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Abstract A wavelet based linear estimator is proposed for the derivatives of a prob-
ability density function based on a sample from a finite mixture of components with
varying mixing proportions. It extends the linear estimator of a probability density
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1. Introduction

The problem of analysis of mixtures with varying mixing proportions occur in the
study of medical, biological, social and other types of data. The objects of ob-
servationJ1, . . . , JN may belong to any one of M populations. LetI(Jj) denote
the indicator of the population that contains the objectJj . For every objectJj , we
observe a random variableXj based on the objectJj . Note that the distribution
function of the random variableXj depends on the indicatorI(Jj). Suppose that

P (Xj ≤ x|I(Jj) = k) = Hk(x), 1 ≤ j ≤ N, 1 ≤ k ≤ M.

Suppose the distribution functionsHk(x), 1 ≤ k ≤ M are unknown and the
sequenceI(Jj), 1 ≤ j ≤ N are also unknown but we know the probabilitywk(j)
that an objectJj belongs to thek-th population, that is,

wk(j) = P (I(Jj) = k), 1 ≤ j ≤ N, 1 ≤ k ≤ M.

Note thatwk(j) ≥ 0, 1 ≤ k ≤ M and
∑M

k=1 wk(j) = 1, 1 ≤ j ≤ N.
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Observe that the probabilitywk(j) indicates the mixing proportion of the ob-
jects ofk-th population in the mixture from which the objectJj is chosen. It is easy
to check that

P (Xj ≤ x) =
M∑

`=1

w`(j)H`(x), 1 ≤ j ≤ N. (1.1)

The problem of estimation of the distribution functionH`(x) was studied in
Maiboroda [10] using a weighted empirical distribution function. Maiboroda [11]
obtained a generalized version of the Kolmogorov-Smirnov test for testimg the
hypothesis for the homogenity of mixtures with varying mixing proportions. As-
suming that the distribution functionsH`(x) are absolutely continuous with density
functionsh`(x), Pokhyl’ko [14] constructed linear and adaptive wavelet estimators
for the density functionh`(x).

Methods of nonparametric estimation of a density function and regression func-
tion are widely discussed in the literature (cf. Prakasa Rao [15, 17]). It is known
that the estimation of derivatives of a density as well as that of regression function
are also of importance and interest to detect possible bumps in the case of a density
and to detect concavity or convexity properties in the case of regression function.
Asymptotic properties of the kernel type estimators for the derivatives of density
have been investigated earlier (cf. Prakasa Rao [15], p.237).

Our aim in this paper is to discuss wavelet linear estimators for the deriva-
tives of a probability density function when the sample of observations come from
a mixture of several components with varying mixing proportions. We propose
an estimator for the derivative of the density based on wavelets and obtain upper
bounds on theL2 andL∞ losses for the proposed estimator. Estimators of den-
sity using wavelets was studied for independent and identically distributed random
variables in Antoniadiset al. [1], for some stationary dependent random variables
in Leblanc [9] and for stationary associated sequnces in Prakasa Rao [19]. Chaubey
et al. [2, 3] extended these results to derivatives of density estimators for associated
sequences and for negatively associated processes.

The advantages and disadvantages of the use of wavelet based probability den-
sity estimators are discussed in Walter and Ghorai [24] in the case of independent
and identically distributed observations. The same comments continue to hold in
this case. However it was shown in Prakasa Rao [16, 18] that one can obtain precise
limits on the asymptotic mean squared error for a wavelet based linear estimator
for the density function and its derivatives as well as some other functionals of the
density. Tribouley [21] studied estimation of multivariate densities using wavelet
methods. Donohoet al. [6] investigated density estimation by wavelet threshold-
ing. For a discussion on statistical modeling by wavelets, see Vidakovic [23].

2. Preliminaries on Wavelets

A wavelet system is an infinite collection of translated and scaled versions of func-
tions φ(·) andψ(·) called thescaling functionand theprimary wavelet function
respectively. In the following discussion, we assume thatφ(·) is real-valued. The
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functionφ(x) is a solution of the equation

φ(x) =
∞∑

k=−∞
Ckφ(2x− k), (2.1)

with
∫ ∞

−∞
φ(x)dx = 1, (2.2)

and the functionψ(x) is defined by

ψ(x) =
∞∑

k=−∞
(−1)kC−k+1φ(2x− k). (2.3)

The choice of the sequence{Ck} determines the wavelet system. It is easy to see
that

∞∑

k=−∞
Ck = 2. (2.4)

Define

φjk(x) = 2j/2φ(2jx− k),−∞ < j, k < ∞ (2.5)

and

ψjk(x) = 2j/2ψ(2jx− k),−∞ < j, k < ∞. (2.6)

Suppose the coefficients{Ck} satisfy the condition

∞∑

k=−∞
CkCk+2` = 2 if ` = 0 (2.7)

= 0 if ` 6= 0.

It is known that, under some additional conditions onφ(·), the collection
{ψj,k,−∞ < j, k < ∞} is an orthonormal basis forL2(R), and{φj,k,−∞ < k <
∞} is an orthonormal system inL2(R), for each−∞ < j < ∞ (cf. Daubechies
[4]).

Definition 2.1. The scaling functionφ is said to ber-regular for an integerr ≥ 1,
if for every nonnegative integer` ≤ r, and for any integerk ≥ 1,

|φ(`)(x)| ≤ ck(1 + |x|)−k,−∞ < x < ∞ (2.8)

for someck ≥ 0 depending only onk. Hereφ(`)(·) denotes thè-th derivative of
φ(·).
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Definition 2.2. A multiresolution analysisof L2(R) consists of an increasing se-
quence of closed subspaces{Vj} of L2(R) such that

(i) ∩∞j=−∞Vj = {0} ;

(ii) ∪̄∞j=−∞Vj = L2(R);

(iii) there is a scaling functionφ ∈ V0 such that{φ(x− k),−∞ < k < ∞} is
an orthonormal basis forV0;

(iv) for all h(·) ∈ L2(R),−∞ < k < ∞, h(x) ∈ V0 ⇒ h(x− k) ∈ V0; and

(v) h(·) ∈ Vj ⇒ h(2x) ∈ Vj+1.

Mallat [12] has shown that, given any multiresolution analysis, it is possible to
find a functionψ(·) (called the primary wavelet function) such that, for any fixed
j,−∞ < j < ∞, the family{ψj,k,−∞ < k < ∞} is an orthonormal basis of the
orthogonal complementWj of Vj in Vj+1 so that{ψj,k,−∞ < j, k < ∞} is an
orthonormal basis ofL2(R) (cf. Daubechies [4]). When the scaling functionφ(·)
is r-regular, the corresponding multiresolution analysis is said to ber-regular.

Let f ∈ L2(R). The functionf can be expanded in the form (cf. Daubechies
[5]):

f =
∞∑

k=−∞
as,kφs,k +

∞∑

j=s

∞∑

k=−∞
bj,kψj,k (2.9)

= Psf +
∞∑

j=s

Djf

for any integer−∞ < s < ∞. Observe that the wavelet coefficients are given by

as,k =
∫ ∞

−∞
f(x)φs,k(x)dx (2.10)

and

bj,k =
∫ ∞

−∞
f(x)ψj,k(x)dx. (2.11)

Suppose that the functionsφ andψ belong toCr, the space of functions withr
continuous derivatives for somer ≥ 1, and have compact support contained in an
interval [−δ, δ] for someδ > 0. It follows, from the Corollary 5.5.2 in Daubechies
[4], that the functionψ(·) is orthogonal to polynomials of degree less than or equal
to r. In particular

∫ ∞

−∞
ψ(x)x`dx = 0, ` = 0, 1, . . . , r.

The above introduction to wavelets is based on Antoniades et al. [1]. For
a detailed discussion, see Daubechies [5]. For a brief survey on wavelets, see
Strang [20].
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3. Introduction to Sobolev Spaces and Besov Spaces

Let f be a function defined on the real line which is integrable on every bounded
interval. It is said to be weakly differentiable if there exists a functiong defined on
the real line which is integrable on every bounded interval such that

∫ y

x
g(u)du = f(y)− f(x).

The functiong is defined almost everywhere and is called theweak derivativeof
f (cf. Hardle et al. [8]). It is known that, iff is weakly differentiable with weak
derivativeg, then

∫ ∞

−∞
f(u)φ′(u)du = −

∫ ∞

−∞
g(u)φ(u)du

for anyφ ∈ D(R) whereD(R) denotes the space of infinitely differentiable func-
tions, on the real lineR, with compact support.

Definition 3.1. Let 1 ≤ p ≤ ∞ andm ≥ 0 be an integer. A functionf ∈ Lp(R)
belongs to the Sobolev spaceWm

p (R), if it is m-times weakly differentiable and
f (m) ∈ Lp(R). In particularW 0

p (R) = Lp(R). The spaceWm
p (R) is equipped

with the norm
||f ||W m

p
= ||f ||p + ||f (m)||p

where||f ||p denotes the norm forLp(R).

Let W̃m
p (R) = Wm

p (R) if 1 ≤ p < ∞ andW̃m∞(R) = {f : f ∈ Wm∞(R) :
f (m) uniformly continuous}. Note thatW̃ 0

p (R) = Lp(R), 1 ≤ p < ∞.

Let f ∈ Lp(R) for some1 ≤ p ≤ ∞. Let (∆hf)(x) = f(x − h) − f(x) and
define∆2

hf = ∆h∆hf. For t ≥ 0, define

ω1
p(f, t) = sup

|h|≤t
||∆hf ||p

and
ω2

p(f, t) = sup
|h|≤t

||∆2
hf ||p.

Let 1 ≤ q ≤ ∞. Suppose there exists a functionε(t) on [0,∞) such that
||ε||∗q < ∞ where

||ε||∗q = (
∫ ∞

0
t−1|ε(t)|qdt)1/q, if 1 ≤ q < ∞

= ess sup
t
|ε(t)|, if q = ∞. (3.1)

Definition 3.2. Let 1 ≤ p, q ≤ ∞ ands = n + α wheren ≥ 0 is an integer
and0 < α ≤ 1. The Besov spaceBs

p,q is the space of all functionsf such that
f ∈ Wn

p (R) andω2
p(f

(n), t) = ε(t)tα where||ε||∗q < ∞.
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For properties of Besov spaces, see Meyer [13] and Triebel [22] (cf. Leblanc
[9], Hardle et al. [8]).

Suppose that the functionf belongs to the Besov class

Fs,p,q(L) = {f ∈ Bs
p,q, ||f ||Bs

p,q
≤ L}

for some0 < s < r + 1, p ≥ 1 andq ≥ 1, where

||f ||Bs
p,q

= ||P0f ||p + [
∑

j≥0

(||Djf ||p2js)q]1/q.

Given a double indexed sequence{γj,k} define the norm

||γj,.||`p = (
∑

k

γp
j,k)

1/p. (3.2)

In view of the representation (2.9), it be can shown that the functionf ∈ Bs
p,q if

and only if

||as,.||`p < ∞, and (
∑

j≥s

[||bs,.||`p2
j(s+(1/2)−(1/p))]q)1/q < ∞. (3.3)

Let φ(·) be a scaling function as defined earlier. Define

θφ(x) =
∞∑

k=−∞
|φ(x− k)|.

Suppose the following conditions hold:
(C1) Theess supx θφ(x) < ∞ where

ess sup
x

g(x) = inf{y : λ([x : g(x) > y]) = 0}

andλ is the Lebesgue measure on the real line.
(C2) There exists a bounded nondecreasing functionΦ(·) such that|φ(u)| ≤

Φ(|u|) almost every where and
∫ ∞

0
|u|rΦ(|u|)du < ∞.

for some integerr ≥ 0.

Lemma 3.1.Suppose that the scale functionφ(·) is such that the collection{φ(x−
k),−∞ < k < ∞} is an orthonormal system inL2(R) and the spacesVj ,−∞ <
j < ∞ are nested. Further suppose that the functionφ satisfies the condition (C2)
and it is r + 1 times weakly differentiable. Ifφ(r+1) satisfies the condition (C1),
then the norm||.||Bs

p,q
is equivalent to the norm||.||′Bs

p,q
in the space of the wavelet

coefficients for alls, p, q such that0 < s < r + 1 and1 ≤ p, q ≤ ∞ where

||f ||′Bs
p,q

= ||a0||p + (
∞∑

j=0

(2j(s+(1/2)−(1/p))||bj ||p)q)1/q.
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(Here||a0||p denotes[
∑∞

k=−∞ |a0,k|p]1/p and||bj ||p denotes[
∑∞

k=−∞ |bj,k|p]1/p).

For a proof of Lemma 3.1, see Theorem 9.6 in Hardleet al. [8], p.123.

4. Estimation of thed-th Derivative of a Probability Density Function

Let {Yi, 1 ≤ i ≤ n} be independent and identically distributed random variables
with probability density functionf which isd-times differentiable. Suppose that
f (d) is bounded and has compact support. Suppose thatf (d) ∈ L2(R). Let us first
consider the cased = 0. The problem now is the estimation of the probability
density functionf. A wavelet based density estimator of the density functionf can
be motivated in the following way from the expansion given in (2.9) (cf. Prakasa
Rao [19]). We can estimatef(x) by f̂(x) where

f̂(x) =
∑

k∈Ns

αs,kφs,k(x), (4.1)

where

αs,k =
1
n

n∑

i=1

φs,k(Yi). (4.2)

HereNs is the set of integersk such thatsupp(f)∩ supp(φs,k) is nonempty. Since
the functionsf andφ have compact supports, the cardinality of the setNs is finite
and it is of the orderO(2s).

Let us now consider the problem of estimation of the derivativef (d) of f. As
in Prakasa Rao [16], we assume that the scaling functionφ(·) generates ar-regular
multiresolution analysis for somer ≥ (d + 1) and that there existsCm ≥ 0 and
βm ≥ 0 such that

|f (m)(x)| ≤ Cm(1 + |x|)−βm , 0 ≤ m ≤ r. (4.3)

This assumption implies that that the derivativeφ(d) is bounded for everyd ≥ 0
(cf. Prakasa Rao [16]). Furthermore the projection off (d) onVs is

f (d)
s (x) =

∑

k∈Ns

as,kφs,k(x), (4.4)

where

as,k = (−1)d

∫ ∞

−∞
f(x)φ(d)

s,k(x)dx.

The equation given above can be justified by using integration by parts since the
function φ(·) is r-regular (cf. Prakasa Rao [16]). This expression motivates the
following estimator forf (d)(x) :

f̂ (d)
s (x) =

∑

k∈Ns

âs,kφs,k(x), (4.5)
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where

âs,k =
(−1)d

n

n∑

i=1

φ
(d)
s,k(Yi).

Note that the estimator defined above reduces to the density estimator given in (4.1)
for d = 0. We now rewrite the expression for the estimatorf̂

(d)
s (x) in a slightly

different form.
Note that

f̂ (d)
s (x) =

∑

k∈Ns

âs,kφs,k(x)

=
∑

k∈Ns

[
(−1)d

n

n∑

i=1

φ
(d)
s,k(Yi)]φs,k(x)

=
(−1)d

n

n∑

i=1

∑

k∈Ns

φ
(d)
s,k(Yi)φs,k(x)

=
(−1)d

n

n∑

i=1

∑

k∈Ns

2(s/2)+dsφ(d)(2sYi − k)2s/2φ(2sx− k)

=
(−1)d

n

n∑

i=1

[
∑

k∈Ns

φ(d)(2sYi − k)φ(2sx− k)]2s+ds

=
(−1)d

n

n∑

i=1

K(d)(2sYi, 2sx)2s+ds

=
(−1)d

n

n∑

i=1

K(d)
s (Yi, x), (4.6)

where
Ks(x, y) = 2s K(2sx, 2sy)

and
K(x, y) =

∑

k∈Ns

φ(x− k)φ(y − k).

HereK
(d)
s (x, y) denotes thed-th partial derivative ofKs(x, y) with respect tox.

5. Estimation of thed-th Derivative of a Component Probability Density Func-
tion from a Mixture with Varying Mixing Proportions

Let {Xi, 1 ≤ i ≤ N} be random variables as described Section 1. The prob-
lem is to estimate thed-th derivative of the component probability density func-
tion h`(x) corresponding to the mixing proportionw`(·) based on the observations
X1, . . . , XN . Note that the probability density function ofXj is given by

pj(x) =
M∑

`=1

w`(j)h`(x)
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for 1 ≤ j ≤ N. Forx,y ∈ RN , define the inner product< x,y >N by the relation

< x,y >N=
1
N

N∑

k=1

xkyk,

wheneverx = (x1, . . . , xN ) andy = (y1, . . . , yN ). Letwk = (wk(1), . . . , wk(N)).
Suppose that the vectorswk, 1 ≤ k ≤ M are linearly independent inRN . Then it
follows that the matrixΓN = ((< wk,w` >N )) is nonsingular anddet(ΓN ) > 0.
Let a` = (a`(1), . . . , a`(N)) be a vector such that

(i) < a`,wk >= δk`, 1 ≤ k, ` ≤ N ; and

(ii) < a`,a` >= 1
N

∑N
j=1 a`(j)2 is minimum.

Hereδk` is the Kronecker delta function. By using Lagrange multipliers, it can
be checked that

a`(j) =
1

det(ΓN )

N∑

k=1

(−1)`+kγN
`k wk(j), (5.1)

whereγN
`k denotes the determinant of the minor(`, k) of the matrixΓN . We now

construct the wavelet linear estimator, for thed-th derivative of the densityh`(x)
of the`-th component, at resolution levels. It is defined by

ˆ
[h(d)

` ]s(x) =
(−1)d

N

N∑

j=1

a`(j)K(d)
s (Xj , x). (5.2)

We now study the properties of the estimator
ˆ

[h(d)
` ]s(x). For d = 0, it can be

shown that this estimator is essentially the same as the density estimator studied in
Pokhyl’ko [14].

6. Properties of the Estimator
ˆ

[h(d)
` ]s(x)

Lemma 6.1.LetPrVsg ≡ gs denote the projection of a functiong ∈ L2(R) on the

spaceVs. The estimator
ˆ

[h(d)
` ]

s
(x) is an unbiased estimator of[h(d)

` ]
s
(x).

SinceXj is a random variable with the density functionpj(x) =
∑M

`=1 w`(j)h`(x),
it follows that

E(
ˆ

[h(d)
` ]

s
(x)) =

(−1)d

N

N∑

j=1

a`(j)E[K(d)
s (Xj , x)]. (6.1)

Note that

E[(−1)dK(d)
s (Xj , x)] =

∫ ∞

−∞
(−1)dK(d)

s (u, x)pj(u)du



284 B. L. S. PRAKASA RAO

=
∫ ∞

−∞
(−1)dK(d)

s (u, x)[
M∑

`=1

w`(j)h`(u)]du

=
M∑

`=1

w`(j)[
∫ ∞

−∞
(−1)dK(d)

s (u, x)h`(u)du]

=
M∑

`=1

w`(j)[
∫ ∞

−∞
Ks(u, x)h(d)

` (u)du]

=
M∑

`=1

w`(j)PrVsh
(d)
` (x)

= PrVs [
M∑

`=1

w`(j)h
(d)
` ](x)

= PrVsp
(d)
j (x)

= [p(d)
j ]

s
(x). (6.2)

The second equality follows by integration by parts and the last three equalities use
the fact that projection and derivative are linear operators. Therefore

E(
ˆ

[h(d)
` ]

s
(x)) =

1
N

N∑

j=1

a`(j)[p
(d)
j ]s(x)

=
1
N

N∑

j=1

a`(j)(
M∑

k=1

wk(j)[h
(d)
k ]s(x))

=
M∑

k=1

[h(d)
k ]s(x) < a`,wk >N

= [h(d)
` ]

s
(x). (6.3)

2

Lemma 6.2. Suppose the scaling functionφ(·) has the property that the function
K(x, y) is d-times differentiable with respect tox and there existsF ∈ L2(R) such
that

|K(x, y)| ≤ F (x− y).

Suppose thatZ is a random variable with density functionh ∈ L2(R) which is
d-times differentiable andh(d) ∈ L2(R). Then

E||(−1)dK(d)
s (Z, ·)− [h(d)]s(·)||22 ≤ 22ds+2s

∫ ∞

−∞
F 2(u)du. (6.4)

Proof : Observe that

E[(−1)dK(d)
s (Z, x)] = [h(d)]s(x)
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and

E||(−1)dK(d)
s (Z, .)− [h(d)]s(·)||22

= E(
∫ ∞

−∞
|(−1)dK(d)

s (Z, x)−E[(−1)dK(d)
s (Z, x)]|2dx)

=
∫ ∞

−∞
E[Y 2(x)]dx, (6.5)

where
Y (x) = (−1)dK(d)

s (Z, x)−E[(−1)dK(d)
s (Z, x)].

Since
Ks(x, y) = 2sK(2sx, 2sy),

it is easy to see that
K(d)

s (x, y) = 2ds+sK(2sx, 2sy)

which implies that

|K(d)
s (x, y)| ≤ 2ds+sF (2sx− 2sy).

Therefore

E[Y 2(x)] ≤ E([(−1)dK(d)
s (Z, x)]]2)

≤ 22ds+2s

∫ ∞

−∞
F 2(2sx− 2sy)h(y)dy. (6.6)

Hence

E||(−1)dK(d)
s (Z, .) − [h(d)]s(·)||22

≤ 22ds+2s

∫ ∞

−∞
[
∫ ∞

−∞
F 2(2sx− 2sy)h(y)dy]dx

≤ 22ds+2s

∫ ∞

−∞
[
∫ ∞

−∞
F 2(2sx− 2sy)dx]h(y)dy

= 22ds+s

∫ ∞

−∞
F 2(v)dv. (6.7)

2

Lemma 6.3. Suppose the scalar functionφ satisfies the conditions stated in
Lemma 6.2. In addition, suppose that the functionsh

(d)
k ∈ L2(R), 1 ≤ k ≤ M.

Define the estimator
ˆ

[h(d)
` ]s(x) of [h(d)

` ]s(x) as given in (5.2) for1 ≤ ` ≤ M. Then

E

∫ ∞

−∞
(

ˆ
[h(d)

` ]s(x)− [h(d)
` ]s(x))2dx ≤ 1

N
< a`,a`)N22ds+s

∫ ∞

−∞
F 2(v)dv (6.8)

for 1 ≤ ` ≤ M and for alls ≥ 0.



286 B. L. S. PRAKASA RAO

Proof : Let

Yj(x) = (−1)dK(d)
s (Xj , x)− [p(d)

j ]
s
(x), 1 ≤ j ≤ N.

Then the random variablesYj(x), 1 ≤ j ≤ N are independent with mean zero for
everyx. Applying Lemmas 6.1 and 6.2, we get that

E

∫ ∞

−∞
(

ˆ
[h(d)

` ]s(x)− [h(d)
` ]s(x))2dx = E[

∫ ∞

−∞

1
N2

N∑

j=1

a2
`(j)Y

2
j (x)dx]

≤ 1
N

< a`,a` >N 22ds+s

∫ ∞

−∞
F 2(v)dv.

(6.9)

We now obtain bounds on the mean integrated squared error

E(|| ˆ
[h(d)

` ]
j
− [h(d)

` ]]||22).
Theorem 6.1. Suppose the conditions stated in Lemma 6.2 and Lemma 6.3 hold
for somer ≥ 0. . Suppose that the functionsh(d)

k ∈ Fs,p,q(L), 1 ≤ k ≤ M for
someL > 0. Further suppose thats ∈ (0, r + 1) and1 ≤ q ≤ 2. Then there exists
a constantC = C(q, s, L) > 0 such that for all̀ = 1, . . . ,M,

E(|| ˆ
[h(d)

` ]
j
− h

(d)
` ||22) ≤ C[(< a`,a` >N

22dj+j

N
+ 2−2js]. (6.10)

Proof. For any functiong ∈ L2(R), let PrVjg denote the projection ofg onto the
subspaceVj . Since

E(
ˆ

[h(d)
` ]

j
(x)) = [h(d)

` ]
j
(x) = PrVjh

(d)
` (x),

andPrVjh
(d)
` ∈ Vj , it follows that

E(|| ˆ
[h(d)

` ]
j
− h

(d)
` ||22) = E(|| ˆ

[h(d)
` ]

j
− E(

ˆ
[h(d)

` ]
j
)||22) + ||E(

ˆ
[h(d)

` ]
j
)− h

(d)
` ||22.

We now obtain a bound on the second term on the right side of the above equation
by applying the Lemmas 3.1 and 6.1 to 6.3. Note that the second term on the right
side of the above equation is given by

||E(
ˆ

[h(d)
` ]

j
)− h

(d)
` ||22 = ||[h(d)

` ]
j
− h

(d)
` ||22

=
∞∑

i=j

∞∑

k=−∞
|bi,k|2

≤ 2−2js
∞∑

i=j

22is||bi||22

≤ 2−2js(||h(d)
` ||′Bs

2,2
)2 (6.11)
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sinceBs
2,q ⊂ Bs

2,2 (cf. Hardle et al. [8], p.124). Herebi,k denote the wavelet

coefficients of the functionh(d)
` in the space orthogonal toVj . Furthermore, for all

L > 0 and allq such that1 ≤ q ≤ 2, there exists a constantC1 = C1(s, q, L) such

that for allh(d)
` ∈ Fs,2,q(L),

||h(d)
` ||′Bs

2,2
≤ C1.

Hence

||E ˆ
[h(d)

` ]
j
− h

(d)
` ||22 ≤ C12−2js. (6.12)

We now obtain an upper bound on the first term

E(|| ˆ
[h(d)

` ]
j
− E

ˆ
[h(d)

` ]
j
||22).

Applying Lemma 6.3, we get that

E(|| ˆ
[h(d)

` ]
j
−E

ˆ
[h(d)

` ]
j
]||22) ≤ 1

N
< a`,a`)N22dj+j

∫ ∞

−∞
F 2(v)dv (6.13)

= C2 < a`,a`)N
22dj+j

N
.

Combining the relations (6.12) and (6.13), we get that there exists a constantC > 0
such that

E(|| ˆ
[h(d)

` ]
j
− h

(d)
` ||22) ≤ C[< a`,a` >N

22dj+j

N
+ 2−2js]. (6.14)

2

Remark 6.1. If the integerj is chosen so that2j ' N1/(2s+2d+1), then the bound
on the right side will be minimum and is of the orderN−2s/(2d+2s+1)[< a`,a` >N

+1]. This results extend Theorem 1 in Pokhyl’ko [14] on theL2-loss in the problem
of density estimation to the estimation of thed-th derivative of a density function
constructed from observations of a mixture with varying mixing proportions.

The next result deals withL∞-loss of the estimator
ˆ

[h(d)
` ]

j
as an estimator of

h
(d)
` . We first state a lemma due to Pokhyl’ko [14].

Lemma 6.4.Suppose that a functiong ∈ C1(R) with ||g||∞ < ∞, ||g||2 < ∞ and
||g′||∞ < ∞, whereg′ denotes the derivative of the functiong. Then

||g||∞ ≤ (4||g′||∞||g||22)1/3.

Theorem 6.2. Suppose the conditions stated in Lemma 3.1 and Lemma 6.3 hold
for somer ≥ 0. Suppose that the functionsh(d)

k ∈ W r+1∞ , 1 ≤ k ≤ M for some

r ≥ d and there existsγ > 0 such that||h(d)
k ||W r+1∞ ≤ γ. Further suppose that



288 B. L. S. PRAKASA RAO

the scaling functionφ ∈ Cr with compact support. Then there exists a constant
C = C(r, γ) > 0 such that for all̀ = 1, . . . , M,

E(|| ˆ
[h(d)

` ]
j
− [h(d)

` ]]||∞) ≤ C[(< a`,a` >N )1/2 2dj+j

N1/3
+ 2−j(r+1)]. (6.15)

Proof : Since

E(
ˆ

[h(d)
` ]

j
(x)) = [h(d)

` ]
j
(x) = PrVjh

(d)
` (x),

it follows that

E(|| ˆ
[h(d)

` ]
j
− h

(d)
` ||∞) ≤ E(|| ˆ

[h(d)
` ]

j
−E(

ˆ
[h(d)

` ]
j
)||∞) + ||E(

ˆ
[h(d)

` ]
j
)− h

(d)
` ||∞

= E|| ˆ
[h(d)

` ]
j
− [h(d)

` ]j ||∞ + ||[h(d)
` ]j − h

(d)
` ||∞. (6.16)

Sinceφ ∈ Cr(R) for somer ≥ 1 with a compact support, the condition (C3)
holds for all r ≥ 1. Furthermoreφ ∈ W̃ r∞(R). Hence there exists a constant
C = C(γ) > 0 depending onγ such that

||[h(d)
` ]j − h

(d)
` || ≤ C(γ)2−j(r+1), (6.17)

wheneverh(d)
` ∈ W r+1∞ (R) with ||h(d)

` || ≤ γ. This follows from Theorem 8.1(ii),
Lemma 8.6 and Theorem 8.2 in Hardle et al. [8].

Sinceφ ∈ Cr(R), r ≥ d with a compact support, the functionK(x, y) is a
uniformly bounded and continuouslyd-times differentiable function with respect
to x and there exists a constantC > 0 such that|K(d)

j (x, y)| ≤ C2dj+j . Therefore

|E((−1)dK
(d)
j (Xi, x))| ≤ C2dj+j .

Let

Yd,j(x) =
ˆ

[h(d)
` ]

j
(x)− E(

ˆ
[h(d)

` ]
j
(x)).

Then

|Yd,j(x)| = | 1
N

N∑

i=1

a`(i)((−1)dK
(d)
j (Xi, x)− [p(d)

i ]j(x))|

≤ 2
N

C2dj+j
N∑

j=1

|a`(j)|

≤ 2C2dj+j [< a`,a` >N ]1/2. (6.18)

The same argument shows that

||Yd−1,j ||∞ ≤ C2dj
N∑

j=1

|a`(j)| < ∞.
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Applying Lemma 6.4, we get that

||Yd,j ||∞ ≤ [C2dj+j(< a`,a` >N )1/2||Yd,j ||22]1/3

for all Xi, 1 ≤ i ≤ N. Observe that|K(d)
j (x, y)| ≤ C2dj+j for some constant

C > 0 andK
(d)
j (x, y) = 0 if |x − y| > L = 2 diam(suppφ). Let F (x) =

C2dj+jI[0,L](|x|) whereI(A) denotes the indicator function of the setA. Then
F (·) ∈ L2(R). Applying arguments similar to those in Lemma 6.3, we get that

E|| ˆ
[h(d)

` ]
j
− E

ˆ
[h(d)

` ]
j
]||∞ ≤ [C2dj+j(< a`,a` >N>)1/222dj+2j

< a`,a` >N>

∫ ∞

−∞
F 2(x)dx]1/3

≤ C
2dj+j

N1/3
(< a`,a` >N )1/2 (6.19)

for some constantC > 0 independent ofj andd. Combining the inequalities (6.17)
and (6.19), we get that there exists a constantC > 0 such that

E[|| ˆ
[h(d)

` ]
j
− h

(d)
` ||∞] ≤ C[2−j(r+1) +

2dj+j

N1/3
(< a`,a` >N )1/2]. (6.20)

Remark 6.2. If the integerj is chosen so that2j ' N1/[3(r+d+2)], then the
bound on the right side will be minimum and is of the orderN−2(r+1)/[3(r+d+2)]

{[< a`,a` >N ]1/2 + 1}. This result extends Theorem 2 in Pokhyl’ko [14] on the
L∞-loss in the problem of density estimation to the estimation of thed-th deriva-
tive of a density function constructed from observations of a mixture with varying
mixing proportions.

Remark 6.3. Let p′ ≥ max(p, 2). Following the techniques in Leblanc [9] and
Prakasa Rao [19], one can get bounds on theLp′-loss

E(|| ˆ
[h(d)

` ]
j
− h

(d)
` ||2p′),

wheneverhk ∈ Fs,p,q(L), 1 ≤ k ≤ M by noting that

E[|| ˆ
[h(d)

` ]
j
− h

(d)
` ||2p′] ≤ 2[E(|| ˆ

[h(d)
` ]

j
−E

ˆ
[h(d)

` ]
j
||2p′) + ||E(

ˆ
[h(d)

` ]
j
)− h

(d)
` ||2p′ ]

and

||E(
ˆ

[h(d)
` ]

j
)− h

(d)
` ||2p′ ≤ C12−2js′

for some positive constantC1 whenevers ≥ 1
p and s′ = s + 1

p′ − 1
p (cf.

Leblanc [9], p.83).
If 1 ≤ p′ ≤ 2, then a bound on theLp′-loss

E(|| ˆ
[h(d)

` ]
j
− h

(d)
` ||p′p′)
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can be obtained by noting that

E(|| ˆ
[h(d)

` ]
j
− h

(d)
` ||p′p′) ≤ 2p′−1(E|| ˆ

[h(d)
` ]

j
−E

ˆ
[h(d)

` ]
j
]||p′p′ + ||E(

ˆ
[h(d)

` ]
j
)− h

(d)
` ||p′p′)

and

||E(
ˆ

[h(d)
` ]

j
)− h

(d)
` ||p′p′ ≤ C22−2js′p′

for some positive constantC2. We do not discuss the details here.
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