theta(w) \) and \(\varphi(w) \) be analytic in a domain \(D \) containing \(g(U) \), with \(\varphi(w) \neq 0 \) when \(w \in g(U) \). Set
\(Q(z) = zg'(z) \varphi(g(z)), \ h(z) = \theta(g(z)) + Q(z) \)

and suppose that

(i) \(Q(z) \) is starlike univalent in \(U \), and

(ii) \(\Re \left(\frac{zh'(z)}{Q(z)} \right) = \Re \left\{ \frac{\theta'(g(z))}{\varphi(g(z))} + \frac{zQ'(z)}{Q(z)} \right\} > 0 \ (z \in U) \).

If \(p(z) \) is analytic in \(U \), with \(p(0) = g(0), \ p(U) \subset D \) and

\[\theta(p(z)) + zp'(z) \varphi(p(z)) \prec \theta(g(z)) + zg'(z) \varphi(g(z)) = h(z) \quad \text{... (1.6)} \]

then \(p(z) \prec g(z) \) and \(g(z) \) is the best dominant of (1.6).

2. MAIN RESULTS

Theorem 1 — Let \(0 < a \leq 1, \lambda > -\frac{1}{2} \) and \(\mu \) be a complex number with \(\Re \mu \geq 0 \). If \(p(z) \in P \) satisfies

\[\lambda (p(z))^2 + \mu p(z) + zp'(z) \prec h(z), \quad \text{... (2.1)} \]

where

\[h(z) = \frac{a^2(\lambda - \mu)z^2 + 2a(\lambda + 1)z + \lambda + \mu}{(1-az)^2}, \quad \text{... (2.2)} \]

then \(p(z) \prec \frac{1+az}{1-az} \) and \(\frac{1+az}{1-az} \) is the best dominant of (2.1).

PROOF: Set

\[g(z) = \frac{1+az}{1-az}, \quad (0 < a \leq 1), \ \theta(w) = \lambda w^2 + \mu w, \ \varphi(w) = 1. \quad \text{... (2.3)} \]

Then \(g(z) \) is analytic and univalent in \(U \), \(g(0) = p(0) = 1 \), \(\theta(w) \) and \(\varphi(w) \) are analytic with \(\varphi(w) \neq 0 \) in the \(w \)-plane. The function

\[Q(z) = zg'(z) \varphi(g(z)) = \frac{2az}{(1-az)^2} \quad \text{... (2.4)} \]

is starlike univalent in \(U \). Further, we have

\[\theta(g(z)) + Q(z) = \lambda \left(\frac{1+az}{1-az} \right)^2 + \mu \frac{1+az}{1-az} + \frac{2az}{(1-az)^2} = h(z) \quad \text{... (2.5)} \]

and
\[
\frac{zh'(z)}{Q(z)} = (2\lambda + 1) \frac{1 + az}{1 - az} + \mu. \tag{2.6}
\]

Since \(\lambda > -\frac{1}{2}\) and \(\text{Re} \mu \geq 0\), it follows from (2.6) that

\[
\text{Re} \frac{zh'(z)}{Q(z)} = (2\lambda + 1) \frac{1 + az}{1 - az} + \text{Re} \mu > 0
\]

for \(z \in U\). Thus \(h(z)\) in (2.5) is close-to-convex and univalent in \(U\). From (2.1)-(2.5) we see that

\[
\theta(p(z)) + z\varphi'(z) \varphi(p(z)) \prec \theta(g(z)) + zg'(z) \varphi(g(z)) = h(z).
\]

Therefore, by applying the lemma, we conclude that \(p(z) \prec g(z)\) and \(g(z)\) is the best dominant of (2.1). The proof of the theorem is complete.

Remark 1: When \(a = 1, \lambda = \frac{\alpha}{\beta}, \beta > 0, \alpha > -\frac{\beta}{2}\) and \(\mu = 0\), Theorem 1 was also proved by Nanokawa et al. [6] using another method.

Theorem 2 — Let \(-1 \leq b < a \leq 1, m \in \mathbb{N} \setminus \{1\}, 0 < \gamma \leq \frac{1}{m - 1}, \lambda \geq 0\) and \(\mu\) be a complex number such that \(\text{Re} \mu \geq -m \lambda \left(\frac{1 - a}{1 - b}\right)^{(m - 1)\gamma}\). If \(p(z) \in P\) satisfies

\[
\lambda(p(z))^m + \mu p(z) + zp'(z) \prec h(z), \tag{2.7}
\]

where

\[
h(z) = \lambda \left(\frac{1 + az}{1 + bz}\right)^m + \mu \left(\frac{1 + az}{1 + bz}\right)^\gamma + \frac{\gamma(a - b)z}{(1 + az)^{1 - \gamma}(1 + bz)^{1 + \gamma}} \tag{2.8}
\]

then \(p(z) \prec \left(\frac{1 + az}{1 + bz}\right)^\gamma\) and \(\left(\frac{1 + az}{1 + bz}\right)^\gamma\) is the best dominant of (2.7).

Proof: We choose

\[
g(z) = \left(\frac{1 + az}{1 + bz}\right)^\gamma, \theta(w) = \lambda w^m + \mu w, \varphi(w) = 1
\]

in the lemma. In view of \(-1 \leq b < a \leq 1\) and \(0 < \gamma \leq \frac{1}{m - 1} \leq 1\), the function \(g(z)\) is analytic and convex univalent in \(U\) because
\[
\text{Re} \left\{ 1 + \frac{z g''(z)}{g'(z)} \right\} = \text{Re} \left\{ 1 + (\gamma-1) \frac{az}{1+az} - (\gamma+1) \frac{bz}{1+az} \right\}
\]
\[
= -1 + (1-\gamma) \text{Re} \frac{1}{1+az} + (1+\gamma) \text{Re} \frac{1}{1+bz}
\]
\[
> -1 + \frac{1-\gamma}{1+|a|} + \frac{1+\gamma}{1+|b|}
\]
\[
\geq 0 \ (z \in U).
\]

Thus
\[
Q(z) = z g'(z) \varphi(g(z)) = z g'(z) = \frac{\gamma(a-b)z}{(1+az)^{1-\gamma}(1+bz)^{1+\gamma}}
\]
is starlike univalent in \(U\). Further, we have
\[
\theta(g(z)) + Q(z) = \lambda \left(\frac{1+az}{1+bz} \right)^m + \mu \left(\frac{1+az}{1+bz} \right)^\gamma + \frac{\gamma(a-b)z}{(1+az)^{1-\gamma}(1+bz)^{1+\gamma}}
\]
\[
= h(z)
\]
and
\[
\frac{zh'(z)}{Q(z)} = m \lambda \left(\frac{1+az}{1+bz} \right)^{m-1} + \mu + \frac{zQ'(z)}{Q(z)}.
\]...
(2.9)

Note that \(\text{Re} \ (w^\beta) \geq (\text{Re} \ w)^\beta \ (0 < \beta \leq 1, \text{Re} \ w > 0)\). For \(\lambda \geq 0, 0 < \gamma \leq \frac{1}{m-1}\) and
\[
\text{Re} \ \mu \geq -m \lambda \left(\frac{1-a}{1-b} \right)^{(m-1)\gamma},
\]
it follows from (2.9) that
\[
\text{Re} \ \frac{zh'(z)}{Q(z)} \geq m \lambda \left(\text{Re} \left(\frac{1+az}{1+bz} \right) \right)^{(m-1)\gamma} + \text{Re} \mu + \frac{zQ'(z)}{Q(z)}
\]
\[
> m \lambda \left(\frac{1-a}{1-b} \right)^{(m-1)\gamma} + \text{Re} \mu
\]
\[
\geq 0 \ (z \in U).
\]

The other conditions of the lemma are seen to be satisfied. Hence \(p(z) \prec g(z)\) and \(g(z)\) is the best dominant of (2.7). The proof is complete.

From Theorem 2 we can get a number of interesting results.
Corollary 1. Let $-1 \leq b < a \leq 1$ and $0 < \gamma \leq 1$. If $f(z) \in A_p$ satisfies $f(z) \neq 0$ in $0 < |z| < 1$ and

$$\frac{zf'(z)}{f(z)} \left(1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)} - \frac{p}{(1 + az)^{1-\gamma} (1 + bz)^{1+\gamma}} \right) \prec \frac{\gamma(a - b)z}{1 + az} \prec \frac{p}{1 + az} \gamma(a - b)z$$

then $f(z) \in S_p^{*}(\gamma, a, b)$.

Proof: Let $p(z) = \frac{zf'(z)}{pf(z)}$. Then $p(z) \in P$ and (2.10) can be written as

$$zp'(z) \prec \frac{\gamma(a - b)z}{(1 + az)^{1-\gamma} (1 + bz)^{1+\gamma}}$$

Taking $\lambda = \mu = 0$ and $m = 2$ in Theorem 2 and using (2.11), we know that $p(z) < \left(\frac{1 + az}{1 + bz}\right)^{\gamma}$ and $\left(\frac{1 + az}{1 + bz}\right)^{\gamma}$ is the best dominant of (2.11). So $f(z) \in S_p^{*}(\gamma, a, b)$.

Corollary 2 — Let $0 < \gamma \leq 1$ and $\lambda \geq 0$. If $f(z) \in A_p$ satisfies $f(z) \neq 0$ in $0 < |z| < 1$ and

$$\frac{zf'(z)}{pf(z)} \left(1 + \frac{zf''(z)}{f'(z)} + \left(\frac{\lambda}{p} - 1\right)\frac{zf'(z)}{f(z)} \right) \prec h(z),$$

where

$$h(z) = \lambda \left(\frac{1 + z}{1 - z}\right)^{2\gamma} + \frac{2\gamma z}{(1 + z)^{1-\gamma} (1 - z)^{1+\gamma}},$$

then $f(z) \in S_p^{*}(\gamma)$ and the order γ is sharp with the extremal function

$$f(z) = z^p \exp \left\{ p \int_0^z \frac{\gamma}{1 + \frac{t}{t - 1}} dt \right\}.$$

Proof: Setting $a = 1$, $b = -1$, $m = 2$, $0 < \gamma \leq 1$, $\lambda \geq 0$, $\mu = 0$, and $p(z) = \frac{zf'(z)}{pf(z)}$ in Theorem 2 and using (2.12), we have $f(z) \in S_p^{*}(\gamma)$.

For the function $f(z)$ defined by (2.13), it is easy to verify that

$$\frac{zf'(z)}{pf(z)} \left(1 + \frac{zf''(z)}{f'(z)} + \left(\frac{\lambda}{p} - 1\right)\frac{zf'(z)}{f(z)} \right) = h(z)$$

and
\[
\left| \arg \frac{zf'(z)}{f(z)} \right| = \gamma \left| \arg \frac{1+z}{1-z} \right| \to \frac{\gamma \pi}{2}
\]
as \(z \to i\). Hence the corollary is proved.

Remark 2: Owa and Obradovic [9] proved that if \(f(z) \in A_1\) satisfies \(f(z) \neq 0\) in \(0 < |z| < 1\) and
\[
\text{Re} \left\{ \frac{zf'(z)}{f(z)} \left(1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)} \right) \right\} > -\frac{1}{2} \quad (z \in U),
\]
then \(f(z) \in S^*_1\). It is clear that Corollary 2 with \(p = \gamma = 1\) and \(\lambda = 0\) is better than the result in [9].

Remark 3: It was proved in [5, Theorem 1] that if \(f(z) \in A_1\) satisfies \(f(z) \neq 0\) \((0 < |z| < 1)\) and
\[
\text{Re} \left\{ \frac{zf'(z)}{f(z)} \left(1 + \frac{zf''(z)}{f'(z)} \right) \right\} > 0 \quad (z \in U),
\]
then \(f(z) \in S^*_1 (\gamma_1)\), where \(\gamma_1 \in (0, 1)\) is the root of the equation
\[
1 = \gamma + \frac{2}{\pi} \arctan q(\gamma),
\]
\[
q(\gamma) = \tan \frac{\gamma \pi}{2} + \frac{\gamma}{2 \cos \frac{\gamma \pi}{2}} \left(\frac{1-\gamma}{1-\gamma} + \frac{1+\gamma}{1+\gamma} \right).
\]

Now we show that Corollary 2 with \(p = \lambda = 1\) and \(\gamma = \gamma_1\) refines the above result. Let us put
\[
h_1(z) = \left(\frac{1+z}{1-z} \right)^{2\gamma_1} + \frac{2\gamma_1 z}{(1+z)^{1-\gamma_1} (1-z)^{1+\gamma_1}}.
\]
Then for \(0 < \theta < \pi\), we have
\[
\arg h_1(e^{i\theta}) = \gamma_1 \arg \left(\frac{1+e^{i\theta}}{1-e^{i\theta}} \right) + \arg \left(\frac{2\gamma_1 e^{i\theta}}{1-e^{2i\theta}} \right) + \arg \left(\frac{1+e^{i\theta}}{1-e^{i\theta}} \right) + \frac{\gamma_1}{2} \frac{i\gamma \pi}{x^2} + \frac{\gamma_1 i}{2} \left(x + \frac{1}{x} \right)
\]

\[
= \frac{\gamma_1 \pi}{2} + \arg \left(\frac{iy_{\gamma_1 \pi}}{x_1 e^{i\theta}} + \frac{\gamma_1 i}{2} \left(x + \frac{1}{x} \right) \right)
\]
\[= \frac{\gamma_1 \pi}{2} + \arctan g(x), \]

where \(x = \cot \frac{\theta}{2} > 0 \) and

\[g(x) = \tan \frac{\gamma_1 \pi}{2} + \frac{\gamma_1}{2 \cos \frac{\gamma_1 \pi}{2}} \left(x^{-\gamma_1} + \frac{1}{x^{1+\gamma_1}} \right). \]

It is easy to know that \(g(x) \) takes its minimum value at \(x = \sqrt{\frac{1 + \gamma_1}{1 - \gamma_1}} \). Hence, in view of \(h_1 (e^{-i\theta}) = h_1 (e^{-i\theta}) \), we deduce that

\[
\inf_{|z| = 1} |\arg h_1 (z)| = \min_{0 < \theta < \pi} \arg h_1 (e^{i\theta})
\]

\[= \frac{\gamma_1 \pi}{2} + \arctan \left(g \left(\sqrt{\frac{1 + \gamma_1}{1 - \gamma_1}} \right) \right) \]

\[= \frac{\pi}{2} \left(\gamma_1 + \frac{2}{\pi} \arctan q(\gamma_1) \right) \]

\[= \frac{\pi}{2}, \]

and so \(h_1 (U) \) properly contains the right half plane \(\text{Re } w > 0 \). Thus we conclude that Corollary 2 with \(p = \lambda = 1 \) and \(\gamma = \gamma_1 \) is better than the result of [5, Theorem 1].

Corollary 3 — If \(f(z) \in A_p \) satisfies \(f(z) \neq 0 \) (0 < |z| < 1) and

\[
\frac{zf''(z)}{pf(z)} \left(1 + \frac{zf'''(z)}{f'(z)} \right) < \frac{p (1 - 2\alpha)^2 z^2 + 2 (p + 1 - (2p + 1) \alpha) z + p}{(1 - z)^2} \quad \text{... (2.14)}
\]

for some \(\alpha (0 \leq \alpha < 1) \), then \(f(z) \in S^*_p (\alpha) \) and the order \(\alpha \) is sharp for the function \(f(z) = z^p (1 - z)^{-2p(1 - \alpha)}. \)

Proof: Letting \(a = 1 - 2\alpha, b = -1, m = 2, \gamma = 1, \gamma = p, \mu = 0, \) and \(p(z) = \frac{zf'(z)}{pf(z)} \) in Theorem 2, it follows from (2.14) that \(f(z) \in S^*_p (\alpha) \). Sharpness can be verified easily.

Remark 4: For \(\alpha = 0 \), (2.14) becomes
\[\frac{zf'(z)}{f(z)} \left(1 + \frac{zf''(z)}{f'(z)} \right) + \frac{p}{2} < p \left(p + \frac{1}{2} \right) \left(\frac{1 + z}{1 - z} \right)^2, \]

or equivalently

\[\left| \arg \left\{ \frac{zf'(z)}{f(z)} \left(1 + \frac{zf''(z)}{f'(z)} + \frac{p}{2} \right) \right\} \right| < \pi \quad (z \in U). \]

Therefore Corollary 3 with \(\alpha = 0 \) reduces to the result of [8, Theorem 2].

Remark 5: It was shown in [1] that \(f(z) \in A_1 \) satisfies \(f(z) \neq 0 \) in \(0 < |z| < 1 \) and

\[\Re \left\{ \frac{zf'(z)}{f(z)} \left(1 + \frac{zf''(z)}{f'(z)} \right) \right\} > 0 \quad (z \in U), \]

then \(f(z) \in S^*_1 \left(\frac{1}{2} \right) \). For \(p = 1 \) and \(\alpha = \frac{1}{2} \), (2.14) becomes

\[\frac{zf'(z)}{f(z)} \left(1 + \frac{zf''(z)}{f'(z)} \right) < h(z) = \frac{1 + z}{(1 - z)^2}. \]

Since \(h(U) = \left\{ w = u + iv : v^2 > -\frac{u}{2} \right\} \) properly contains the right half plane \(\Re w > 0 \), we see that Corollary 3 with \(p = 1 \) and \(\alpha = \frac{1}{2} \) is better than the result in [1].

Corollary 4: Let \(-1 \leq b < a \leq 1\) and \(\Re \mu \geq 0 \). If \(f(z) \in A_p \) satisfies \(f'(z) \neq 0 \) in \(0 < |z| < 1 \) and

\[(1 - \mu) \frac{zf'(z)}{zf''(z)} + \frac{zf'(z)f''(z)}{(f'(z))^2} < h(z), \quad \ldots \ (2.15) \]

where

\[h(z) = \frac{b((pb - \mu)a)(1 + \mu)a)}{p(1 + bz)^2} z^2 + \left((2p + 1 - \mu)b - (1 + \mu)a \right) z + p - \mu, \]

then \(f(z) \in S^*_p (b, a) \).

PROOF: If we let \(\frac{zf'(z)}{zf''(z)} = \frac{pf(z)}{zf''(z)} \), then \(p(z) \in P \) and (2.15) can be expressed as

\[\mu p(z) + zp'(z) < p - ph(z) = \mu \left(\frac{1 + az}{1 + bz} \right) + \frac{(a - b)z}{(1 + bz)^2}. \]

Hence, taking \(m = 2, \gamma = 1, \lambda = 0 \) and \(\Re \mu \geq 0 \) in Theorem 2, we have \(p(z) < \frac{1 + az}{1 + bz} \) and
so \(f(z) \in S^*_p (b, a) \).

Remark 6: Setting \(p = 1, 0 = b < a \leq 1 \) and \(\mu = 0 \) in Corollary 4, we get the result obtained by Singh [11, Theorem 1.2], which refines the result of Silverman [10, Theorem 1].

Remark 7: Putting \(p = a = 1, b = -1 \) and \(\mu = 1 \) in Corollary 4, we have the result obtained by Tuneski [12, Theorem 2.1].

Setting \(p = 1, 0 = b < a \leq 1 \) and \(\mu = 1 \), Corollary 4 leads to

Corollary 5 — Let \(0 < a \leq 1 \). If \(f(z) \in A_1 \) satisfies \(f'(z) \neq 0 \) and

\[
\left| \frac{f(z)f''(z)}{(f'(z))^2} \right| < 2a \quad (z \in U),
\]

then \(f(z) \in S^*_1 \left(\frac{1}{1 + a} \right) \) and the order \(\frac{1}{1 + a} \) is sharp with the extremal function \(f(z) = \frac{z}{1 + az} \).

Remark 8: Sharpness is immediate. Also, Tuneski [12] proved that if \(f(z) \in A_1 \) satisfies \(f'(z) \neq 0 \) and

\[
\left| \frac{f(z)f''(z)}{(f'(z))^2} \right| < 2 \quad (z \in U),
\]

then \(f(z) \in S^*_1 \). Obviously, Corollary 5 with \(a = 1 \) improves the result of [12].

Setting \(a = 0, b = -c \) and \(\mu = 1 \), Corollary 4 yields

Corollary 6 — If \(f(z) \in A_p \) satisfies \(f'(z) \neq 0 \) \((0 < |z| < 1)\) and

\[
\frac{f(z)f''(z)}{(f'(z))^2} < 1 - \frac{1}{p(1-cz)^2}
\]

for some \(c \) \((0 < c \leq 1)\), then

\[
\left| \frac{zf''(z)}{f(z)} - p \right| < pc \quad (z \in U). \quad \text{... (2.16)}
\]

The bound \(pc \) in (2.16) is sharp for \(f(z) = z^p e^{-pcz} \).

For \(\mu = 0 \), Corollary 4 reduces to

Corollary 7 — Let \(-1 \leq b < a \leq 1 \). If \(f(z) \in A_p \) satisfies \(f'(z) \neq 0 \) \((0 < |z| < 1)\) and

\[
\frac{f(z)}{zf'(z)} \left(1 + \frac{zf''(z)}{f'(z)} \right) < \frac{pb^2 z^2 + ((2p + 1) b - a) z + p}{p(1+bx)^2}, \quad \text{... (2.17)}
\]

then \(f(z) \in S^*_p (b, a) \).
Remark 9: For \(a = 1 \) and \(b = -1 \), (2.17) becomes

\[
\frac{f(z)}{zf''(z)} \left(1 + \frac{zf'''(z)}{f'(z)} \right) - \left(1 + \frac{1}{2p} \right) < -\frac{1}{2p} \left(\frac{1+z}{1-z} \right)^2,
\]

which is equivalent to

\[
\left| \arg \left(\frac{f(z)}{zf''(z)} \left(1 + \frac{zf'''(z)}{f'(z)} \right) - \left(1 + \frac{1}{2p} \right) \right) \right| > 0 \quad (z \in U).
\]

Thus we see that Corollary 7 with \(a = 1 \) and \(b = -1 \) coincides with the result of [8, Theorem 1]. Similarly, for \(a = 0 \) and \(b = -1 \), (2.17) is equivalent to

\[
\left| \arg \left(\frac{f(z)}{zf''(z)} \left(1 + \frac{zf'''(z)}{f'(z)} \right) - \left(1 + \frac{1}{4p} \right) \right) \right| > 0 \quad (z \in U).
\]

Hence Corollary 7 with \(a = 0 \) and \(b = -1 \) coincides with the result of [7, Theorem].

Corollary 8 — Let \(0 < \gamma < 1 \) and \(\lambda \geq 0 \). If \(f(z) \in A_p \) satisfies \(f(z) \neq 0 \) (\(0 < |z| < 1 \)) and

\[
\frac{zf'(z)}{pf(z)} \left(\lambda \frac{zf'(z)}{pf(z)} + \gamma \cot \frac{\gamma \pi}{2} + 1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)} \right) \left(\frac{1+z}{1-z} \right)^{2\gamma},
\]

then \(f(z) \in S^*_p(\gamma) \) and the bound \(2\gamma \) in (2.18) is sharp.

Proof: For \(a = 1 \), \(b = -1 \), \(m = 2 \), \(0 < \gamma < 1 \). \(\lambda \geq 0 \), \(\mu = \gamma \cot \frac{\gamma \pi}{2} > 0 \) and \(p(z) = \frac{zf'(z)}{pf(z)} \), (2.7) in Theorem 2 becomes

\[
\frac{zf'(z)}{pf(z)} \left(\lambda \frac{zf'(z)}{pf(z)} + \gamma \cot \frac{\gamma \pi}{2} + 1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)} \right) < h(z),
\]

where

\[
h(z) = \left(\frac{1+z}{1-z} \right)^{\gamma} \left(\lambda \left(\frac{1+z}{1-z} \right)^{\gamma} + \gamma \cot \frac{\gamma \pi}{2} + \frac{2\gamma z}{1-z^2} \right).
\]

Letting \(0 < \theta < \pi \) and \(x = \cot \frac{\theta}{2} > 0 \), then we have

\[
\arg h(e^{i\theta}) = \frac{\gamma \pi}{2} + \arg \left\{ \frac{i \gamma \pi}{2} \left(\lambda x^\gamma e^{\frac{i\gamma \pi}{2}} + \gamma \cot \frac{\gamma \pi}{2} + \frac{\gamma i}{2} \left(x + \frac{1}{x} \right) \right) \right\}
\]
\[= \frac{\gamma \pi}{2} + \arctan \left(\tan \frac{\gamma \pi}{2} \left(\frac{\lambda x^\gamma \sin \frac{\gamma \pi}{2} + \frac{\gamma}{2} \left(x + \frac{1}{x} \right)}{\lambda x^\gamma \sin \frac{\gamma \pi}{2} + \gamma} \right) \right) \]

\[\geq \frac{\gamma \pi}{2} + \frac{\gamma \pi}{2} = \gamma \pi, \]

and so

\[
\inf_{|z|=1} \arg h(z) = \min_{0 < \theta < \pi} \arg h(e^{i\theta}) = \gamma \pi. \quad \text{(2.20)}
\]

If \(f(z) \) satisfies (2.18), then it follows from (2.20) that the subordination (2.19) holds. Thus an application of Theorem 2 yields \(f(z) \in \mathbb{S}_p^\gamma (\gamma) \).

For the function \(f(z) \) defined by (2.13), we have

\[
\frac{zf''(z)}{pf(z)} \left(\frac{\lambda zf'(z)}{pf(z)} + \gamma \cot \frac{\gamma \pi}{2} + 1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)} \right) = h(z)
\]

and it follows from (2.20) that the bound \(2\gamma \) in (2.18) is sharp.

Theorem 3 — Let \(-1 \leq b < a \leq 1\), \(m \in \mathbb{N}, 0 < \gamma \leq \frac{1}{m} \), \(\lambda \geq 0 \) and \(\mu \geq 0 \). If \(p(z) \in P \) satisfies \(p(z) \neq 0 \) \((0 < |z| < 1)\) and

\[
\lambda (p(z))^m + \mu p(z) + \frac{zp'(z)}{p(z)} \prec h(z) \quad \text{(2.21)}
\]

where

\[
h(z) = \lambda \left(\frac{1 + az}{1 + bz} \right)^m + \mu \left(1 + \frac{az}{1 + bz} \right)^\gamma + \frac{\gamma(a-b)z}{(1+az)(1+bz)},
\]

then \(p(z) \prec \left(\frac{1 + az}{1 + bz} \right)^\gamma \) and \(\left(\frac{1 + az}{1 + bz} \right)^\gamma \) is the best dominant of (2.21).

PROOF: We choose

\[
g(z) = \left(\frac{1 + az}{1 + bz} \right)^\gamma, \quad \theta(w) = \lambda w^m + \mu w, \quad \varphi(w) = \frac{1}{w}
\]

in the lemma. Noting that

\[
\text{Re} \, g(z) > \left(\frac{1-a}{1-b} \right)^\gamma \geq 0 \quad (z \in U)
\]
for $0 < \gamma \leq \frac{1}{m} \leq 1$, the function $\varphi(w)$ is analytic in $D = \{w : w \neq 0\}$ containing $g(U)$. The function

$$Q(z) = zg'(z) \varphi(g(z)) = \frac{\gamma(a-b)z}{(1+az)(1+bz)}$$

is starlike univalent in U because

$$Re \left(\frac{zQ'(z)}{Q(z)} \right) = -1 + Re \left(\frac{1}{1+az} \right) + Re \left(\frac{1}{1+bz} \right)$$

$$> -1 + \frac{1}{1+|a|} + \frac{1}{1+|b|} \geq 0$$

for $z \in U$. Further we have

$$\theta(g(z)) + Q(z) = \lambda \left(\frac{1+az}{1+bz} \right)^m \gamma + \mu \left(\frac{1+az}{1+bz} \right)^\gamma + \frac{\gamma(a-b)z}{(1+az)(1+bz)} = h(z).$$

and

$$Re \left(\frac{zh'(z)}{Q(z)} \right) = m \lambda \left(\frac{1-a}{1-b} \right)^m \gamma + \mu \left(\frac{1-a}{1-b} \right)^\gamma + Re \left(\frac{zQ'(z)}{Q(z)} \right)$$

$$> m \lambda \left(\frac{1-a}{1-b} \right)^m \gamma + \mu \left(\frac{1-a}{1-b} \right)^\gamma \geq 0 \quad (z \in U)$$

for $0 < m \gamma \leq 1$, $\lambda \geq 0$ and $\mu \geq 0$. The other conditions of the lemma can be checked to be satisfied. Therefore $p(z) \prec g(z)$ and $g(z)$ is the best dominant of (2.21).

Remark 10: Note that the univalent function

$$w = \frac{\alpha(1+z)}{1-z} + \frac{2\beta z}{1-z^2} \quad (\alpha > 0, \beta > 0)$$

maps U onto the w-plane slit along the half-lines $Rew = 0$, $Imw \geq \sqrt{\beta(2\alpha + \beta/2)}$ and $Rew = 0$, $Imw \leq -\sqrt{\beta(2\alpha + \beta)}$. For $a = 1$, $b = -1$, $\gamma = 1$, $\lambda = 0$, $\mu = \frac{\alpha}{\beta}$, $\alpha > 0$ and $\beta > 0$, Theorem 3 reduces to the result obtained by Nunokawa et al. [6, Theorem 2] using another method.

Corollary 9: Let $-1 \leq b < a \leq 1$, $0 < \gamma \leq 1$ and $\beta > 0$. If $f(z) \in A_\beta$ satisfies $f(z)f'(z) \neq 0$ ($0 < |z| < 1$) and

$$(1-\beta) \frac{zf'(z)}{f(z)} + \beta \left(1 + \frac{zf''(z)}{f'(z)} \right) \prec p \left(\frac{1+az}{1+bz} \right)^\gamma + \frac{\beta \gamma(a-b)z}{(1+az)(1+bz)}, \quad \cdots (2.22)$$
then \(f(z) \in S_p^* (\gamma, a, b) \).

Proof: Setting \(m = 1, \lambda = \frac{p}{\beta} > 0, \mu = 0 \) and \(p(z) = \frac{zf'(z)}{pf(z)} \) in Theorem 3 and using (2.22), the desired result follows at once.

Corollary 10 — Let \(0 < a \leq 1 \) and \(\beta > 0 \). If \(f(z) \in A_p \) satisfies \(f(z)f'(z) \neq 0 \) \((0 < |z| < 1) \) and

\[
(1 - \beta) \left(\frac{zf'(z)}{f(z)} \right) + \beta \left(1 + \frac{zf''(z)}{f'(z)} \right) - p < a \left(p + \frac{\beta}{1 + a} \right) \quad (z \in U), \quad \ldots \ (2.23)
\]

then

\[
\left| \frac{zf'(z)}{f(z)} - p \right| < pa \quad (z \in U). \quad \ldots \ (2.24)
\]

Proof: For \(0 = b < a \leq 1, \gamma = 1 \) and \(\beta > 0 \), (2.22) in Corollary 9 becomes

\[
(1 - \beta) \left(\frac{zf'(z)}{f(z)} \right) + \beta \left(1 + \frac{zf''(z)}{f'(z)} \right) - p < az \left(p + \frac{\beta}{1 + az} \right). \quad \ldots \ (2.25)
\]

Since the function \(h(z) = az \left(p + \frac{\beta}{1 + az} \right) \) is univalent in \(U \) and

\[
| h(z) | \geq a \text{Re} \left(p + \frac{\beta}{1 + az} \right) \geq a \left(p + \frac{\beta}{1 + az} \right)
\]

for \(|z| = 1 \left(z \neq -\frac{1}{a} \right) \), it follows from (2.23) that the subordination (2.25) holds. Hence an application of Corollary 9 yields the inequality (2.24).

Remark 11: Putting \(p = a = 1 \) in Corollary 10, we get the result obtained earlier by Mocanu [4, Theorem 3] using a different method.

Corollary 11 — Let \(0 < \gamma < 1 \) and \(\beta > 0 \). If \(f(z) \in A_p \) satisfies \(f(z)f'(z) \neq 0 \) in \(0 < |z| < 1 \) and

\[
(1 - \beta) \left(\frac{zf'(z)}{f(z)} \right) + \beta \left(1 + \frac{zf''(z)}{f'(z)} \right) < p \left(\frac{1 + z}{1 - z} \right)^{\alpha(\beta, \gamma)}, \quad \ldots \ (2.26)
\]

where

\[
\alpha(\beta, \gamma) = \frac{2}{\pi} \arctan \left(\frac{\tan \frac{\gamma \pi}{2} + \frac{\beta \gamma}{p(1 + \gamma)} \frac{1 + \gamma}{(1 - \gamma) \frac{1 - \gamma}{2} \cos \frac{\gamma \pi}{2}}}{1} \right), \quad \ldots \ (2.27)
\]
then \(f(z) \in \mathcal{S}^*_p (\gamma) \) and the bound \(\alpha(\beta, \gamma) \) in (2.26) is sharp.

Proof: For \(a = 1, \ b = -1, \ 0 < \gamma < 1 \) and \(\beta > 0 \), (2.22) in Corollary 9 becomes

\[
(1 - \beta) \frac{zf'(z)}{f(z)} + \beta \left(1 + \frac{zf''(z)}{f'(z)} \right) \prec h(z),
\]

where

\[
h(z) = p \left(\frac{1+z}{1-z} \right)^\gamma \frac{2 \beta \gamma z}{1-z^2}.
\]

Letting \(0 < \theta < \pi \) and \(x = \cot \frac{\theta}{2} > 0 \), then

\[
\arg h(e^{i \theta}) = \arg \left\{ px^{\frac{i \gamma \pi}{2}} + \frac{\beta \gamma i}{2} \left(x + \frac{1}{x} \right) \right\} = \arctan g(x),
\]

where

\[
g(x) = \tan \frac{\gamma \pi}{2} + \frac{\beta \gamma}{2p \cos \frac{\gamma \pi}{2}} \left(x^{1 - \gamma} + \frac{1}{x^{1 + \gamma}} \right).
\]

Further, we have

\[
\inf_{|z| = 1 (z \neq \pm 1)} |\arg h(z)| = \frac{\pi}{2} \arctan \left(g \left(\sqrt{\frac{1-\gamma}{1+\gamma}} \right) \right)
\]

\[
= \frac{\alpha(\beta, \gamma) \pi}{2},
\]

where \(\alpha(\beta, \gamma) \) is given by (2.27).

Now, if \(f(z) \) satisfies (2.26), then it follows from (2.29) that the subordination (2.28) holds.

Therefore an application of Corollary 9 yields \(f(z) \in \mathcal{S}^*_p (\gamma) \).

Next we consider the function \(f(z) \) given by (2.13). Then \(f(z) \) satisfies

\[
(1 - \beta) \frac{zf'(z)}{f(z)} + \beta \left(1 + \frac{zf''(z)}{f'(z)} \right) = p \left(\frac{1+z}{1-z} \right)^\gamma \frac{2 \beta \gamma z}{1-z^2} = h(z)
\]
and it follows from (2.29) that the bound $\alpha(\beta, \gamma)$ in (2.26) is sharp.

Setting $m = 1$, $\lambda = \mu = 0$ and $p(z) = \frac{zf''(z)}{pf'(z)}$ in Theorem 3, we have

Corollary 12 — Let $-1 \leq b < a \leq 1$ and $0 < \gamma \leq 1$. If $f(z) \in A_p$ satisfies $f(z)f'(z) \neq 0$ ($0 \leq |z| < 1$) and

$$
1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)} < \frac{\gamma(a-b)z}{(1+az)(1+bz)^*},
$$

then $f(z) \in S_p^* (\gamma, a, b)$.

REFERENCES