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Abstract A new class of saturated, binary row-column designs is proposed. It is
shown that these designs are treatment connected in the sense that these permit the
estimability of all contrasts among treatment effects.
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1. Introduction

Row-column designs are used in various fields of applications including agriculture
and industry, for eliminating heterogeneity in two directions. Suppose it is desired
to comparey treatments using = rc experimental units, arrangedsirows ande
columns. Any allocation of the treatments over the experimental units is called

a row-column design.

A row-column design is said to beonnectedor, treatment-connected) if it
allows the estimability of all contrasts among treatment effects. The issue of con-
nectedness of row-column designs has been examined by several authors; see e.g.,
Shah and Khatri [6], Raghavarao and Federer [5], Eccleston and Russell [2], Bak-
salary and Kala [1], Godolphin and Godolphin [3] and Qu and Ogunyemi [4]. Since
a row-column design is not necessarily connected even if the component block de-
signs, obtained by treating the rows as blocks and columns as blocks, are each
individually connected, there is no simple way to check the connectedness of a
row-column design. In this communication, we propose a class of row-column de-
signs withr = ¢. These designs are binary, i.e., a treatment appears at most once in
each row and each column and are saturated in the sense that no degrees of freedom
are available for the estimation of the error variance. We show that these designs
are connected. Some comments on the efficiency of the proposed designs are also
made.
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2. Preliminaries

Throughout, for a positive integet 1, and I, will denote respectively, ap x 1
vector of all ones and an identity matrix of orderAlso, for positive integers, b,

0,5 Will denote ana x b null matrix. The null column vectod,; will be simply
written as0,. A prime over a matrix or vector will denote its transpose. Finally,
for a pair of matrices” = (e;;) andF, the Kronecker (tensor) product éfand F’

will be denoted by? ® F,i.e.,E ® F = (e;; F).

Consider a row-column desighinvolving v treatments arranged in rows
and c columns. LetY;;, denote the observable random variable corresponding
to the observation pertaining to th¢h treatment in theth row and;jth column,
1<i<nrl1<j<e¢l1<k<wv andY bethen x 1 vector of the quantities
{Yix }. We postulate the following model for the observations collectedvia

E(Y) = ply+ Dige+ Do + D3y,
DY) = o°I,, (1)
where
i = ageneral mean
a = ther x 1 vector of row effects
B = thec x 1 vector of column effects
~ = thew x 1 vector of treatment effects
Dy; = then x r observations versus rows incidence matrix
D5y, = then x ¢ observations versus columns incidence matrix
D3y, = then x v observations versus treatments incidence matrix
n = the total number of observationsdn

andE(-) andDD(-) are respectively, the expectation and dispersion operators.

The incidence matrice®;;, 1 < i < 3, are defined in the usual manner. For
instance, ifD;4 = (df}i)), then

d(ull.) =1, if the uth observation corresponds to tite row
=0, otherwise

The matricedD,; and D3, are defined similarly.
Under model (1), the information matrix for estimating linear functions of treat-
ment effects under a row-column desigis given by

Ca = Rq— ¢ "N1gNjy — 77 NogNgy + (re) "'rarly, (2)
where .
Ry = diag(rgqi,...,raw),
Tqg = (rdlv cee 7rdv),a
Ny = thewv x r treatments versus rows incidence matrix

Noy = thew x ¢ treatments versus columns incidence matrix
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and forl < i < v, rg; denotes the number of times tith treatment appears ih

A row-column design is said to beonnectedor, treatment-connected) if it
allows the estimability of all contrasts among treatment effects. A necessary con-
dition for a row-column design withr treatmentsy: rows ande columns to be
connected is that

rc2v+r+c—2. 3)

It is well-known that a row-column desighis connected if and only if
Rank(Cy) = v — 1. (4)

Equivalently, a row-column desighis connected if and only if

Rank(Xy) =v+r+c—2, (5)
where
X4 = [1n D1g Dagq D3q). (6)
One can write (2) as
Cq = C1g+ Caq — Cou, (7)

where

Cia = Rg—c 'NigNy,,
Cyg = Rg—1""NogNj,,,
Coa = Ry— (re) trqrl. (8)

Note thatCy4 (respectively(Cyy) is the information matrix under a sub-model of

(1) obtained by ignoring the column (respectively, row) effects @pgis the in-
formation matrix under a model with both row and column effects ignored. A row-
column designi is row-connected (respectively, column connected) if and only if
Rank(C14) = v — 1 (respectivelyRank(Cy4) = v — 1). This means that a row-
column design is row-connected (respectively, column-connected) if and only if
the block design obtained by treating the rows (respectively, columns) is connected
when viewed as a block design. It is known (see e.g., Raghavarao and Federer [5])
that a connected row-column design is both row- and column-connected. However,
as noted by Shah and Khatri [6], the converse is not true, i.e., a row-column design
is not necessarily connected even if it is both row- and column-connected.

A row-column design is said to beaturatedif equality holds in (3). In this
communication, we propose a new class of saturated row-column designs involving
s rows ands columns, wheres > 3 is an integer. Clearly, then from (3), for
a saturated row-column design, we have= s> — 2s 4+ 2. We show that each
member of this class of designs is connected.
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3. A Class of Saturated Row-Column Designs

We propose a new class of saturated row-column designsigsagvolving v =
52 —2s+2 treatmentss rows ands columns, where > 3 is an integer. The design
do with treatments labelled ds 2, . . ., s> — 2s + 2, is given by

1 2 o5 —1 S
s s+1 --- 28s—2 2s—1
dy = 2s —1 2s -+ 38—3 35—2
s2—-2s+2 1 .. s—2 s-—1

For the designly, it is easy to see that

]_S Os RN Os
0, 1, --- O
Dldo - : : . = Is & 15 (9)
s O 1
I
I
D2d0 = : =1, ® I. (10)
I

The matrixDs,4, can be written as
Dsgq, =[d1 da ...d,], (11)

where, as before, = s> —2s+2andforu = 1,2,...,s,2s—1,35—2,...,5%—2s

+ 2, d,, has exactly two unities, the remaining entries being zero and the remaining
columns inDs,4, have exactly one unity, other entries in these columns being zero.
By (5), dg is connected if and only if

Rank(X) = Rank[1,2 Dig, Dog, D3q,] = 5°.
Through a sequence of elementary column transformations, one can see that
Rank(X) =1 + Rank(Y), (12)
whereY = [E, Ey E3)is a square matrix of ordgs? — 1) with

Is—l
0,
Is—l
El—[ 051,51 ] Ey=| 01 |, (13)

0,
Is—l
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and
Es=le1 ey ...e51],

where foru = 1,2,...,5 — 1,25 — 2,35 — 3,..., s> — 2s + 1, e, has exactly two
unities and the remaining columns have exactly one unity, the other entries in these
columns being zero. Sinceé is a square matrix of ordef — 1, in order to show
that the design is connected, it suffices to show ¥h& nonsingular. Since all the
columns except the columns with indice,...,s — 1,25 — 2,35 — 3,...,s% —
2s + 1 have a single nonzero entry, namely unity, the determinait chin be
obtained by expanding along these elements to olaliaift”) = +det(Z), where
for a square matrixdet(-) denotes its determinant attis a square matrix of order
(4s —5), given by

Z =z zy 73] .

The matricesZ;, 1 < i < 3, are given by

0;_1 1;2 Oiz 0;2 0:3

0,, 0 1, --- 0y O
Zy = : S A S I (14)

O;_l 0:2 0:2 1:2 O%

Os—l 02 02 T 02 1s
Z2 = [Isfl Osfl g ... g 1371]7 (15)

. 0372 0572
and
J3 = < I 0522 O5_22 - 0522 052 159 >
Os—15—2 Gi—11 Gi—n2 ~ Ge-ns—1) 0s—1 0s—15-2

17)
The matrixZ; given by (14) is of ordefs — 1) x (4s — 5). In the matrixZ, given
by (15), the matrixyg appeargs—2) times and the matrig,,,,,, 1 <u <m < s—1
appearing in (17) is am x 2 matrix whoseuth row has all elements equal to 1 and
the remaining elements are all zero.

Again through elementary row and column transformations, it can be seen that

det(Z) = +det(W), whereW = [W{, W3, Wi]"is a square matrix of ordes — 2
and the matrice®l’;, 1 < i < 3, are given by

Wi = Wi, G—1)2, Gs—1)3s - - - Go—1)(s—2) Wizl
Wo = [0,1,0,1,...,0,1],
Wy = [h> G(8—2)17 G(s—2)2> SRR G(s—Q)(s—Q)a 08—2]7

whereW; is a matrix of ordefs — 1) x 2 with its first row equal tq2, 1) and the
remaining elements zer®/;» is an(s — 1) x 2 matrix with its last row a1, s — 1)
and rest of the elements zero ahd= (1,0,0,...,0)" is a(s — 2) x 1 vector.
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Finally, for integerst > 2 and¢ > 1, let Ay, be a square matrix of ord@k given
by Ay, = [By, B, BS] where

By = [Un,Gk2,Ggs, - -, Grg—1), Ur2),
BZ = [0,1,0,1,...,0,1],
By = [f,G-1)1,G-1)2 - > Ge—1)(k—=1)> Ok—1],

Ui1 is ak x 2 matrix with its first row equal t¢2, 1) and all other elements equal
to zero,U;2 is ak x 2 matrix with its last row equal t¢1, ¢), rest of the elements
being equal to zero anfl= (1,0,0,...,0) isa(k — 1) x 1 vector. We then have
the following result.

Lemma 1. With A;; as defined above,

det(Akt) = (—1)k2det(A(k,1)t) + det(A(k,g)t), if k> 2,
2det(Ay) — 1, if k = 2,

0 1 ¢
whered;; = | 1 0 1
1 1 0

Proof: First, letk > 3. Then, from the definition ofix,, it is observed that only

the first two elements of the first row of,; are non-zero, these being equal to 2

and 1, respectively. Expandinigt(A.) along the elements of the first row gives
det(Ag) = 2det(H) — det(V), say

whereH = [Hj, Hj, H5]' with

Hi = [04-1,G-1)1:Gr-1)2, -+ G-y (k—2)> T12],
Hy = [1,0,1,0,1,...,0,1], and
Hy = [Gu—1y1,Gr-1)2s - Go—1)(k=1), Ok —1],

T2 is a(k — 1) x 2 matrix whose last row i$1, ¢) and rest of the elements are
zero andV = [V, V3, V5]’ with

Vi = Hi,
Vo = [0,0,1,0,1,...,0,1], and
Vs = M.

Adding the third column off to its second column and then subtracting the first
column of H from the second column and finally rearranging the rows, one gets

1 o’
dertt) = (-fer (1, O ) = (CDPdet(Ageoy),
(k—1)t
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where the elements in the column denoted«are not required in the evaluation
of the determinant. Again, it can be shown that

%8
det(V) = (—1)kdet Vo' | =det(V"), say,
Vi
where
Vi = (G-t Gar—1)2 - -+ Ge—1)(h—2)> T12],
vy = [0,1,0,1,...,0,1], and
Vi = [0k—2,Gu—a)1,- > Ge—2)(k—2)> Ok—2]

and the strind0, 1) appeargk — 1) times inV5". One can now show that

‘/’1**
det(V*) = (—1)"det | V5™ | = det(V*"), say,
Vz'))**
where
VI" = [Or—2, G2t Gh2)2: - - > Gr-2) (k-3)» T12);
‘/é** = [1707 1707 1) e 707 1]7 and
V5" = [Geons- - Grge-2): Ok-2;

andTy, is a(k — 2) x 2 matrix whose last row i$1,¢) and all other elements are
equal to zero. Using the operations used for evaluating the determindralobve,
one gets

det(V**) = (=1)F"'det(Ag_ay)-
Therefore,

det(Ag) = (=1)"2det(A_1)) + (—1)*"det(A_2))
= (=1)*2det(Ag-1y) + det(Ag—2)-

For k = 3, one can easily see that

21 0000

001 10O

det(As) = det 8 (1) 8 (1) (1) i
111000

000110

= —2det(Aa) + det(Ai¢)

(—1)32det

—

Aot) + det(Are),
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where
21 00
0 0 1 ¢t
Av=1 1 ¢ 1
1 1 10
and Ay, is as defined earlier. Finally, fér= 2,
21 00
0 0 1 ¢t
det(Ag;) = det 010 1
1 1 1 0
0 1 ¢ 0 1 ¢
= 2det 1 01 —det| 0O 0 1
1 10 1 1 0
= 2det(A1t)—1. OdJ

Lemma 2. Forintegersk > 1, t > 1,
_ kt+1, if k=2u—1or 2u, forany odd integew > 1,
det(Ap) = { —kt — 1, otherwise

Proof: For simplicity in notation, we denotéet(Ay;) by ax:. Then, the result of
Lemma 1 can be written as

are = (1) 2ag,_ 1y + a2y, k> 2, (18)
where we definey; = —1. We need to show that for an integer> 0,
Qqme = —4dmt —1,
Qamiry = (@Am+1)t+1,
Aams2)e = (4m+2)t+1and
Aamsy = —(4m+3)t—1. (19)
Form = 0, using the matricedl;;, 1 <1 < 3, it can be readily seen that
apr = —1,
aiy = t+1,
ayy = 2t+1and
agr = —3t—1.

We now apply induction to prove (19). Suppose (19) holds for all integers
0,1,...,1. We then have by (18),

argry = (1200015, + auiiay
= —2{(4l+3)t+ 1} + (4l + 2)t + 1, by hypothesis
= 4+ 1)t - 1.
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On similar lines, one can show that

aa@rn+e = {40+ 1)+ 1} +1,
a1+ = 14(0+1)+2}t+1and
a3y = —14(0+1)+ 3} - 1.
This completes the proof. O

We can now state the main result of this paper.
Theorem. The row-column desigi, is connected for each integer> 2.

Proof : Observe that the matriki” defined earlier in this section is the same as
A(s—1)(s—1) and by Lemma 2, is nonsingular for each> 2. Hence, by the ar-
guments in the proof of Lemma 1, it is clear think(X) = s2, which in turn
implies thatdy is connected for al§ > 2. O

4. Concluding Remarks

In this paper, a class of saturated row-column designs with number of rows equal
to the number of columns has been proposed and it has been established that the
proposed designs are connected. Row-column designs with the number of rows
equal to the number of columns are some times called square designs. Many of the
existing square designs, including Latin square designs, accommodate fewer treat-
ments than the number of treatments in the designs proposed here. These designs
are thus likely to be useful in situations where a large number of treatments are to
be tested and the number of rows/columns is smaller than that of treatments.

While it has not yet been possible to obtain general results regarding the effi-
ciency of the proposed designs, for= 4 our design has an edge over some of
the existing designs on the basis of the average variance of the best linear unbiased
estimators of all elementary treatment contrasts.

The average variance of the best linear unbiased estimators of all elementary
treatment contrasts under the design wita 10,r = 4 = ¢, i.e.,s = 4, proposed
here is3.000102, while the same average variance for the design proposed recently
by Qu and Ogunyemi [4] i8.581002, whereo? is the variance of an observation.
A design withv = 8 treatments in 4 rows and 4 columns was given by Eccleston
and Russell [2]. This design can be converted to a connected row-column design
with v = 10,7 = 4 = ¢ (see Qu and Ogunyemi [4]). The average variance of the
best linear unbiased estimators of all elementary treatment contrasts for this design
is 3.820502, which is again appreciably higher than that obtained under the design
proposed in this paper. Since minimizing the average variance of the best linear
unbiased estimators of all elementary treatment contrasts is equivalent to the well-
known and commonly used-optimality criterion, the proposed design for= 4
is better than some of the existing designs according todttugiterion. Further
investigations are needed to evaluate whether or not the proposed designs for other
values ofs are better than the existing comparable designs.
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