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Let R be a prime ring,d, δ two derivations ofR, L a noncentral Lie ideal of
R and0 6= a ∈ R. The main object in this paper is to discuss the situations
a(d(x)x− xδ(x))n = 0 for all x ∈ L anda(d(x)x− xδ(x)) ∈ Z(R) for all
x ∈ L, wheren ≥ 1 is a fixed integer.
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1. INTRODUCTION

Throughout this paper,R always denotes a prime ring with centerZ(R), extended
centroidC andQ is its symmetric Martindale’s quotient ring. Forx, y ∈ R, the
commutator ofx, y is denoted by[x, y] and defined by[x, y] = xy − yx. The
d andδ denote the derivations ofR. The standard polynomial identitys4 in four
variables is defined ass4(x1, x2, x3, x4) =

∑
σ∈S4

(−1)σxσ(1)xσ(2)xσ(3)xσ(4) where

(−1)σ is +1 or−1 according toσ being an even or odd permutation in symmetric
groupS4.



358 BASUDEB DHARA

A derivationd is calledQ-inner if it is inner induced by an element, sayq ∈ Q
as an adjoint, that is,d(x) = [q, x] for all x ∈ R. A derivation which is notQ-inner
is called aQ-outer derivation.

A well known result proved by Posner [21], states that if the commutators
[d(x), x] ∈ Z(R) for all x ∈ R, then eitherd = 0 or R is commutative. Then
many related generalizations of Posner’s result have been obtained by a number of
authors in literature. Posner’s theorem was extended to Lie ideals in prime rings by
Lee [18] and then by Lanski [15]. In [5], Carini and Filippis studied the situation in
more generalized form considering power values. They proved that if char(R) 6= 2
and[d(x), x]n ∈ Z(R) for all x ∈ L, whereL is a noncentral Lie ideal ofR and
n ≥ 1 a fixed integer, thend = 0 or R satisfiess4. Recently, in [23], Wang and
You removed the characteristic assumption onR.

On the other hand, authors generalized Posner’s theorem by considering two
derivations. Brěsar proved in [4] that ifd(x)x−xδ(x) ∈ Z(R) for all x ∈ R, then
eitherd = δ = 0 or R is commutative. Later Lee and Wong [19] studied the same
situation of Brěsar for allx in some noncentral Lie idealL of R and obtained that
eitherd = δ = 0 or R satisfiess4.

There are some papers which have studied identities of derivations with anni-
hilator conditions. In [10], Filippis proved that if char(R) 6= 2, d 6= 0 anda ∈ R
such thata[d(x), x]n ∈ Z(R) for all x ∈ L, whereL is a noncentral Lie ideal ofR
andn ≥ 1 a fixed integer, then eithera = 0 or R satisfiess4. In [22], Wang proved
that the same conclusion holds in case char(R) = 2.

Recently, Argac and Filippis [1] obtained the following result:

Let R be a prime ring with char(R) 6= 2, L a non-central Lie ideal ofR, d, δ
two derivations ofR, n ≥ 1 a fixed integer. If(d(x)x−xδ(x))n = 0 for all x ∈ L,
then eitherd = δ = 0 or R satisfies the standard identitys4 andd, δ are inner
derivations, induced respectively by the elementsa andb such thata + b ∈ Z(R).

In view of all these above results, it is natural to consider the situationsa(d(x)x
− xδ(x))n = 0 for all x ∈ L anda(d(x)x− xδ(x)) ∈ Z(R) for all x ∈ L, where
0 6= a ∈ R andn ≥ 1 a fixed integer. In the present paper, we shall study these
two situations removing the assumption of char(R) 6= 2.

Let Q be the symmetric Martindale’s quotient ring of a prime ringR andC the
center ofQ, which is called extended centroid ofR. Note thatQ is also a prime
ring with C a field. We denote byT = Q ∗C C{X}, the free product overC of the



ANNIHILATOR CONDITION ON POWER VALUES OF DERIVATIONS 359

C-algebraQ and the freeC-algebraC{X}, with X the countable set consisting
of the noncommuting indeterminatesx1, x2, . . .. The elements ofT are called
generalized polynomial with coefficients inQ. Nontrivial generalized polynomial
means a nonzero element ofT . For more details about these objects we refer to [2,
11].

Remark1 : Let R be a prime ring andL a noncentral Lie ideal ofR. If char
(R) 6= 2, by [3, Lemma 1] there exists a nonzero idealI of R such that0 6=
[I,R] ⊆ L. If char (R) = 2 anddimCRC > 4 i.e., char(R) = 2 andR does not
satisfys4, then by [14, Theorem 13] there exists a nonzero idealI of R such that
0 6= [I, R] ⊆ L. Thus if either char(R) 6= 2 or R does not satisfys4, then we may
conclude that there exists a nonzero idealI of R such that[I, I] ⊆ L.

Remark 2 : It is well known that each derivation of a prime ringR can be
uniquely extended to a derivation ofQ, and so any derivation ofR can be defined
on the whole ofQ. We refer to [2, 17] for more details.

2. THE MAIN RESULTS

We begin with lemmas

Lemma2.1 — LetR be a prime ring with extended centroidC anda, p, q ∈ R.
If a 6= 0 such thata(p[x1, x2]2 − [x1, x2](p + q)[x1, x2] + [x1, x2]2q)n = 0 for
all x1, x2 ∈ R, wheren ≥ 1 a fixed integer, then eitherR satisfies a nontrivial
generalized polynomial identity (GPI) orp, q ∈ C.

PROOF : Assume thatR does not satisfy any nontrivial GPI. IfR is com-
mutative, trivially R satisfies a nontrivial GPI which is a contradiction. So,R
must be noncommutative. LetT = Q ∗C C{X1, X2}, the free product ofQ
andC{X1, X2}, the freeC-algebra in noncommuting indeterminatesX1 andX2.
Then, sincea(p[x1, x2]2 − [x1, x2](p + q)[x1, x2] + [x1, x2]2q)n = 0 is a GPI for
R, we see that

a(p[X1, X2]2 − [X1, X2](p + q)[X1, X2] + [X1, X2]2q)n = 0 (1)

in T = Q ∗C C{X1, X2}. If q /∈ C, thenq and1 are linearly independent overC.
Thus, (1) implies

a(p[X1, X2]2 − [X1, X2](p + q)[X1, X2] + [X1, X2]2q)n−1[X1, X2]2q = 0 (2)
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in T and then by the same argument, we obtaina([X1, X2]2q)n = 0 in T implying
q = 0, sincea 6= 0, a contradiction. Therefore, we conclude thatq ∈ C and hence
(1) reduces to

a((p[X1, X2]− [X1, X2]p)[X1, X2])n = 0 (3)

in T . AssumingY = [X1, X2], (3) becomes

a((pY − Y p)Y )n−1(pY − Y p)Y = 0. (4)

Let p /∈ C. Thenp and1 are linearlyC-independent and hence (4) yieldsa((pY −
Y p)Y )n−1Y pY = 0. Thus by the same argument, we havea(Y pY )n = 0 imply-
ing p = 0, a contradiction. Therefore,p ∈ C.

Lemma2.2. — LetR be a noncommutative prime ring with extended centroid
C anda, p, q ∈ R. Suppose thata 6= 0 such thata(p[x1, x2]2 − [x1, x2](p +
q)[x1, x2] + [x1, x2]2q)n = 0 for all x1, x2 ∈ R, wheren ≥ 1 is a fixed integer.
Then one of the following holds

(i) p, q ∈ C, unlessR satisfiess4;

(ii) char (R) = 2 andR satisfiess4;

(iii) char (R) 6= 2, R satisfiess4 andp + q ∈ C.

PROOF : By assumption,R satisfies generalized polynomial identity

g(x1, x2) = a(p[x1, x2]2 − [x1, x2](p + q)[x1, x2] + [x1, x2]2q)n. (5)

By Lemma 2.1,p, q ∈ C which gives the conclusion (i) unlessR satisfies a
nontrivial GPI. Now, assume thatR satisfies a nontrivial GPI. SinceR andQ sat-
isfy same generalized polynomial identity (see [7]),Q satisfiesg(x1, x2). More-
over, if C is infinite, we haveg(x1, x2) = 0 for all x1, x2 ∈ Q ⊗C C, whereC
is the algebraic closure ofC. Since bothQ andQ ⊗C C are prime and centrally
closed [9], we may replaceR by Q or Q ⊗C C according toC finite or infinite.
Thus we may assume thatC = Z(R) andR is C-algebra centrally closed, which
satisfiesg(x1, x2) = 0. By Martindale’s theorem [20],R is then a primitive ring
and hence is isomorphic to a dense ring of linear transformations of a vector space
V overC.

If dimCV = 2, thenR ∼= M2(C), that is,R satisfiess4. In this case using the
fact [x, y]2 ∈ Z(M2(C)) for all x, y ∈ M2(C), we have thatR satisfies

a((p + q)[x1, x2]2 − [x1, x2](p + q)[x1, x2])n = 0 (6)
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that is,

a([p + q, [x1, x2]][x1, x2])n = 0. (7)

If char (R) = 2, we obtain conclusion (ii) and if char(R) 6= 2, by [8, Lemma
2.1], we obtainp + q ∈ Z(R), which is our conclusion (iii).

Suppose next that dimCV ≥ 3.

We show that for anyv ∈ V , v andqv are linearlyC-dependent. Suppose that
v andqv are linearly independent for somev ∈ V . Since dimCV ≥ 3, there exists
u ∈ V such thatv, qv, u are linearlyC-independent set of vectors. By density,
there existx1, x2 ∈ R such that

x1v = v, x1qv = −qv, x1u = 0; x2v = 0, x2qv = u, x2u = v.

Then[x1, x2]v = 0, [x1, x2]qv = u, [x1, x2]2qv = v, and so0 = a(p[x1, x2]2−
[x1, x2](p + q)[x1, x2] + [x1, x2]2q)nv = av.

This implies that ifav 6= 0, by contradiction, we can say thatv andqv are
linearly C-dependent. Now choosev ∈ V such thatv and qv are linearlyC-
independent.

Thenav = 0. SetW = SpanC{v, qv}. Sincea 6= 0, there existsw ∈ V
such thataw 6= 0 and thena(v − w) = −aw 6= 0. By the previous argument
we have thatw, qw are linearlyC-dependent and(v − w), q(v − w) too. Thus
there existα, β ∈ C such thatqw = αw and q(v − w) = β(v − w). Then
qv = β(v − w) + qw = β(v − w) + αw i.e., (α − β)w = qv − βv ∈ W . Now
α = β implies thatqv = βv, a contradiction. Henceα 6= β and sow ∈ W . Again,
if u ∈ V with au = 0 thena(w + u) 6= 0. So,w + u ∈ W forcingu ∈ W . Thus
it is observed thatw ∈ V with aw 6= 0 impliesw ∈ W andu ∈ V with au = 0
impliesu ∈ W . This implies thatV = W i.e., dimCV = 2, a contradiction.

Hence, in any case,v andqv are linearlyC-dependent for allv ∈ V . Thus
for eachv ∈ V , qv = αvv for someαv ∈ C. It is very easy to prove thatαv is
independent of the choice ofv ∈ V . Thus we can writeqv = αv for all v ∈ V and
α ∈ C fixed. Now letr ∈ R, v ∈ V . Sinceqv = αv,

[q, r]v = (qr)v − (rq)v = q(rv)− r(qv) = α(rv)− r(αv) = 0.
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Thus[q, r]v = 0 for all v ∈ V i.e., [q, r]V = 0. Since[q, r] acts faithfully as
a linear transformation on the vector spaceV , [q, r] = 0 for all r ∈ R. Therefore,
q ∈ Z(R).

Therefore, from (5) we have thatR satisfies generalized polynomial identity

f(x1, x2) = a(p[x1, x2]2 − [x1, x2]p[x1, x2])n. (8)

Now if v andpv are linearlyC-independent for somev ∈ V , there existw ∈ V
such thatv, pv, w will be a linearlyC-independent set of vectors, since dimCV ≥
3. Then again by density, there existsx1, x2 ∈ R such that

x1v = 0, x1pv = v, x1w = −v + 2pv; x2v = pv, x2pv = w, x2w = 0.

In this case, we have[x1, x2]v = v, [x1, x2]pv = −v + pv and hence0 =
a(p[x1, x2]2 − [x1, x2]p[x1, x2])nv = av. Sincea 6= 0, by the same argument as
stated above, this leads a contradiction. Hence,p ∈ C.

Lemma2.3 [16, Lemma 2] — LetR be a noncommutative simple algebra,
finite-dimensional over its centerZ. If g(x1, . . . , xt) ∈ R ∗Z Z{xj}, the free
product overZ, is an identity forR that is homogeneous in{x1, . . . , xt} of degree
d, then for some fieldF andn > 1, R ⊆ Mn(F ) andg(x1, . . . , xt) is an identity
for Mn(F ).

Theorem2.4 — Let R be a prime ring,d and δ two derivations ofR, L a
noncentral Lie ideal ofR. Suppose that there exists0 6= a ∈ R such thata(d(u)u−
uδ(u))n = 0 for all u ∈ L, wheren ≥ 1 is a fixed integer. Then one of the
following holds:

(i) d = δ = 0 unlessR satisfiess4;

(ii) char (R) = 2 andR satisfiess4;

(iii) char (R) 6= 2 andR satisfiess4, d andδ are two inner derivations induced
byp, q respectively such thatp + q ∈ C.

PROOF : If char (R) = 2 andR satisfiess4, we obtain our conclusion (ii). So,
let either char(R) 6= 2 or R does not satisfys4. SinceL is a noncentral Lie ideal
of R, by Remark 1, there exists a nonzero idealI of R such that[I, I] ⊆ L. Hence,
by our assumption we have,

a(d([x1, x2])[x1, x2]− [x1, x2]δ([x1, x2]))n = 0 (9)
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for all x1, x2 ∈ I. Now we divide the proof in the two cases:

Case I: Let d andδ are bothQ-inner derivations ofR i.e.,d(x) = [p, x] for all
x ∈ R andδ(x) = [q, x] for all x ∈ R, wherep, q ∈ Q. Then from (9), we obtain
that

a(p[x1, x2]2 − [x1, x2](p + q)[x1, x2] + [x1, x2]2q)n = 0 (10)

for all x1, x2 ∈ I. By Chuang [7], this GPI is also satisfied byQ and hence by
R. By Lemma 2.2, ifR does not satisfys4, p, q ∈ C, that is,d = δ = 0. If char
(R) 6= 2 andR satisfiess4, then by Lemma 2.2,p + q ∈ C.

Case II: Next assume thatd andδ are not bothQ-inner derivations ofR, but
they areC-dependent modulo inner derivations ofR. Supposed = λδ + adp, that
is, d(x) = λδ(x) + [p, x] for all x ∈ R, whereλ ∈ C, p ∈ Q. Thenδ cannot be an
inner derivation ofR. From (9), we obtain thatI satisfies

a

(
λδ([x1, x2])[x1, x2] + [p, [x1, x2]][x1, x2]− [x1, x2]δ([x1, x2])

)n

= 0.

Sinceδ is not inner derivation ofR, by Kharchenko’s theorem [13], we have that

a

(
λ([u, x2] + [x1, v])[x1, x2] + [p, [x1, x2]][x1, x2]− [x1, x2]([u, x2] + [x1, v])

)n

= 0 (11)

for all x1, x2, u, v ∈ I. By Chuang [7], this GPI is also satisfied byQ and hence
by R. In particular foru = v = 0, we have thatR satisfies

a

(
[p, [x1, x2]][x1, x2])

)n

= 0.

By Lemma 2.2, we get thatp ∈ C. Hence, we get from (11) thatR satisfies

a

(
λ([u, x2] + [x1, v])[x1, x2]− [x1, x2]([u, x2] + [x1, v])

)n

= 0. (12)

Since by our assumptionL is noncentral,R must be noncommutative. There-
fore, we can chooseq ∈ R such thatq /∈ C. Replacingu with [q, x1] andv with
[q, x2], we get from (12) thatR satisfies

a

(
λ[q, [x1, x2]][x1, x2]− [x1, x2][q, [x1, x2]]

)n

= 0 (13)
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which gives

a

(
λq[x1, x2]2 − [x1, x2](λq + q)[x1, x2] + [x1, x2]2q

)n

= 0. (14)

If R does not satisfys4, then by Lemma 2.2,q ∈ C, a contradiction. Therefore,
R satisfiess4, and then char(R) 6= 2. In this case, by Lemma 2.2,λq + q =
(λ + 1)q ∈ C. If (λ + 1) 6= 0, then(λ + 1) is invertible inC. Then(λ + 1)q ∈ C
impliesq ∈ C, which is a contradiction. Thusλ + 1 = 0, that is,λ = −1. Then
from (12), we have,R satisfies

a

(
− ([u, x2] + [x1, v])[x1, x2]− [x1, x2]([u, x2] + [x1, v])

)n

= 0. (15)

Replacingu = x1 andv = x2 and using char(R) 6= 2, we have thatR satisfies

a[x1, x2]2n = 0. (16)

For any two fixedx, y ∈ R, setw = [x, y]2n. Thenaw = 0. From (16),
we can writea[u,wva]2n = 0 for all u, v ∈ R. Sinceaw = 0, it reduces to
a(uwva)2n = 0. This can be written as(wvau)2n+1 = 0 for all u, v ∈ R. By
Levitzki’s lemma [12, Lemma 1.1],wvau = 0 for all u, v ∈ R. SinceR is prime,
eithera = 0 or w = 0. Sincea 6= 0, thenw = [x, y]2n = 0 for all x, y ∈ R. This
is a polynomial identity forR and soR is finite dimensional simple algebra. Since
L is noncentral,R must be noncommutative. Then by Lemma 2.3,R ⊆ Mk(F )
andMk(F ) satisfies[x, y]2n = 0 for k > 1. This leads contradiction forx = e12,
y = e21.

The situation whenδ = λd + adq is similar.

Next assume thatd andδ areC-independent modulo inner derivations ofR.
Since neitherd nor δ is Q-inner, by Kharchenko’s theorem [13], we have from (9)
that

a(([u1, x2] + [x1, u2])[x1, x2]− [x1, x2]([v1, x2] + [x1, v2]))n = 0 (17)

for all x1, x2, u1, u2 ∈ I. SinceI, R andQ satisfy same generalized polynomial
identities (see [7]), this GPI is also satisfied byR. Now assumingv1 = v2 = 0 and
replacingu1 with [q, x1] andu2 with [q, x2] for someq /∈ C in (17), we obtain that
R satisfies

a([q, [x1, x2]][x1, x2])n = 0. (18)
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By Lemma 2.2, this givesq ∈ C, unless char(R) = 2 andR satisfiess4, which is
a contradiction. Hence the theorem is proved.

Now we begin to prove our next theorem.

From the proof of theorem 2.4, following lemma is straightforward.

Lemma2.5. — LetR be a prime ring,d andδ two derivations ofR, I a nonzero
ideal of R. Suppose that there exists0 6= a ∈ R such thata(d([x, y])[x, y] −
[x, y]δ([x, y])) = 0 for all x, y ∈ I. Thend = δ = 0 unlessR satisfiess4.

Lemma2.6 — Let R = Mk(F ) be the ring of allk × k matrices over a
field F andk ≥ 3. Let a be an invertible element inR. If for somep, q ∈ R,
([p, [x, y]][x, y]− [x, y][q, [x, y]]) ∈ F.a−1 for all x, y ∈ R, thenp, q ∈ F · Ik.

PROOF : Let p = (pij)k×k andq = (qij)k×k. By assumption, for everyx, y ∈
R, ([p, [x, y]][x, y]− [x, y][q, [x, y]]) is zero or invertible. We choosex = eii, y =
eij for i 6= j. Then[x, y] = eij and so([p, [x, y]][x, y]− [x, y][q, [x, y]]) = −(p +
q)jieij which is not invertible. Therefore,(p + q)jieij = 0 implying (p + q)ji = 0

for any i 6= j. This shows thatp + q is diagonal. Letp + q =
k∑

i=1
αiieii. For any

F -automorphismθ of R, (p + q)θ enjoys the same property asp + q does, namely,
([pθ, [x, y]][x, y]− [x, y][qθ, [x, y]]) is zero or invertible for everyx, y ∈ R. Hence
(p + q)θ must be diagonal. For eachj 6= 1, we have(1 + e1j)(p + q)(1− e1j) =
k∑

i=1
αiieii + (αjj − α11)e1j diagonal. Therefore,αjj = α11 and sop + q ∈ F.Ik.

Thus our assumption reduces to, for everyx, y ∈ R, ([p, [x, y]][x, y] + [x, y]
[p, [x, y]]) is zero or invertible. Now sincek ≥ 3, we may choosex = eij , y =
ejs−esi for i, j, s distinct integers. Then we have([p, [x, y]][x, y]+[x, y][p, [x, y]]) =
peij − eijp is zero or invertible. Since rank ofpeij − eijp is≤ 2, it can not be in-
vertible and sopeij − eijp = [p, eij ] = 0. Since{eij |i 6= j} generatesR as an
F -algebra,[p, R] = 0, that isp ∈ F · Ik.

Example: Let R = M2(D) be the complete2×2 matrix ring overD, whereD
is any commutative domain of characteristic2, andd, δ be two nonzero derivations
of R. Choose

L =
{(

a b
b a

)
; a, b ∈ D

}

a noncentral Lie ideal ofR. Then for0 6= a ∈ Z(R) and δ = −d, we have
a(d(u)u− uδ(u)) ∈ Z(R) for all u ∈ L.
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Theorem2.7— Let R be a prime ring with centerZ(R), d andδ two deriva-
tions ofR andL a noncentral Lie ideal ofR. Suppose that there exists0 6= a ∈ R
such thata(d(u)u − uδ(u)) ∈ Z(R) for all u ∈ L. Thend = δ = 0 unlessR
satisfiess4.

PROOF : Suppose thatR does not satisfys4. Then by remark 1, we have
0 6= [I, I] ⊆ L, whereI is a nonzero ideal ofR. By our assumption, we have

a(d([x1, x2])[x1, x2]− [x1, x2]δ([x1, x2])) ∈ Z(R) (19)

for all x1, x2 ∈ I. If for all x1, x2 ∈ I, a(d([x1, x2])[x1, x2]−[x1, x2]δ([x1, x2])) =
0, by Lemma 2.5, we concluded = δ = 0, as desired. So, let there existr1, r2 ∈ I
such thata(d([r1, r2])[r1, r2]−[r1, r2]δ([r1, r2])) 6= 0. Thena(d([x1, x2])[x1, x2]−
[x1, x2]δ([x1, x2])) is a central differential identity forI. It follows from [6, The-
orem 1] thatR is a prime PI-ring and soRC(= Q) is a finite-dimensional central
simpleC-algebra by Posner’s theorem for prime PI-ring. Now divide the proof in
the following two cases:

Case I: Let d andδ are bothQ-inner derivations ofR induced byp, q ∈ Q
respectively. Then

[a([p, [x1, x2]][x1, x2]− [x1, x2][q, [x1, x2]]), x3] = 0 (20)

for all x1, x2 ∈ I and so for allx1, x2 ∈ Q, sinceI andQ satisfy same GPI [7].
Sincea([p, [r1, r2]][r1, r2]− [r1, r2][q, [r1, r2]]) 6= 0 for somer1, r2 ∈ I, (20) is a
nontrivial GPI forQ. SinceQ is a finite-dimensional central simpleC-algebra, it
follows from Lemma 2.3 that there exists a suitable fieldF such thatQ ⊆ Mk(F ),
the ring of allk× k matrices overF , and moreoverMk(F ) satisfies (20). SinceR
does not satisfys4, k ≥ 3. Therefore, we have

a([p, [x1, x2]][x1, x2]− [x1, x2][q, [x1, x2]]) ∈ Z(Mk(F ))

for all x1, x2 ∈ Mk(F ). If for all r1, r2 ∈ Mk(F ), a([p, [r1, r2]][r1, r2] − [r1, r2]
[q, [r1, r2]]) = 0, then by Lemma 2.2,p, q ∈ Z(Mk(F )), that is,d = δ = 0,
as desired. So, let there existr1, r2 ∈ Mk(F ) such thata([p, [r1, r2]][r1, r2] −
[r1, r2][q, [r1, r2]]) 6= 0. Thena is invertible and so([p, [r1, r2]][r1, r2] − [r1, r2]
[q, [r1, r2]]) ∈ F.a−1 for all r1, r2 ∈ Mk(F ). By Lemma 2.6,p, q ∈ Z(Mk(F ))
implying d = δ = 0.

Case II: Let d andδ are not bothQ-inner derivations ofR.
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Assume thatd andδ areC-dependent modulo inner derivations ofR, sayd =
λδ + adp, whereλ ∈ C, p ∈ Q andadp(x) = [p, x] for all x ∈ R. Thenδ can not
beQ-inner derivation ofR. From (19), we obtain that

a(λδ([x1, x2])[x1, x2] + [p, [x1, x2]][x1, x2]− [x1, x2]δ([x1, x2])) ∈ Z(R) (21)

for all x1, x2 ∈ I. Sinceδ is notQ-inner derivation ofR, by Kharchenko’s theorem
[13],

a(λ([u, x2] + [x1, v])[x1, x2] + [p, [x1, x2]][x1, x2]
−[x1, x2]([u, x2] + [x1, v])) ∈ Z(R) (22)

for all x1, x2, u, v ∈ I. SinceL is noncentral,R must be noncommutative. There-
fore, we may chooseb ∈ R such thatb /∈ C. Then replacingu with [b, x1] andv
with [b, x2] in (22), we obtain that for allx1, x2, x3 ∈ I

a(λ[b, [x1, x2]][x1, x2] + [p, [x1, x2]][x1, x2]− [x1, x2][b, [x1, x2]]) ∈ Z(R) (23)

which gives

[a([λb + p, [x1, x2]][x1, x2]− [x1, x2][b, [x1, x2]]), x3] = 0. (24)

This is similar to (20). Then by the same argument as above,b ∈ C, a contradic-
tion.

The situation whenδ = λd + adq is similar.

Next assume thatd andδ areC-independent modulo inner derivations ofR.
Since neitherd nor δ is inner, by Kharchenko’s theorem [13], we have from (19)
thatI satisfies

a(([u1, x2] + [x1, u2])[x1, x2]− [x1, x2]([v1, x2] + [x1, v2])) ∈ Z(R). (25)

Then assumingv1 = v2 = 0 and replacingu1 with [b, x1] andu2 with [b, x2]
for someb /∈ C in (25), we obtain that for allx1, x2, x3 ∈ I

[a[b, [x1, x2]][x1, x2], x3] = 0. (26)

Then by the same argument as given in case-1,b ∈ C, a contradiction.
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