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Let R be a prime ringd, ¢ two derivations ofR, L a noncentral Lie ideal of

R and0 # a € R. The main object in this paper is to discuss the situations
a(d(x)x —xd(z))" = 0forall z € L anda(d(z)x — zd(x)) € Z(R) for all

x € L, wheren > 1is a fixed integer.
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1. INTRODUCTION

Throughout this papef; always denotes a prime ring with centéfR), extended
centroidC' and@ is its symmetric Martindale’s quotient ring. Fory € R, the
commutator ofz, y is denoted byjz,y| and defined byz,y] = zy — yz. The
d and¢§ denote the derivations &&. The standard polynomial identity, in four

variables is defined as (71, 72, 23, 74) = Y (=1)724(1)To(2)To(3)To(4) Where
0ESy
(—1)?is+1 or —1 according tar being an even or odd permutation in symmetric

groupSy.
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A derivationd is called@-inner if it is inner induced by an element, sa¥ @
as an adjoint, that isi(x) = [, z] for all z € R. A derivation which is no@-inner
is called a)-outer derivation.

A well known result proved by Posner [21], states that if the commutators
[d(z),z] € Z(R) for all z € R, then eitherd = 0 or R is commutative. Then
many related generalizations of Posner’s result have been obtained by a number of
authors in literature. Posner’s theorem was extended to Lie ideals in prime rings by
Lee [18] and then by Lanski [15]. In [5], Carini and Filippis studied the situation in
more generalized form considering power values. They proved that if &ha¥ 2
and[d(z),z|" € Z(R) for all z € L, whereL is a noncentral Lie ideal ok and
n > 1 a fixed integer, thed = 0 or R satisfiess;. Recently, in [23], Wang and
You removed the characteristic assumptionfon

On the other hand, authors generalized Posner’s theorem by considering two
derivations. Bréar proved in [4] that ifi(z)z — zd(z) € Z(R) for all x € R, then
eitherd = § = 0 or R is commutative. Later Lee and Wong [19] studied the same
situation of Br&ar for allz in some noncentral Lie idedl of R and obtained that
eitherd = § = 0 or R satisfiess,.

There are some papers which have studied identities of derivations with anni-
hilator conditions. In [10], Filippis proved that if chaR) # 2,d # 0 anda € R
such thau[d(z), z]™ € Z(R) for all x € L, whereL is a noncentral Lie ideal a®
andn > 1 afixed integer, then either= 0 or R satisfiess,. In [22], Wang proved
that the same conclusion holds in case dlf&r = 2.

Recently, Argac and Filippis [1] obtained the following result:

Let R be a prime ring with chafR) # 2, L a non-central Lie ideal oR, d, ¢
two derivations ofR?, n > 1 a fixed integer. I{d(x)z —xd(z))" = 0forallz € L,
then eitherd = 6 = 0 or R satisfies the standard identity andd, é are inner
derivations, induced respectively by the elemengsidb such that: + b € Z(R).

In view of all these above results, itis natural to consider the situatiGi{s)
—z6(x))" =0forall z € L anda(d(z)z — zd(x)) € Z(R) for all z € L, where
0 # a € Randn > 1 afixed integer. In the present paper, we shall study these
two situations removing the assumption of ch&j # 2.

Let @ be the symmetric Martindale’s quotient ring of a prime rigndC' the
center of@), which is called extended centroid & Note thatQ is also a prime
ring with C' a field. We denote by’ = @Q x¢c C{ X}, the free product over' of the
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C-algebra@ and the freg”-algebraC{ X}, with X the countable set consisting
of the noncommuting indeterminates, x2,.... The elements of" are called
generalized polynomial with coefficients ¢p. Nontrivial generalized polynomial
means a nonzero element®f For more details about these objects we refer to [2,
11].

Remarkl : Let R be a prime ring and. a noncentral Lie ideal oR. If char
(R) # 2, by [3, Lemma 1] there exists a nonzero idéabf R such thatd #
[I,R] C L. If char(R) = 2 anddimcRC > 4i.e., char(R) = 2 and R does not
satisfy sy, then by [14, Theorem 13] there exists a nonzero ideafl R such that
0 # [I, R] C L. Thus if either chafR) # 2 or R does not satisfy,, then we may
conclude that there exists a nonzero ideaf R such tha{/, 7] C L.

Remark 2 : It is well known that each derivation of a prime ridgycan be
uniquely extended to a derivation €, and so any derivation a® can be defined
on the whole of). We refer to [2, 17] for more details.

2. THE MAIN RESULTS

We begin with lemmas

Lemma2.1 — LetR be a prime ring with extended centraitianda, p, ¢ € R.
If @ # 0 such thata(p[z1, 72)? — [z1,22](p + q)[71, 22] + [71,22]%¢)" = O for
all z1,29 € R, wheren > 1 a fixed integer, then eitheR satisfies a nontrivial
generalized polynomial identity (GPI) prq € C.

PrRoOOF : Assume thatR does not satisfy any nontrivial GPI. R is com-
mutative, trivially R satisfies a nontrivial GPI which is a contradiction. 39,
must be noncommutative. L& = Q x¢ C{X1, X2}, the free product of)
andC{ X1, X»}, the freeC-algebra in noncommuting indeterminat&s and X,.
Then, sincei(p[x1, z2)? — [21, 22)(p + q)[z1, x2] + [21, 72]%¢)™ = 0 is a GPI for
R, we see that

a(p[X1, Xo)? — [X1, Xo](p + ¢)[ X1, Xao] + [X1, Xo]?q)" =0 (1)

inT = Q ¢ C{X1, X2}. If ¢ ¢ C, thenqg and1 are linearly independent ovér.
Thus, (1) implies

a(p[X1, X2 — [X1, Xo](p + ¢)[X1, Xo] + [X1, Xo]?¢)" [ X1, Xo’¢ =0 (2)
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in T and then by the same argument, we obtaik |, X»]%q)" = 0 in T implying
g = 0, sincea # 0, a contradiction. Therefore, we conclude that C' and hence
(1) reduces to

a((p[X1, Xo] — [ X1, Xo]p)[ X1, Xo])" =0 3)
in 7. AssumingY” = [X1, X3], (3) becomes
a((pY = Yp)Y)" ' (pY —~Yp)Y =0. )

Letp ¢ C. Thenp and1 are linearlyC-independent and hence (4) yieldgpY —
Yp)Y)"1YpY = 0. Thus by the same argument, we hay& pY )" = 0 imply-
ing p = 0, a contradiction. Therefore,c C.

Lemma2.2. — LetR be a noncommutative prime ring with extended centroid
C anda,p,q € R. Suppose that # 0 such thata(plxy, 22)? — [z1, 22](p +
Q)[z1, xo] + [21,22)%¢)" = 0 for all 1,20 € R, wheren > 1 is a fixed integer.
Then one of the following holds

() p,q € C, unlessR satisfiessy;

(i) char (R) = 2 and R satisfiessy;

(iii) char (R) # 2, R satisfiessy andp + ¢ € C.

PROOF: By assumptionR satisfies generalized polynomial identity

g(z1,32) = a(plz1, 32)? — [21,22] (P + @) [T1, 2] + [T1, 72]0)" (5)

By Lemma 2.1p,q € C which gives the conclusion (i) unlegs satisfies a
nontrivial GPI. Now, assume thdt satisfies a nontrivial GPI. Sindg and() sat-
isfy same generalized polynomial identity (see [1})satisfiesg(z1, z2). More-
over, if C is infinite, we havey(z1,z2) = 0 for all 21,22 € Q ®¢ C, whereC
is the algebraic closure @f. Since both) andQ ®¢ C are prime and centrally
closed [9], we may replac& by Q or Q ®¢c C according toC finite or infinite.
Thus we may assume th@t= Z(R) andR is C-algebra centrally closed, which
satisfiesg(x1, z2) = 0. By Martindale’s theorem [20]R is then a primitive ring
and hence is isomorphic to a dense ring of linear transformations of a vector space
V overC.

If dimcV = 2, thenR = M, (C), that is, R satisfiess,. In this case using the
fact[z,y]? € Z(My(C)) for all z,y € M2(C), we have thaR satisfies

a((p+ @)[x1, 22]* — [21, 22 (p + ¢)[21, 2])" = 0 (6)
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that is,

a([p + g, [z1, z2]][z1, 22])" = 0. (7

If char (R) = 2, we obtain conclusion (ii) and if cha?) # 2, by [8, Lemma
2.1], we obtairp + ¢ € Z(R), which is our conclusion (iii).

Suppose next that digl” > 3.

We show that for any € V, v andquv are linearlyC'-dependent. Suppose that
v andqu are linearly independent for some= V. Since dingV > 3, there exists
u € V such that, qv, u are linearlyC-independent set of vectors. By density,
there existry, 22 € R such that

v =0, T1qU = —qu, x1u=0; v =0, Toqu =u, Tou =v.

Then[zy, zo]v = 0, [21, 22]qv = u, [21, 72]2qv = v, and s® = a(p[r1, z2]*—

(21, 22](p + @)1, x2] + [71, 22)%¢)™0 = av.

This implies that ifav # 0, by contradiction, we can say thatandqv are
linearly C-dependent. Now choose € V such thatv and qv are linearlyC-
independent.

Thenav = 0. SetW = Spanc{v,qv}. Sincea # 0, there existav € V
such thatew # 0 and thena(v — w) = —aw # 0. By the previous argument
we have thatv, qw are linearlyC-dependent andv — w), g(v — w) too. Thus
there existo, 3 € C such thatgw = aw andg(v — w) = (v — w). Then
qu = 0w —w)+quw = F{v—w)+awie.,(a—pFw=qv— Pv € W. Now
a = g implies thatgv = v, a contradiction. Hence # [ and sow € W. Again,
if w € V with au = 0 thena(w + u) # 0. So,w + v € W forcingu € W. Thus
it is observed thaty € V with aw # 0 impliesw € W andu € V with au = 0
impliesu € W. This implies thal” = W i.e., dimoV = 2, a contradiction.

Hence, in any case; andqv are linearlyC-dependent for alb € V. Thus
for eachv € V, qv = ayv for somea,, € C. Itis very easy to prove that, is
independent of the choice ofe V. Thus we can writgv = v for allv € V and
a € C fixed. Now letr € R, v € V. Sincequ = aw,

[g,r]v = (qr)v — (rq)v = q(rv) — r(qv) = a(rv) — r(aw) = 0.
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Thus[g,rJv = 0forallv € Vi.e. [q,r]V = 0. Since|q, r| acts faithfully as
a linear transformation on the vector spacelq, r] = 0 for all » € R. Therefore,
q € Z(R).

Therefore, from (5) we have that satisfies generalized polynomial identity

fx1,2) = a(plzr, ) — [w1, zo)plr1, 22])". (8)

Now if v andpv are linearlyC-independent for some € V, there existv € V
such thaw, pv, w will be a linearlyC-independent set of vectors, since dim >
3. Then again by density, there exists x> € R such that

10 =0, z1pv =0, TIW = —V + 2pV; TV = pv, Topv = w, Taw = 0.

In this case, we haveri, zo]v = v, [z1,22]pv = —v + pv and hencd) =
a(plr1, 22)? — [21, 22|p[x1, 12])"v = av. Sincea # 0, by the same argument as
stated above, this leads a contradiction. Hepce C.

Lemma2.3 [16, Lemma 2] — LetR be a noncommutative simple algebra,
finite-dimensional over its centef. If g(x1,...,2;) € R *z Z{z;}, the free
product overZ, is an identity forR that is homogeneous i1, ..., z;} of degree
d, then for some field” andn > 1, R C M, (F') andg(x,...,x:) is an identity
for M,,(F).

Theorem2.4 — Let R be a prime ring,d and ¢ two derivations ofR, L a
noncentral Lie ideal oRR. Suppose that there exi$ts# a € R such that(d(u)u—
ud(u))™ = 0 for all u € L, wheren > 1 is a fixed integer. Then one of the
following holds:

(i) d = 6 = 0 unlessR satisfiessy;
(i) char (R) = 2 and R satisfiessy;

(ii) char (R) # 2 and R satisfiess4, d andé are two inner derivations induced
by p, g respectively such that+ g € C.

PRoOOF: If char (R) = 2 and R satisfiess,, we obtain our conclusion (ii). So,
let either cha R) # 2 or R does not satisfg,. SinceL is a noncentral Lie ideal
of R, by Remark 1, there exists a nonzero ideef R such tha{l, I] C L. Hence,
by our assumption we have,

a(d([x1, z2])[21, 2] — [21, 22]6([71,22]))" =0 9)
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forall z1, 22 € I. Now we divide the proof in the two cases:

Case I: Letd andJ are bothQ-inner derivations oR? i.e.,d(z) = [p, z] for all
x € Randé(x) = [¢,z] forall z € R, wherep, g € Q. Then from (9), we obtain
that

a(plr1, z2]? — [1, ) (p + q)[1, 2] + [21, 22)°q)" = 0 (10)

for all 1,29 € I. By Chuang [7], this GPI is also satisfied By and hence by
R. By Lemma 2.2, ifR does not satisfy,, p,q € C, thatis,d = 6 = 0. If char
(R) # 2 andR satisfiessy, then by Lemma 2.2y + g € C.

Case II: Next assume that andé are not bothQ-inner derivations of, but
they areC'-dependent modulo inner derivations®f Supposel = \é + ad,, that
is,d(z) = Ad(z) + [p, ] forall x € R, whereX € C, p € Q. Thend cannot be an
inner derivation ofR. From (9), we obtain that satisfies

a()\é([xl, xa|)[x1, x2] + [p, [x1, x2]|[x1, 2] — [21, 22]d([21, :L‘2])> =0.

Sinced is not inner derivation oz, by Kharchenko’s theorem [13], we have that

a(A([u,m T s, o), za] + s [, wall [, 2] — [, 2] (s 2] + [xl,vD)
— 0(12)

for all z1,z2,u,v € I. By Chuang [7], this GPI is also satisfied Byand hence
by R. In particular foru = v = 0, we have thaR satisfies

a([p, [z1, z2]][x1, 1:2])>n = 0.

By Lemma 2.2, we get that € C. Hence, we get from (11) th& satisfies

a()\([u,xg] + [z1,v))[x1, x2] — [21, 22] ([, 2] + [21, v])> =0. (12)

Since by our assumptioh is noncentral R must be noncommutative. There-
fore, we can choose € R such thaly ¢ C. Replacingu with [¢, z1] andv with
lq, z2], we get from (12) thaR satisfies

a(x[q, (o, wlJlo, 73] — [, ws]la [xl,:czu)n 0 (13)
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which gives

a(Aqm, 22)? — [0, 23] O\ + @)1, 2] + [xl,:cz]?q) —0. (9)

If R does not satisfy,, then by Lemma 2.2; € C, a contradiction. Therefore,
R satisfiessy, and then chafR) # 2. In this case, by Lemma 2.2g + ¢ =
(A+1)ge C.If (A+1) #0,then(\+ 1) isinvertible inC. Then(A +1)q € C
impliesq € C, which is a contradiction. Thus+ 1 = 0, that is,\ = —1. Then
from (12), we haveR satisfies

a< = ([w, w2] + [, v]) [21, @o] = [w1, o] ([, w2] + [ﬂflﬂ)) =0. (19

Replacingu = x; andv = x2 and using chafR) # 2, we have thaR satisfies
alzy, z2]*" = 0. (16)

For any two fixedr,y € R, setw = [z,y]**. Thenaw = 0. From (16),
we can writea[u, wva]?*® = 0 for all u,v € R. Sinceaw = 0, it reduces to
a(uwva)® = 0. This can be written aéwvau)?"*! = 0 for all u,v € R. By
Levitzki's lemma [12, Lemma 1.1}pvau = 0 for all u,v € R. SinceR is prime,
eithera = 0 orw = 0. Sincea # 0, thenw = [z, y]** = 0 for all z,y € R. This
is a polynomial identity forR and soR is finite dimensional simple algebra. Since
L is noncentral R must be noncommutative. Then by Lemma 223C M (F)
and My, (F) satisfiegx, y]*® = 0 for k > 1. This leads contradiction far = e,

Yy = e2.
The situation wher = A\d + ad, is similar.

Next assume thaf and§ are C-independent modulo inner derivations Bf
Since neither! nor § is Q-inner, by Kharchenko’s theorem [13], we have from (9)
that

a(([ur, x2] + w1, us))[w1, 2] — [21, 2] ([V1, 2] + [71,02]))" =0 17)

for all z1, 29, u1,us € I. Sincel, R and( satisfy same generalized polynomial
identities (see [7]), this GPl is also satisfied ByNow assuming, = v, = 0 and
replacingu; with [g, 1] andug with [¢, z2] for someg ¢ C'in (17), we obtain that
R satisfies

a([g, [z1, z2]][z1, 22])" = 0. (18)
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By Lemma 2.2, this giveg € C, unless chafR) = 2 and R satisfiess4, which is
a contradiction. Hence the theorem is proved.

Now we begin to prove our next theorem.
From the proof of theorem 2.4, following lemma is straightforward.

Lemma2.5. — LetR be a prime ringd andd two derivations of?, I a nonzero
ideal of R. Suppose that there exidis# a € R such thata(d([z,y])[z,y] —
[z,y]0([z,y])) = 0forall z,y € I. Thend = § = 0 unlessR satisfiess,.

Lemma2.6 — Let R = My (F) be the ring of allk x k£ matrices over a
field F andk > 3. Leta be an invertible element i®k. If for somep,q € R,
(Ip, [z, ¥)][z, y] — [z, v][q, [z, v]]) € F.a=t forallz,y € R, thenp,q € F - Ij.

PROOF: Letp = (pij)kxr @andq = (¢ij)kxk. By assumption, for every,y €
R, ([p, [z, 9]][%,y] — [z, v][q, [z, y]]) is zero or invertible. We choose= e;;,y =
e;j fori # j. Then[z,y] = ¢;; and sdl[p, [z, yl][z,y] — [z, ylla. [z, y]]) = —(p +
q)jiei; Which is not invertible. Thereforgp + ¢)jie;; = 0 implying (p+¢q)j; =0

k
for anyi # j. This shows thap + ¢ is diagonal. Lep + ¢ = > aye;;. For any
i=1

F-automorphisn® of R, (p + q)? enjoys the same property as- ¢ does, namely,
([0, [z, y]][z, y] — [z, y][d?, [z, y]]) is zero or invertible for every, y € R. Hence
(p + q)? must be diagonal. For eagh# 1, we have(l + e1;)(p + ¢)(1 — ey;) =

k
>~ i + (agj — air)eq; diagonal. Thereforey;; = oy and sop + g € F.Ij.
i=1

Thus our assumption reduces to, for every € R, ([p, [z, y]][z,y] + [z, 9]
[p, [z, y]]) is zero or invertible. Now sincé > 3, we may choose = e;;,y =
ejs—esi for, j, s distinctintegers. Thenwe have, [z, y]][z, y]+[z, y][p, [z, y]]) =
peij — €;;p IS zero or invertible. Since rank ok;; — e;;p is < 2, it can not be in-
vertible and s@e;; — e;jp = [p,e;] = 0. Since{e;;|i # j} generatek as an
F-algebra[p, R| = 0, thatisp € F - Ij.

Example Let R = My (D) be the complete x 2 matrix ring overD, whereD
is any commutative domain of characteristj@ndd, 6 be two nonzero derivations

of R. Choose
a b
L:{< ); a,bep}
b a

a noncentral Lie ideal oR. Then for0 # a € Z(R) andé = —d, we have
a(d(u)u —ud(u)) € Z(R) forall u € L.
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Theorem2.7— Let R be a prime ring with centeZ (R), d and ¢ two deriva-
tions of R and L a noncentral Lie ideal oRR. Suppose that there exisisz a € R
such thata(d(u)u — ud(u)) € Z(R) for all w € L. Thend = § = 0 unlessRk
satisfiess,.

PROOF : Suppose thafz does not satisfy,. Then by remark 1, we have
0 # [I,I] C L, wherel is a nonzero ideal aR. By our assumption, we have

a(d([z1, z2])[x1, 2] — [21, 22]0([21, 22])) € Z(R) (19)

forallzy,zo € I. Ifforall xy,zo € I, a(d([x1, z2])[z1, x2]—[71, 22]0([21, 22])) =

0, by Lemma 2.5, we concludé= ¢ = 0, as desired. So, let there existro € T
such that(d([r1,r2])[r1, 2] —[r1,m2]0([r1, 72])) # 0. Thena(d([x1, z2])[x1, x2]—
[x1,z2]d([x1, x2])) is @ central differential identity fof. It follows from [6, The-
orem 1] thatR is a prime Pl-ring and s&C (= Q) is a finite-dimensional central
simpleC'-algebra by Posner’s theorem for prime PI-ring. Now divide the proof in
the following two cases:

Case I: Let d and ¢ are both@Q-inner derivations ofR induced byp,q € Q
respectively. Then

la([p, [z1, z2]][z1, 22] — [71, 22][g; [71, 22]]), 23] = O (20)

for all 1,22 € I and so for allz1, x5 € Q, sincel and@ satisfy same GPI [7].
Sincea([p, [r1,72]][r1,72] — [r1,72][q, [r1,r2]]) # O for somery,ry € I, (20) is a
nontrivial GPI for@. Since( is a finite-dimensional central simpig-algebra, it
follows from Lemma 2.3 that there exists a suitable figlduch thaty C M (F),
the ring of allt x k& matrices over’, and moreovei /. (F') satisfies (20). Sinc&
does not satisfy,, k£ > 3. Therefore, we have

a([p, [z1, w2]][x1, 2] — [21, 22][gq, [21, 22]]) € Z(M})(F))

forall 1,20 € My (F). Iffor all 1,79 € M(F), a([p, [r1,72]][r1,72] — [r1,72]
lq,[r1,m2]]) = 0, then by Lemma 2.2p,q € Z(M(F)), thatis,d = § = 0,
as desired. So, let there exist o € M(F) such thata([p, [r1, r2]][r1,r2] —
[r1,72]lg, [r1,72]]) # 0. Thena is invertible and sd|[p, [r1,72]|[r1, 2] — [r1,72]
[q,[r1,7m2]]) € F.a=! forall r,7o € My (F). By Lemma 2.6p,q € Z(My(F))
implyingd =6 = 0.

Case Il: Let d andé are not bothQ-inner derivations ofR.
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Assume thatl andé areC-dependent modulo inner derivations®f sayd =
A6 + ady,, wherel € C, p € Q andad,(x) = [p, z] for all z € R. Thend can not
be Q-inner derivation ofR. From (19), we obtain that

a(AS([z1, zo])[m1, 2] + [, [m1, 22|21, T2] — [21, 22]0([21, 72])) € Z(R) (21)

forall z1, z2 € I. Sinced is notQ-inner derivation of, by Kharchenko’s theorem
[13],

a(A([u, z2) + [x1,v])[w1, 22] + [p, [21, 22]][21, 22]
—[z1, 22]([u, 22] + [z1,0])) € Z(R) (22)

forall x1, z2,u,v € I. SinceL is noncentral R must be noncommutative. There-
fore, we may choosé € R such that ¢ C. Then replacing: with [b, z1] andv
with [b, z2] in (22), we obtain that for alty, 2, x3 € T

a(Ab, [z1, zo]][z1, 2] + [, [21, 22]|[21, 22] — [21, 22][b, [21, 22]]) € Z(R) (23)
which gives
[a([Ab+ p, [x1, z2]][x1, T2 — [x1, 22][b, [x1, 22]]), z3] = 0. (24)

This is similar to (20). Then by the same argument as ablowe(”, a contradic-
tion.

The situation when = \d + ad, is similar.

Next assume that andé are C-independent modulo inner derivations B&f
Since neitherl nor ¢ is inner, by Kharchenko’s theorem [13], we have from (19)
that! satisfies

a(([ur, zo] + [z1, ug])[w1, T2 — 21, 2] ([V1, 22] + [21,02])) € Z(R).  (25)

Then assuming; = ve = 0 and replacing:; with [b, z1] andus with [b, 5]
for someb ¢ C'in (25), we obtain that for alt;, x9, x5 € T

la[b, [z1, x2]][z1, z2], z3] = 0. (26)

Then by the same argument as given in cage€l(, a contradiction.
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