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Abstract A wavelet based linear estimator is proposed for the derivatives of a prob-
ability density function based on a sample from a finite mixture of components with
varying mixing proportions. It extends the linear estimator of a probability density
function proposed by Pokhyl'’kareor. Probability and Math. Statist0 (2005)
135-145). Upper bounds dip, and L, losses are obtained for such estimators.
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1. Introduction

The problem of analysis of mixtures with varying mixing proportions occur in the
study of medical, biological, social and other types of data. The objects of ob-
servationJy, ..., Jy may belong to any one of M populations. LEt/;) denote

the indicator of the population that contains the objéctFor every object/;, we
observe a random variabl€; based on the object;. Note that the distribution
function of the random variabl&; depends on the indicatd(.J;). Suppose that

P(Xj < $|[(J]) = k) = Hk(x),l <jJ<N, 1<k M.

Suppose the distribution functiord$ (x),1 < k£ < M are unknown and the
sequencé(J;),1 < j < N are also unknown but we know the probability: ()
that an object/; belongs to thé&-th population, that is,

w(j) = P(I(J;) =k),1 <j<N,1<k<M.
Note thatwy(j) > 0,1 < k < M and> 2 wi(j) = 1,1 < j < N.
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Observe that the probability, (j) indicates the mixing proportion of the ob-
jects ofk-th population in the mixture from which the objettis chosen. Itis easy
to check that

M
P(X;<a) =Y wi(j)Hi(x),1 <j<N. (1.1)
/=1

The problem of estimation of the distribution functiéfy(z) was studied in
Maiboroda [10] using a weighted empirical distribution function. Maiboroda [11]
obtained a generalized version of the Kolmogorov-Smirnov test for testimg the
hypothesis for the homogenity of mixtures with varying mixing proportions. As-
suming that the distribution functiorf$,(z) are absolutely continuous with density
functionsh,(z), Pokhyl’ko [14] constructed linear and adaptive wavelet estimators
for the density functiorh,(z).

Methods of nonparametric estimation of a density function and regression func-
tion are widely discussed in the literature (cf. Prakasa Rao [15, 17]). It is known
that the estimation of derivatives of a density as well as that of regression function
are also of importance and interest to detect possible bumps in the case of a density
and to detect concavity or convexity properties in the case of regression function.
Asymptotic properties of the kernel type estimators for the derivatives of density
have been investigated earlier (cf. Prakasa Rao [15], p.237).

Our aim in this paper is to discuss wavelet linear estimators for the deriva-
tives of a probability density function when the sample of observations come from
a mixture of several components with varying mixing proportions. We propose
an estimator for the derivative of the density based on wavelets and obtain upper
bounds on thd., and L., losses for the proposed estimator. Estimators of den-
sity using wavelets was studied for independent and identically distributed random
variables in Antoniadigt al. [1], for some stationary dependent random variables
in Leblanc [9] and for stationary associated sequnces in Prakasa Rao [19]. Chaubey
etal [2, 3] extended these results to derivatives of density estimators for associated
sequences and for negatively associated processes.

The advantages and disadvantages of the use of wavelet based probability den-
sity estimators are discussed in Walter and Ghorai [24] in the case of independent
and identically distributed observations. The same comments continue to hold in
this case. However it was shown in Prakasa Rao [16, 18] that one can obtain precise
limits on the asymptotic mean squared error for a wavelet based linear estimator
for the density function and its derivatives as well as some other functionals of the
density. Tribouley [21] studied estimation of multivariate densities using wavelet
methods. Donohet al. [6] investigated density estimation by wavelet threshold-
ing. For a discussion on statistical modeling by wavelets, see Vidakovic [23].

2. Preliminaries on Wavelets

A wavelet system is an infinite collection of translated and scaled versions of func-
tions ¢(-) and(-) called thescaling functionand theprimary wavelet function
respectively. In the following discussion, we assume #{a} is real-valued. The



WAVELET LINEAR ESTIMATION FOR DERIVATIVES OF A DENSITY 277

function¢(x) is a solution of the equation

o(z) = ki Cro(2z — k), (2.1)
with _
/_Z o(z)de =1, (2.2)
and the function)(z) is defined by
W(r) = kf} (~1)*C_ps10(22 — k). (2.3)

The choice of the sequeng€’;,} determines the wavelet system. It is easy to see
that

Y Gr=2 (2.4)
k=—00
Define
dji(x) = 22¢(2w — k), —00 < j, k < o0 (2.5)
and
Wip(x) = 272(20 2 — k), —00 < j,k < oc. (2.6)

Suppose the coefficien{€’; } satisfy the condition

> CiCrize = 2if £=0 (2.7)

k=—o0

= 0if £#£0.

It is known that, under some additional conditions of), the collection
{¥j, —00 < j, k < oo} is an orthonormal basis fdr?(R), and{¢; x, —0o < k <
oo} is an orthonormal system ih?(R), for each—oo < j < oo (cf. Daubechies
[4]).

Definition 2.1. The scaling functior is said to be--regular for an integer > 1,
if for every nonnegative integér< r, and for any integek > 1,

109 (2)| < ep(1+ |z)7F, —00 < 2 < 0 (2.8)

for somec;, > 0 depending only ort. Here¢(“)(-) denotes the-th derivative of

()
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Definition 2.2. A multiresolution analysi®f L?(R) consists of an increasing se-
quence of closed subspadds } of L?(R) such that
() NFZ_ Vi = {0}

j=—00

(i) 02, V; = L*(R);

Jj=—00

(iii) there is a scaling functiow € V{ such that{¢(z — k), —c0 < k < oo} is
an orthonormal basis fdr;

(iv) for all h(-) € L?*(R), —o0o < k < oo, h(x) € Vo = h(x — k) € Vp; and

M h(:) € V; = h(22) € V.

Mallat [12] has shown that, given any multiresolution analysis, it is possible to
find a functiony(-) (called the primary wavelet function) such that, for any fixed
J, —00 < j < oo, the family {t; ,, —oo < k < oo} is an orthonormal basis of the
orthogonal complemeri?’; of V; in V;; so that{+;;, —oco < j,k < oo} is an
orthonormal basis of.?(R) (cf. Daubechies [4]). When the scaling functiof)

is r-regular, the corresponding multiresolution analysis is said tetegular.
Let f € Lo(R). The functionf can be expanded in the form (cf. Daubechies

[5]):
fo= D anbsp+d. > bisthin (2.9)

k=—o0 j=s k=—o00
- Psf + Z D]f
j=s

for any integer—oco < s < co. Observe that the wavelet coefficients are given by

Us ke = /_Oo f(@) s p(x)dx (2.10)

and

bjk = / N (@)Y k(z)dz. (2.11)

Suppose that the functiormsandi belong toC"™, the space of functions with
continuous derivatives for some> 1, and have compact support contained in an
interval [—4, 6] for somed > 0. It follows, from the Corollary 5.5.2 in Daubechies
[4], that the function)(-) is orthogonal to polynomials of degree less than or equal
tor. In particular

/ Y(x)atde =0,0=0,1,..., 7

The above introduction to wavelets is based on Antoniades et al. [1]. For
a detailed discussion, see Daubechies [5]. For a brief survey on wavelets, see
Strang [20].
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3. Introduction to Sobolev Spaces and Besov Spaces

Let f be a function defined on the real line which is integrable on every bounded
interval. It is said to be weakly differentiable if there exists a functiatefined on
the real line which is integrable on every bounded interval such that

The functiong is defined almost everywhere and is called wWeak derivativeof
f (cf. Hardle et al. [8]). Itis known that, if is weakly differentiable with weak
derivativeg, then

/ Z fd'wdu =~ [~ gu)s(udu

—0o0

forany¢ € D(R) whereD(R) denotes the space of infinitely differentiable func-
tions, on the real ling?, with compact support.

Definition 3.1. Let 1 < p < oo andm > 0 be an integer. A functiorf € L,(R)
belongs to the Sobolev spat€"(R), if it is m-times weakly differentiable and
fm e Ly(R). In particularW(R) = L,(R). The spacéV;"(R) is equipped
with the norm
11wy = [1£1lp + 11771

where|| f||, denotes the norm fak,(R).

Let W"(R) = WM(R)if 1 < p < co andW(R) =
£ uniformly continuous}. Note thatiV?(R) = L,(R),1 < p < o.

Let f € L,(R) for somel < p < oo. Let (A, f)(z) = f(z — h) — f(z) and
defineA? f = A, Ay f. Fort > 0, define

wy(f,t) = sup [|ALf][p
|h|<t

and

wp(f,1) = sup ||AFf1],-
Ihl<t

Let 1 < ¢ < oo. Suppose there exists a functie(t) on [0, c0) such that
|e]|; < oo where

lell; = (/ tHe(t)|9dt)M9, if 1< q< oo
0
= 688S11p|6(t)|, if q = 0. (31)
t

Definition 3.2. Let1 < p,q < oo ands = n + o wheren > 0 is an integer
and0 < a < 1. The Besov spacé3, , is the space of all functiong such that

f € WHR) andw?(f(™,t) = €(t)t* where||e|| < oco.
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For properties of Besov spaces, see Meyer [13] and Triebel [22] (cf. Leblanc
[9], Hardle et al. [8]).
Suppose that the functighbelongs to the Besov class

Fspq(L)={f € By, |Ifllzs, <L}
forsomed < s <r+1,p>1andqg > 1, where
1£118s, = [[Pofllp + > (D) fllp27*) 9.
§>0

Given a double indexed sequenieg . } define the norm
1. 11e, = O AE ). (3.2)
k

In view of the representation (2.9), it be can shown that the functien B, , if
and only if

\las,.||¢, < oo, and (ZU\bs,.’\ZPQj(SJF(l/z)_(l/p))]q)1/q < c0. (3.3)
j=s
Let ¢(-) be a scaling function as defined earlier. Define

[e.9]

Opx) = D Iz — k).

k=—o00

Suppose the following conditions hold:
(C1) Theess sup, 04(x) < oo where

esssup g(x) = inf{y : A(fz : g(z) > y]) = 0}

and ) is the Lebesgue measure on the real line.
(C2) There exists a bounded nondecreasing funabion such thaf¢(u)| <
®(|u|) almost every where and

/ lu|"®(|u|)du < oo.
0

for some integer > 0.

Lemma 3.1.Suppose that the scale functioft) is such that the collectiof(z —
k), —oo < k < oo} is an orthonormal system ih(R) and the space¥);, —oo <

Jj < oo are nested. Further suppose that the funcifosatisfies the condition (C2)
and it isr + 1 times weakly differentiable. ("*1) satisfies the condition (C1),
then the norny|.|[; , is equivalent to the norr). | ]’B;’q in the space of the wavelet
coefficients for alk, p, g such thatd < s < r+ 1 and1 < p, ¢ < co where

o0

1£115;, = laolly + (3 (@2~ | yo) /e,
§=0
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(Here||ao||, denoted 32 . ao,["]'/? and||b;||, denotegy 22 _ . [b;x[*]'/7).

For a proof of Lemma 3.1, see Theorem 9.6 in Hagtlal. [8], p.123.

4. Estimation of the d-th Derivative of a Probability Density Function

Let {Y;,1 < i < n} be independent and identically distributed random variables
with probability density functiorf which is d-times differentiable. Suppose that
f@ is bounded and has compact support. SupposeftfRat L, (R). Let us first
consider the casé = 0. The problem now is the estimation of the probability
density functionf. A wavelet based density estimator of the density funcfiaan

be motivated in the following way from the expansion given in (2.9) (cf. Prakasa
Rao [19]). We can estimat&(x) by f(x) where

f(-r) = Z as,kfbs,k('r)? (41)
k‘eNs
where
Qo = 3 fu(¥D). 42)
=1

HereN; is the set of integer such thatupp( f) N supp(¢s k) is nonempty. Since
the functionsf and¢ have compact supports, the cardinality of the/Sgis finite
and it is of the orde©(2?).

Let us now consider the problem of estimation of the derivafi/e of f. As
in Prakasa Rao [16], we assume that the scaling fungtiongenerates a-regular
multiresolution analysis for some > (d + 1) and that there existS),,, > 0 and
Bm > 0 such that

1™ (@)] < Crn(1+|z]) P, 0<m <. (4.3)

This assumption implies that that the derivati#é is bounded for everyl > 0
(cf. Prakasa Rao [16]). Furthermore the projectiorf 6t on V, is

@) =) aspdsr(@), (4.4)
keENg
where

oo = (0 [ f@)0 ).

The equation given above can be justified by using integration by parts since the
function ¢(+) is r-regular (cf. Prakasa Rao [16]). This expression motivates the
following estimator forf(®)(z) :

FiP2) =Y aepdanr(z), (4.5)

k€N,
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where

@)

Qs =

Note that the estimator defined above reduces to the density estimator given in (4.1)

for d = 0. We now rewrite the expression for the estimafé?) (x) in a slightly
different form.

Note that
fs(d)(x) = Z &s,kd)s,k(x)
k€N
- Y5 Z¢“” @)
kEN,
= Z S 6 (V)b (@)
1=1 k€N,
_ (_1)d i Z 2(8/2)+ds¢(d)(2sy _ k)28/2¢(2333 _ k‘)
= = f
i=1 k€N
— <_1)d i[ Z ¢(d)(2sy _ k)¢(25$ _ k)]25+d5
= - f
i=1 kEN;
— ( ZK d) 28Y 28 )28+d8
= ZK (Y;, z), (4.6)
where
Ks(x7y) =2° K(zsx?zsy)
and

ry) =Y dle—k)dly—k).

k€N

Here k(" (x,y) denotes the-th partial derivative of<;(z, y) with respect tor.

5. Estimation of thed-th Derivative of a Component Probability Density Func-
tion from a Mixture with Varying Mixing Proportions

Let {X;,1 < i < N} be random variables as described Section 1. The prob-
lem is to estimate thd-th derivative of the component probability density func-
tion hy(x) corresponding to the mixing proportiary(-) based on the observations
Xi,...,Xn. Note that the probability density function a&f; is given by

M
=3 we(j)hela)
/=1
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for1 < j < N.Forx,y € RV, define the inner produet x,y >y by the relation

whenevex = (z1,...,zy)andy = (y1,...,yn). Letwy = (wi(1),. .., wi(N)).
Suppose that the vectovs,, 1 < k < M are linearly independent iR" . Then it
follows that the matriX’y = ((< wy, wy >x)) is nonsingular andet(I'y) > 0.

Letay = (a(1),...,ae(NN)) be a vector such that

() < ap,w >= 0,1 < k,£ < N;and
(i) < ag,ap >= & 3N, ag(j)? is minimum.

Heredy, is the Kronecker delta function. By using Lagrange multipliers, it can
be checked that

N
ag(5) Z DR wi(5), (5.1)

det k:l

where~)) denotes the determinant of the min@r k) of the matrixI"y. We now
construct the wavelet linear estimator, for th¢h derivative of the density,(z)
of the/-th component, at resolution levellt is defined by

=z

[h(d) (HKD(X;, ). (5.2)

We now study the properties of the estlma[ﬂmg‘l) . Ford = 0, it can be
shown that this estimator is essentially the same as the density estimator studied in
Pokhyl'ko [14].

6. Properties of the Estimator[h&d)]s(:r)
Lemma 6.1.Let Pry,g = g denote the projection of a functigne Ls(R) on the
spaceV;. The estimato{hfgd)]s(x) is an unbiased estimator Méd)]s(x).

SinceX; is arandom variable with the density functipfiz) = Zé‘il wy(g)he(x),
it follows that

@) (-t L (d)
E([h,"],(2)) = > a)EKD (X, x)]. (6.1)
=1
Note that
Bl(-1)'KD(X;,2)] = /w(—l)dKﬁd)(uvw)Pj(U)du
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—00

I M
_ / (=1 KD (u,2)[S wel(f)he ()] du
/=1

M oo
- Zwm)[ / (~1) K ) ()

= ] (@). 6.2)

The second equality follows by integration by parts and the last three equalities use
the fact that projection and derivative are linear operators. Therefore

B (2)) = Zae 1,

=

= N Zwk )

= "), (@). (6.3)
O

Lemma 6.2. Suppose the scaling functieri-) has the property that the function
K (z,y) is d-times differentiable with respect toand there exist$’ € L,(R) such
that

|K(z,y)| < F(z —y).

Suppose tha¥ is a random variable with density functidn € Ls(R) which is
d-times differentiable ané(?) € Ly(R). Then

El|(-1)'K(Z, ) = [A D) ()5 < 224+ /oo F?(u)du. (6.4)

Proof : Observe that
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and
Bl|(-1)'K((2,) = (K013
= E(/OO (=1)*K(Z,2) — E[(-1)'K?(Z,2)]] dx)
_ /_ T BY2(x)dz, (6.5)
where
Y(z) = (~1)*'KD(Z,2) — Bl(-1)'K[D(Z,2)].
Since

Ks(z,y) = 2°K(2°z, 2%),

it is easy to see that
KD (z,y) = 28T K (2%, 2°y)

which implies that

|KD (2, y)| < 28T F(252 — 2%).

Therefore
BY @) < B((-1'K9(Z2)]7)
< Qs+ /_ ZFQ(QSx—QSy)h(y)dy. (6.6)
Hence
BI-) KD (Z,) — BOLOIE
< e [T [ Pt - 2yt
< i [ [ Pt - 2ty daluia)dy
_ g / P ()dv. (6.7)
- O

Lemma 6.3. Suppose the scalar functiop satisfies the conditions stated in
Lemma 6.2. In addition, suppose that the functibff% € Ly(R),1 <k < M.

Define the estimatqhgd)]s(x) of [héd)]s(a:) as givenin (5.2) fol < ¢ < M. Then

< ag,ag)N22ds+5/ F%(v)dv (6.8)

2l

B [ (41(0) - h)u(z) o <

forl1 <¢ < M andforalls > 0.
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Proof : Let
Yi(w) = (-D)KD(X;,2) — [PV (2),1 <j < N.

Then the random variablés(z),1 < j < N are independent with mean zero for
everyz. Applying Lemmas 6.1 and 6.2, we get that

o0 ~ [e%9) N
B[ 0@ - 0L @y~ Bl m;;aﬁuwmdaz}

1 oo
< —<aga >N 22d5+5/ F2%(v)dv.
N —o0

(6.9)

We now obtain bounds on the mean integrated squared error

E(I), - EN1B).

Theorem 6.1. Suppose the conditions stated in Lemma 6.2 and Lemma 6.3 hold
for somer > 0. . Suppose that the functioméd) € Fopqe(L),1 <k < M for
someL > 0. Further suppose that € (0,7 + 1) and1 < ¢ < 2. Then there exists
aconstanC = C(q,s,L) > 0suchthatforalll =1,..., M,

22dj+j .
4 2727%), (6.10)

(d d
E(||n"], - hiV13) < Cl(< a0 >

Proof. For any functiory € Lo(R), let Pry,g denote the projection of onto the
subspacé’;. Since

d d
E([hé )]](x)) = [hé )]j(x) — PTthéd)(ZE),
thé ) € Vj, it follows that

(d d (d (d (d d
B[], - h?13) = B0, — E(B1)IB) + 1E(R]) — b3
We now obtain a bound on the second term on the right side of the above equation
by applying the Lemmas 3.1 and 6.1 to 6.3. Note that the second term on the right

side of the above equation is given by

d d d d
1E(R),) = mP 13 = [[[h$), — hPI13

J
0o oo
= 2. 2. bl
i=7 k=—o0
()
2200 3 922 Iy
i=j

_9is d
2775 (||h® g3 ) (6.11)

IN

IN
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since B, C Bj, (cf. Hardle et al. [8], p.124). Her&;, denote the wavelet

coefficients of the functiohgd) in the space orthogonal #6;. Furthermore, for all
L > 0 and allg such thatl < ¢ < 2, there exists a constadt = C(s, ¢, L) such

that for allhgd) € Fso4(L),
d
17§75, < O

Hence

(d d i

B[R], — hi |13 < 127, (6.12)
We now obtain an upper bound on the first term
(d (d
E(||[h{"), - Er1113).

Applying Lemma 6.3, we get that

~ ~ 1 . . o0
B, - ERIB) < & <anady?d4 [T P (6.13)
22dj+j

N

Combining the relations (6.12) and (6.13), we get that there exists a coastart
such that

= Cy<aga)n

22dj+j

E(||(ny"), — mP113) < Cl< ap,a¢ >x + 272, (6.14)

a

Remark 6.1. If the integerj is chosen so tha&¥ ~ N1/(2s+2d+1) then the bound
on the right side will be minimum and is of the ord&r2s/2d+2s+1)[< a, a, >y
+1]. This results extend Theorem 1 in Pokhyl'’ko [14] on fheloss in the problem
of density estimation to the estimation of ttieh derivative of a density function
constructed from observations of a mixture with varying mixing proportions.

The next result deals with-loss of the estimato[rhgd)]j as an estimator of

h,gd). We first state a lemma due to Pokhyl'ko [14].

Lemma 6.4.Suppose that a functione C*(R) with ||g||cc < 00, ]|g||2 < 0o and
|l9'llso < o0, Whereg’ denotes the derivative of the functigriThen

llglleo < (4119 lloollgl3)"/>.

Theorem 6.2. Suppose the conditions stated in Lemma 3.1 and Lemma 6.3 hold
for somer > 0. Suppose that the functiorhécd) € Wit 1 < k < M for some
r > d and there existy > 0 such that|‘h’(€d)”wgo+l < ~. Further suppose that
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the scaling functiory € C™ with compact support. Then there exists a constant
C =C(r,y) >0suchthatforalll =1,..., M,

B, — O lle) < Cl(< a0 >x) 22 4 273040] (6.15)

Proof: Since

it follows that

B, — B())se) + HE([h% — ] jnc
= BB, = Ol + 11157); — BVl (6.26)

B(|[n{); = b |loo)

IN

Since¢ € C"(R) for somer > 1 with a compact support, the condition (C3)
holds for allr > 1. Furthermorep € W/ (R). Hence there exists a constant
C = C(v) > 0 depending ony such that

11h$7); = hEP| < C )27+, (6.17)

wheneverhgd) € WZFL(R) with Hhéd)H < . This follows from Theorem 8.1(ii),
Lemma 8.6 and Theorem 8.2 in Hardle et al. [8].

Since¢p € C"(R),r > d with a compact support, the functids(x,y) is a
uniformly bounded and continuoustitimes differentiable function with respect
to = and there exists a constafit> 0 such that|Kj(.d) (z,y)| < C2%+J. Therefore

d 7-(d) dj+j
|E((—1) Kj (Xi,z))| < C2977.

Let

Then
Yai(@)| = |—Zae K (X, 2) — [p{];(2))]

2 L .
< NCQd”J”ZW(M
7j=1
< 20291 [< ag,ap >n]V2 (6.18)

The same argument shows that

N
[Ya- IJH0<><OQUZJZ:|G(Z )| < o0
7j=1
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Applying Lemma 6.4, we get that
1Vajlloo < [C2VH (< ag, a0 >n)"?||Yay 3]/

for all X;,1 < i < N. Observe thatK](d)(a:,y)\ < €247 for some constant
C >0 andK](.d)(x,y) =0if |z —y| > L =2 diam(suppe). Let F(z) =
C2%4% Iy 1 (|x|) whereI(A) denotes the indicator function of the sét Then
F() € Ly(R). Applying arguments similar to those in Lemma 6.3, we get that

EH[héd)]j o E[héd)]jmoo < [Cde+j(< ag, ay >N>)1/222dj+2j
< apag SN> / F2(2)da] /3
2dj+j

SCW

(< ag,ar >y)"? (6.19)

for some constar@ > 0 independent of andd. Combining the inequalities (6.17)
and (6.19), we get that there exists a consant 0 such that

(d d _ilr
ENR), ~ 1] < 09040 + 20

(<aga;>n)?.  (6.20)
Remark 6.2. If the integer; is chosen so that’ ~ N/B(+d+2)] then the
bound on the right side will be minimum and is of the order2("+1)/[B(r+d+2)]

{[< ap,a, >n]"/? + 1}. This result extends Theorem 2 in Pokhyl’ko [14] on the
L.-loss in the problem of density estimation to the estimation ofitiie deriva-

tive of a density function constructed from observations of a mixture with varying
mixing proportions.

Remark 6.3. Let p’ > max(p,2). Following the techniques in Leblanc [9] and
Prakasa Rao [19], one can get bounds on/theoss

(d d
E(||[ng™); - P12,

wheneveny, € F,, ,(L),1 < k < M by noting that

B[R], - h{12) < 20B(|h], - ElRgP)112) + 1B(RY1) - niP|2]
and .
1E(hE"),) = P12 < G272
for some positive constanf; whenevers > » ands’ = s+  — o (cf.

Leblanc [9], p.83).
If 1 <p' <2, thenabound on thé, -loss

E(|[1h"), - b |)
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can be obtained by noting that

(d d)p' - (d (d / (d d)p'
E([h®), — hl5) < 27X BB, — BRI + IERD]) — hEO|1E)

and

J

Ad d ’ i,
1B([h™),) = by < Co27 257

for some positive constaidl;. We do not discuss the details here.
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