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Abstract A new class of saturated, binary row-column designs is proposed. It is
shown that these designs are treatment connected in the sense that these permit the
estimability of all contrasts among treatment effects.
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1. Introduction

Row-column designs are used in various fields of applications including agriculture
and industry, for eliminating heterogeneity in two directions. Suppose it is desired
to comparev treatments usingn = rc experimental units, arranged inr rows andc
columns. Any allocation of thev treatments over then experimental units is called
a row-column design.

A row-column design is said to beconnected(or, treatment-connected) if it
allows the estimability of all contrasts among treatment effects. The issue of con-
nectedness of row-column designs has been examined by several authors; see e.g.,
Shah and Khatri [6], Raghavarao and Federer [5], Eccleston and Russell [2], Bak-
salary and Kala [1], Godolphin and Godolphin [3] and Qu and Ogunyemi [4]. Since
a row-column design is not necessarily connected even if the component block de-
signs, obtained by treating the rows as blocks and columns as blocks, are each
individually connected, there is no simple way to check the connectedness of a
row-column design. In this communication, we propose a class of row-column de-
signs withr = c. These designs are binary, i.e., a treatment appears at most once in
each row and each column and are saturated in the sense that no degrees of freedom
are available for the estimation of the error variance. We show that these designs
are connected. Some comments on the efficiency of the proposed designs are also
made.
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2. Preliminaries

Throughout, for a positive integers, 1s andIs will denote respectively, ans × 1
vector of all ones and an identity matrix of orders. Also, for positive integersa, b,
0ab will denote ana × b null matrix. The null column vector0a1 will be simply
written as0a. A prime over a matrix or vector will denote its transpose. Finally,
for a pair of matricesE = (eij) andF , the Kronecker (tensor) product ofE andF
will be denoted byE ⊗ F , i.e.,E ⊗ F = (eijF ).

Consider a row-column designd involving v treatments arranged inr rows
and c columns. LetYijk denote the observable random variable corresponding
to the observation pertaining to thekth treatment in theith row andjth column,
1 ≤ i ≤ r, 1 ≤ j ≤ c, 1 ≤ k ≤ v, andY be then × 1 vector of the quantities
{Yijk}. We postulate the following model for the observations collected viad:

E(Y ) = µ1n + D1dα + D2dβ + D3dγ,

D(Y ) = σ2In, (1)

where

µ = a general mean,

α = ther × 1 vector of row effects,

β = thec× 1 vector of column effects,

γ = thev × 1 vector of treatment effects,

D1d = then× r observations versus rows incidence matrix,

D2d = then× c observations versus columns incidence matrix,

D3d = then× v observations versus treatments incidence matrix,

n = the total number of observations ind,

andE(·) andD(·) are respectively, the expectation and dispersion operators.

The incidence matricesDid, 1 ≤ i ≤ 3, are defined in the usual manner. For
instance, ifD1d = (d(1)

ui ), then

d
(1)
ui = 1, if the uth observation corresponds to theith row

= 0, otherwise.

The matricesD2d andD3d are defined similarly.
Under model (1), the information matrix for estimating linear functions of treat-

ment effects under a row-column designd is given by

Cd = Rd − c−1N1dN
′
1d − r−1N2dN

′
2d + (rc)−1rdr

′
d, (2)

where
Rd = diag(rd1, . . . , rdv),
rd = (rd1, . . . , rdv)′,

N1d = thev × r treatments versus rows incidence matrix,

N2d = thev × c treatments versus columns incidence matrix,
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and for1 ≤ i ≤ v, rdi denotes the number of times theith treatment appears ind.
A row-column design is said to beconnected(or, treatment-connected) if it

allows the estimability of all contrasts among treatment effects. A necessary con-
dition for a row-column design withv treatments,r rows andc columns to be
connected is that

rc ≥ v + r + c− 2. (3)

It is well-known that a row-column designd is connected if and only if

Rank(Cd) = v − 1. (4)

Equivalently, a row-column designd is connected if and only if

Rank(Xd) = v + r + c− 2, (5)

where

Xd = [1n D1d D2d D3d]. (6)

One can write (2) as

Cd = C1d + C2d − C0d, (7)

where

C1d = Rd − c−1N1dN
′
1d,

C2d = Rd − r−1N2dN
′
2d, ,

C0d = Rd − (rc)−1rdr
′
d. (8)

Note thatC1d (respectively,C2d) is the information matrix under a sub-model of
(1) obtained by ignoring the column (respectively, row) effects andC0d is the in-
formation matrix under a model with both row and column effects ignored. A row-
column designd is row-connected (respectively, column connected) if and only if
Rank(C1d) = v − 1 (respectively,Rank(C2d) = v − 1). This means that a row-
column design is row-connected (respectively, column-connected) if and only if
the block design obtained by treating the rows (respectively, columns) is connected
when viewed as a block design. It is known (see e.g., Raghavarao and Federer [5])
that a connected row-column design is both row- and column-connected. However,
as noted by Shah and Khatri [6], the converse is not true, i.e., a row-column design
is not necessarily connected even if it is both row- and column-connected.

A row-column design is said to besaturatedif equality holds in (3). In this
communication, we propose a new class of saturated row-column designs involving
s rows ands columns, wheres ≥ 3 is an integer. Clearly, then from (3), for
a saturated row-column design, we havev = s2 − 2s + 2. We show that each
member of this class of designs is connected.
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3. A Class of Saturated Row-Column Designs

We propose a new class of saturated row-column designs, sayd0, involving v =
s2−2s+2 treatments,s rows ands columns, wheres ≥ 3 is an integer. The design
d0 with treatments labelled as1, 2, . . . , s2 − 2s + 2, is given by

d0 =

1 2 · · · s− 1 s
s s + 1 · · · 2s− 2 2s− 1

2s− 1 2s · · · 3s− 3 3s− 2
...

... · · · ...
...

s2 − 2s + 2 1 · · · s− 2 s− 1

.

For the designd0, it is easy to see that

D1d0 =




1s 0s · · · 0s

0s 1s · · · 0s
...

... · · · ...
0s 0s · · · 1s


 = Is ⊗ 1s (9)

D2d0 =




Is

Is
...
Is


 = 1s ⊗ Is. (10)

The matrixD3d0 can be written as

D3d0 = [d1 d2 . . .dv] , (11)

where, as before,v = s2−2s+2 and foru = 1, 2, . . . , s, 2s−1, 3s−2, . . . , s2−2s
+2, du has exactly two unities, the remaining entries being zero and the remaining
columns inD3d0 have exactly one unity, other entries in these columns being zero.
By (5), d0 is connected if and only if

Rank(X) = Rank[1s2 D1d0 D2d0 D3d0 ] = s2.

Through a sequence of elementary column transformations, one can see that

Rank(X) = 1 + Rank(Y ), (12)

whereY = [E1 E2 E3] is a square matrix of order(s2 − 1) with

E1 =
[

0s−1,s−1

Is−1 ⊗ 1s

]
, E2 =




Is−1

0′s−1

Is−1

0′s−1
...

0′s−1

Is−1




, (13)



A CLASS OF SATURATED ROW-COLUMN DESIGNS 297

and
E3 = [e1 e2 . . . ev−1],

where foru = 1, 2, . . . , s− 1, 2s− 2, 3s− 3, . . . , s2 − 2s + 1, eu has exactly two
unities and the remaining columns have exactly one unity, the other entries in these
columns being zero. SinceY is a square matrix of orders2 − 1, in order to show
that the design is connected, it suffices to show thatY is nonsingular. Since all the
columns except the columns with indices1, 2, . . . , s− 1, 2s− 2, 3s− 3, . . . , s2 −
2s + 1 have a single nonzero entry, namely unity, the determinant ofY can be
obtained by expanding along these elements to obtaindet(Y ) = ±det(Z), where
for a square matrix,det(·) denotes its determinant andZ is a square matrix of order
(4s− 5), given by

Z = [Z ′1 Z ′2 Z ′3]
′.

The matricesZi, 1 ≤ i ≤ 3, are given by

Z1 =




0′s−1 1′2 0′2 · · · 0′2 0′s
0′s−1 0′2 1′2 · · · 0′2 0′s

...
...

...
...

...
...

0′s−1 0′2 0′2 · · · 1′2 0′s
0′s−1 0′2 0′2 · · · 0′2 1′s




, (14)

Z2 = [Is−1 0s−1 g . . . g Is−1], (15)

g =
(

0s−2 0s−2

1 0

)
, (16)

and

Z3 =
(

Is−2 0s−2,2 0s−2,2 · · · 0s−2,2 0s−2 Is−2

0s−1,s−2 G(s−1)1 G(s−1)2 · · · G(s−1)(s−1) 0s−1 0s−1,s−2

)
.

(17)
The matrixZ1 given by (14) is of order(s− 1)× (4s− 5). In the matrixZ2 given
by (15), the matrixg appears(s−2) times and the matrixGmu, 1 ≤ u ≤ m ≤ s−1
appearing in (17) is anm× 2 matrix whoseuth row has all elements equal to 1 and
the remaining elements are all zero.

Again through elementary row and column transformations, it can be seen that
det(Z) = ±det(W ), whereW = [W ′

1,W
′
2,W

′
3]
′ is a square matrix of order2s−2

and the matricesWi, 1 ≤ i ≤ 3, are given by

W1 = [W11, G(s−1)2, G(s−1)3, . . . , G(s−1)(s−2),W12],
W2 = [0, 1, 0, 1, . . . , 0, 1],
W3 = [h, G(s−2)1, G(s−2)2, . . . , G(s−2)(s−2),0s−2],

whereW11 is a matrix of order(s− 1)× 2 with its first row equal to(2, 1) and the
remaining elements zero,W12 is an(s−1)×2 matrix with its last row as(1, s−1)
and rest of the elements zero andh = (1, 0, 0, . . . , 0)′ is a (s − 2) × 1 vector.
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Finally, for integersk ≥ 2 andt ≥ 1, let Akt be a square matrix of order2k given
by Akt = [B′

1, B
′
2, B

′
3]
′ where

B1 = [U11, Gk2, Gk3, . . . , Gk(k−1), U12],
B2 = [0, 1, 0, 1, . . . , 0, 1],
B3 = [f , G(k−1)1, G(k−1)2, . . . , G(k−1)(k−1),0k−1],

U11 is ak × 2 matrix with its first row equal to(2, 1) and all other elements equal
to zero,U12 is ak × 2 matrix with its last row equal to(1, t), rest of the elements
being equal to zero andf = (1, 0, 0, . . . , 0)′ is a(k − 1)× 1 vector. We then have
the following result.

Lemma 1. WithAkt as defined above,

det(Akt) = (−1)k2det(A(k−1)t) + det(A(k−2)t), if k > 2,

= 2det(A1t)− 1, if k = 2,

whereA1t =




0 1 t
1 0 1
1 1 0


 .

Proof : First, letk > 3. Then, from the definition ofAkt, it is observed that only
the first two elements of the first row ofAkt are non-zero, these being equal to 2
and 1, respectively. Expandingdet(Akt) along the elements of the first row gives

det(Akt) = 2det(H)− det(V ), say

whereH = [H ′
1,H

′
2, H

′
3]
′ with

H1 = [0k−1, G(k−1)1, G(k−1)2, . . . , G(k−1)(k−2), T12],
H2 = [1, 0, 1, 0, 1, . . . , 0, 1], and

H3 = [G(k−1)1, G(k−1)2, . . . , G(k−1)(k−1),0k−1],

T12 is a (k − 1) × 2 matrix whose last row is(1, t) and rest of the elements are
zero andV = [V ′

1 , V
′
2 , V

′
3 ]
′ with

V1 = H1,

V2 = [0, 0, 1, 0, 1, . . . , 0, 1], and

V3 = H3.

Adding the third column ofH to its second column and then subtracting the first
column ofH from the second column and finally rearranging the rows, one gets

det(H) = (−1)kdet
(

1 0′
∗ A(k−1)t

)
= (−1)kdet(A(k−1)t),
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where the elements in the column denoted by∗ are not required in the evaluation
of the determinant. Again, it can be shown that

det(V ) = (−1)kdet




V ∗
1

V ∗
2

V ∗
3


 = det(V ∗), say,

where

V ∗
1 = [G(k−1)1, G(k−1)2, . . . , G(k−1)(k−2), T12],

V ∗
2 = [0, 1, 0, 1, . . . , 0, 1], and

V ∗
3 = [0k−2, G(k−2)1, . . . , G(k−2)(k−2),0k−2],

and the string(0, 1) appears(k − 1) times inV ∗
2 . One can now show that

det(V ∗) = (−1)kdet




V ∗∗
1

V ∗∗
2

V ∗∗
3


 = det(V ∗∗), say,

where

V ∗∗
1 = [0k−2, G(k−2)1, G(k−2)2, . . . , G(k−2)(k−3), T

∗
12],

V ∗∗
2 = [1, 0, 1, 0, 1, . . . , 0, 1], and

V ∗∗
3 = [G(k−2)1, . . . , G(k−2)(k−2),0k−2],

andT ∗12 is a(k − 2) × 2 matrix whose last row is(1, t) and all other elements are
equal to zero. Using the operations used for evaluating the determinant ofH above,
one gets

det(V ∗∗) = (−1)k−1det(A(k−2)t).

Therefore,

det(Akt) = (−1)k2det(A(k−1)t) + (−1)2kdet(A(k−2)t)

= (−1)k2det(A(k−1)t) + det(A(k−2)t).

Fork = 3, one can easily see that

det(A3t) = det




2 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 t
0 1 0 1 0 1
1 1 1 0 0 0
0 0 0 1 1 0




= −2det(A2t) + det(A1t)
= (−1)32det(A2t) + det(A1t),
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where

A2t =




2 1 0 0
0 0 1 t
0 1 0 1
1 1 1 0




andA1t is as defined earlier. Finally, fork = 2,

det(A2t) = det




2 1 0 0
0 0 1 t
0 1 0 1
1 1 1 0




= 2det




0 1 t
1 0 1
1 1 0


− det




0 1 t
0 0 1
1 1 0




= 2det(A1t)− 1. 2

Lemma 2. For integersk ≥ 1, t ≥ 1,

det(Akt) =
{

kt + 1, if k = 2u− 1 or 2u, for any odd integeru ≥ 1,
−kt− 1, otherwise.

Proof : For simplicity in notation, we denotedet(Akt) by akt. Then, the result of
Lemma 1 can be written as

akt = (−1)k2a(k−1)t + a(k−2)t, k ≥ 2, (18)

where we definea0t ≡ −1. We need to show that for an integerm ≥ 0,

a4mt = −4mt− 1,

a(4m+1)t = (4m + 1)t + 1,

a(4m+2)t = (4m + 2)t + 1 and

a(4m+3)t = −(4m + 3)t− 1. (19)

Form = 0, using the matricesAit, 1 ≤ i ≤ 3, it can be readily seen that

a0t = −1,

a1t = t + 1,

a2t = 2t + 1 and

a3t = −3t− 1.

We now apply induction to prove (19). Suppose (19) holds for all integersm =
0, 1, . . . , l. We then have by (18),

a4(l+1)t = (−1)4(l+1)2a(4l+3)t + a(4l+2)t

= −2{(4l + 3)t + 1}+ (4l + 2)t + 1, by hypothesis

= −4(l + 1)t− 1.
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On similar lines, one can show that

a(4(l+1)+1)t = {4(l + 1) + 1}t + 1,

a(4(l+1)+2)t = {4(l + 1) + 2}t + 1 and

a(4(l+1)+3)t = −{4(l + 1) + 3}t− 1.

This completes the proof. 2

We can now state the main result of this paper.

Theorem. The row-column designd0 is connected for each integers > 2.

Proof : Observe that the matrixW defined earlier in this section is the same as
A(s−1)(s−1) and by Lemma 2, is nonsingular for eachs > 2. Hence, by the ar-
guments in the proof of Lemma 1, it is clear thatRank(X) = s2, which in turn
implies thatd0 is connected for alls > 2. 2

4. Concluding Remarks

In this paper, a class of saturated row-column designs with number of rows equal
to the number of columns has been proposed and it has been established that the
proposed designs are connected. Row-column designs with the number of rows
equal to the number of columns are some times called square designs. Many of the
existing square designs, including Latin square designs, accommodate fewer treat-
ments than the number of treatments in the designs proposed here. These designs
are thus likely to be useful in situations where a large number of treatments are to
be tested and the number of rows/columns is smaller than that of treatments.

While it has not yet been possible to obtain general results regarding the effi-
ciency of the proposed designs, fors = 4 our design has an edge over some of
the existing designs on the basis of the average variance of the best linear unbiased
estimators of all elementary treatment contrasts.

The average variance of the best linear unbiased estimators of all elementary
treatment contrasts under the design withv = 10, r = 4 = c, i.e.,s = 4, proposed
here is3.0001σ2, while the same average variance for the design proposed recently
by Qu and Ogunyemi [4] is3.5810σ2, whereσ2 is the variance of an observation.
A design withv = 8 treatments in 4 rows and 4 columns was given by Eccleston
and Russell [2]. This design can be converted to a connected row-column design
with v = 10, r = 4 = c (see Qu and Ogunyemi [4]). The average variance of the
best linear unbiased estimators of all elementary treatment contrasts for this design
is 3.8205σ2, which is again appreciably higher than that obtained under the design
proposed in this paper. Since minimizing the average variance of the best linear
unbiased estimators of all elementary treatment contrasts is equivalent to the well-
known and commonly usedA-optimality criterion, the proposed design fors = 4
is better than some of the existing designs according to theA-criterion. Further
investigations are needed to evaluate whether or not the proposed designs for other
values ofs are better than the existing comparable designs.
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