
Indian J. Pure Appl. Math., 41(5): 683-700, October 2010
c© Indian National Science Academy

AN EFFICIENT LAGRANGIAN SMOOTHING HEURISTIC FOR
MAX-CUT1

Yong Xia∗ and Zi Xu∗∗

∗LMIB of the Ministry of Education; School of Mathematics and System
Sciences, Beihang University, Beijing, 100083,

Peoples’ Republic of China
∗∗Department of Mathematics, Shanghai University, Shanghai, 200444

Peoples’ Republic of China
e-mail : xuzi@shu.edu.cn

(Received 19 September 2008; after final revision 25 August 2010;
accepted 30 August 2010)

Max-Cut is a famous NP-hard problem in combinatorial optimization.
In this article, we propose a Lagrangian smoothing algorithm for Max-
Cut, where the continuation subproblems are solved by the truncated
Frank-Wolfe algorithm. We establish practical stopping criteria and
prove that our algorithm finitely terminates at a KKT point, the dis-
tance between which and the neighbour optimal solution is also esti-
mated. Additionally, we obtain a new sufficient optimality condition for
Max-Cut. Numerical results indicate that our approach outperforms
the existing smoothing algorithm in less time.

Key words : Max-Cut; Lagrangian smoothing; Frank-Wolfe algo-
rithm; heuristic.

1This work was partially supported by the fundamental research funds for the central

universities under grant YWF-10-02-021 and by National Natural Science Foundation of

China under grant 11001006 and partially supported by Shanghai Leading Academic Dis-

cipline Project, Project Number: S30104 and the Excellent Young Teachers Program of

Shanghai Municipality (B.37-0101-08-017).

684 YONG XIA AND ZI XU

1. Introduction

Given an undirected graph G = (V, E), V is the set of n nodes and E is the
set of all the edges eij with nonnegative weights ωij . The Max-Cut problem
consists of finding a subset of the nodes S ⊂ V that maximizes the following
cut function

cut(S) =
∑

ij∈δ(S)

ωij , (1.1)

where the incidence function δ(S) = {ij ∈ E such that i ∈ S and j 6∈ S}.
Let xi ∈ {−1, 1} represent whether node i ∈ S, then the Max-Cut problem
can be equivalently expressed in the mathematical formulation

max
∑

i<j

ωij
1− xixj

2
(1.2)

s.t. x2
i = 1, i = 1, · · · , n, (1.3)

It is also equivalent to the following quadratic nonconvex problem,

min xT Ax (1.4)

s.t. x2
i = 1, i = 1, · · · , n, (1.5)

where A is a matrix with Aij = 1
4ωij for i 6= j and Aii = 0.

Since the Max-Cut problem is NP-hard, many heuristics or approxima-
tion algorithms have been proposed. Typical approaches to solving this prob-
lem are to find a solution at an approximation factor ρ. Among which the
most famous is the algorithm proposed by Goemans and Williamson [8] with
ρ = 0.87856. The algorithm rewrites the Max-Cut problem as a semidefinite
programming problem and relaxes it by removing the rank-1 constraint, then
an approximate solution of the max-cut problem is generated from the opti-
mal solution of the relaxed semidefinite programming problem (SDP) using
some rounding techniques. Bertsimas and Ye [3] also got a 0.87856 solution
by using a different rounding approach. Unfortunately, solving large scale
semidefinite problems requires quite a long time. The rank-two relaxation
(Burer, Menteiro and Zhang [5]) of Max-Cut problem is the modification of
Goemans and Williamson’s work. In their heuristic, they relax the binary
vector into a vector of angles, and work with an angular representation of
the cut. Besides, Festa et al. [6] proposed heuristics based on greedy ran-
domized adaptive search and variable neighbourhood search (GRASP-VNS)
that work well for the Max-Cut problem.

AN EFFICIENT LAGRANGIAN SMOOTHING HEURISTIC 685

Another promising approach to solve the Max-Cut problem is the contin-
uation method. Recently, Alperin and Nowak [1] proposed an efficient La-
grangian smoothing truncated projected gradient (LS-TPG) method. They
formulated the Max-Cut problem to be a parametric optimization prob-
lem defined as a convex combination between a Lagrangian relaxation and
the original problem, and used the truncated projected gradient method to
solve the subproblems. Their numerical experiments showed that the LS-
TPG algorithm outperforms the 0.87856 SDP (Goemans and Williamson [8])
method and is competitive with GRASP-VNS method Festa et al. [6] for
many typical test problems, but it performs worse than rank 2 (Burer, Mon-
teiro and Zhang [5]) method. A more detailed presentation of the LS-TPG
algorithm will be given in Section 2.

In this article, a more efficient Lagrangian smoothing method is proposed
for Max-Cut. The continuation subproblems are solved by the truncated
Frank-Wolfe algorithm. We establish practical stopping criteria and prove
that our algorithm finitely terminates at a KKT point. We also estimate
the distance between the objective function of our solution and that of the
neighbor optimal solution. It implies that the smaller the outer iteration, the
higher the quality of the returned solution. Furthermore, we give sufficient
upper bounds on the outer iteration to make the obtained solution at differ-
ent optimization level. Additionally, we obtain a new sufficient optimality
condition for Max-Cut. A simple example is given to understand that our
algorithm can be much faster than the LS-TPG algorithm. Finally we do
numerical experiments. The computational results show that our algorithm
always produces better-quality solutions than the LS-TPG algorithm in less
time.

The article is organized as follows. The next section reviews the LS-TPG
algorithm presented in Alperin and Nowak [1]. In section 3, our algorithm is
proposed and analyzed. We establish practical stopping criteria and prove
that our algorithm finitely terminates at a KKT point, the distance between
which and the neighbor optimal solution is also estimated. Additionally, we
obtain a new sufficient optimality condition for Max-Cut. Numerical results
are presented in section 4. The last section makes some concluding remarks.

Notation : Diag(a) is a diagonal matrix with diagonal components ai.
e denotes the vector with all components equal to one and I denotes the
identity matrix. A º 0 (A ≺ 0) means that A is a semidefinite positive
(definite negative) matrix. λmin(A) and λmax(A) denote the minimal and

686 YONG XIA AND ZI XU

maximal eigenvalues of A, respectively. For n-dimensional vectors a and b,
a ≤ b denotes ai ≤ bi, i = 1, · · · , n. The 2-norm of a vector a is defined
by ‖a‖2 =

√
aT a and the infinity norm of an n × n matrix A is ‖A‖∞ =

max1≤i≤n
∑n

i=1 |Aij |. sign(a) denotes the sign vector of a whose i-th element

is sign(ai) =

{
1, if ai ≥ 0
−1, otherwise.

2. Lagrangian Smoothing Heuristic

Smoothing methods deform the original objective function into a function
whose smoothness is controlled by a parameter. The original problem is then
solved by a sequence of problems in the same spirit as homotopy methods.
The success of this approach depends on finding a good smoothing function.

In [1], the Lagrangian function

L(x; µ) = −nµ + xT (A + µI)x (2.1)

was introduced as a global smoothing function for xT Ax, where µ is a La-
grangian multiplier such that A + µI º 0. Combining it with the exact
penalty function [4]

P (x; t) = xT Ax− (1− t)−1xT x, (2.2)

they obtained a sequence of problems

H(x; µ; t) = tP (x; t) + (1− t)L(x; µ) (2.3)

= −(1− t)nµ + xT (A− t(1− t)−1I + (1− t)µI)x. (2.4)

Then they solved the following parametric optimization problem, denoted
by Q(t; µ):

min
x∈[−e,e]

H(x; µ; t), (2.5)

for an increased sequence tk ∈ [0, 1).

Lemma 2.1 (Alperin and Nowak [1]) — There exists t∗ ∈ (0, 1) such that
the optimal function values of (1.4)-(1.5) and (2.5) are equal for all t ∈ [t∗, 1).

In that paper, they recommend a uniform sequence tk = k/(M + 1)
with M being a positive integer and a geometric sequence tk = 1− ρk with

AN EFFICIENT LAGRANGIAN SMOOTHING HEURISTIC 687

ρ ∈ (0, 1). According to our computational experience, the uniform sequence
performs better. In this article, we only consider this case.

Solving the parametric optimization problem (2.5) is as difficult as (1.4)-
(1.5) if only t is large enough. A truncated projected gradient algorithm
was employed to approximate (2.5) in Alperin and Nowak [1]. The projector
operator Π[−e,e](y) they used is boxlike:

Π[−e,e](y)i =





−1, if yi < −1,

yi, if − 1 ≤ yi ≤ 1,

1, if yi > 1.

The detailed algorithm is described as follows:

Algorithm 2.1 (LS-TPG).

Step 1: Initialize k := 0, t0 := 0, x0 ∈ [−e, e]. Set m, M and µ := −λmin(A).

Step 2: For j := 0 to m− 1 do

xj+1 := Π[−e,e](xj − βj
∇H(xj ; µ, tk)
‖∇H(xj ; µ, tk)‖), (2.6)

where βj is an appropriate stepsize.

Step 3: If some given stopping criteria are fulfilled or k = M , then stop and

return x∗ = sign(xm); otherwise update k := k + 1, tk :=
k

M + 1
,

x0 := xm and goto Step 2.

The authors Alperin and Nowak [1] gave clues to propose stopping crite-
ria in Step 3 of Algorithm 2.1 based on the following proposition. Unfortu-
nately, it is difficult to find satisfied stopping criteria because the practical
m is usually set to be small, for example, m = 10.

Proposition 2.1 — (Alperin and Nowak [1]) If m is large enough, Algo-
rithm 2.1 can be stopped if tk ≥ t∗ without changing the final result, where
t∗ is defined in Lemma 2.1.

688 YONG XIA AND ZI XU

3. Our Approach

3.1 A New Algorithm : In Xia [10], we proposed an efficient Lagrangian
smoothing algorithm for the general nonlinear binary optimization problems
with linear equality constraints. We apply it to solve Max-Cut (1.4)-(1.5).
Different from LS-TPG, we use the canonical Frank-Wolfe algorithm [7] to
solve the parametric optimization subproblem (2.5) for given t. It approx-
imates the objective function with its first order Taylor expansion at any
given iteration point xk, resulting in the linear programming subproblem

min ∇xH(xk;µ; t)T x

s.t. −e ≤ x ≤ e,
(3.1)

where the constant terms have been dropped from the objective function.
We notice that the linear programming problem (3.1) can be solved in O(n)
time. Actually, its optimal solution x∗k is explicit:

(x∗k)i =

{
−1, if (∇xH(xk;µ; t))i ≥ 0,

1, otherwise.
(i = 1, · · · , n) (3.2)

This optimal solution x∗k is used to construct the descent search direction
dk = x∗k − xk. A line search

α∗ = arg min
α∈[0,1]

H(xk + αdk;µ; t) (3.3)

furnishes the next iterate

xk+1 = xk + α∗dk. (3.4)

and the process is repeated.

It is easy to verify that the point sequence {xk} generated by the above
Frank-Wolfe algorithm converges to x∗, a KKT point of (2.5). But the
convergence is slow and hence it is quite time-consuming to obtain x∗. Thus
we approximate x∗ using a truncated Frank-Wolfe algorithm, which only
generates the first m iterative points.

The outer process is repeated for an increased sequence {tk}. To intro-
duce a practical stopping criteria, we need some lemmas.

Lemma 3.1 — x∗ ∈ {−1, 1}n is a KKT point of Q(t;µ) (2.5) if and only
if

Diag(x∗)∇xH(x∗; µ; t) ≤ 0. (3.5)

AN EFFICIENT LAGRANGIAN SMOOTHING HEURISTIC 689

Proof : The KKT conditions for Q(t; µ) (2.5) are




(∇xH(x∗; µ; t))i + α∗i − β∗i = 0, i = 1, · · · , n,

α∗i ≥ 0, i = 1, · · · , n,

β∗i ≥ 0, i = 1, · · · , n,

−1 ≤ x∗i ≤ 1, i = 1, · · · , n,

α∗i (1− x∗i) = 0, i = 1, · · · , n,

β∗i (1 + x∗i) = 0, i = 1, · · · , n.

(3.6)

Since x∗ ∈ {−1, 1}n, the above KKT conditions are equivalent to
{

α∗i = 1
2(∇xH(x∗; µ; t))i(−1− x∗i) ≥ 0, i = 1, · · · , n,

β∗i = 1
2(∇xH(x∗; µ; t))i(1− x∗i) ≥ 0, i = 1, · · · , n.

(3.7)

It is easy to check that the conditions x∗ ∈ {−1, 1}n and (3.7) im-
ply x∗i (∇xH(x∗; µ; t))i ≤ 0 for i = 1, · · · , n. On the other hand, if (3.5)
holds, α∗ and β∗ defined in (3.7) satisfy α ≥ 0 and β ≥ 0. The proof is
completed. ¤

Corollary 3.1 — Let x∗ ∈ {−1, 1}n be any local minimizer of Q(t; µ)
(2.5), then

Diag(x∗)∇xH(x∗; µ; t) ≤ 0. (3.8)

Proof : Since the linear function constraint qualification holds for
Q(t;µ), any local minimizer x∗ is also a KKT point. ¤

Lemma 3.2 — If x ∈ {−1, 1}n is a KKT point of Q(t;µ) (2.5), then it
remains a KKT point of Q(t′; µ) for all t′ > t.

Proof : x ∈ {−1, 1}n is a KKT point of Q(t; µ), which implies that
xi(∇xH(x;µ; t))i ≤ 0 for all i = 1, · · · , n due to Lemma 3.1. Therefore

xi(∇xH(x; µ; t′))i = xi(∇xH(x; µ; t))i − 2[(
t′

1− t′
− (1− t′)µ)−

(
t

1− t
− (1− t)µ)]x2

i

= xi(∇xH(x; µ; t))i − 2[(
t′

1− t′
− (1− t′)µ)−

(
t

1− t
− (1− t)µ)]

≤ xi(∇xH(x; µ; t))i ≤ 0.

x is also a KKT point of Q(t′; µ) according to Lemma 3.1. ¤

690 YONG XIA AND ZI XU

Notice that if a KKT point is obtained in {−1, 1}n, it is not needed to
update t due to Lemma 3.2. We take the condition x ∈ {−1, 1}n and (3.5)
as stopping criteria.

Thus, our algorithm can be formally proposed as follows, denoted by
LS-TFW.

Algorithm [LS-TFW]

Step 1: Initialize k := 0, t0 := 0, x0 ∈ [−e, e]. Set m, M and µ := −λmin(A).

Step 2: For j := 0 to m− 1, compute x∗j and α∗ according to (3.2) and (3.3)
respectively; update

xj+1 := xj + α∗(x∗j − xj); (3.9)

if xj+1 ∈ {−1, 1}n and Diag(xj+1)∇xH(xj+1;µ; t) ≤ 0, then stop
and return x∗ = xj+1, otherwise goto Step 3.

Step 3: If k = M , then stop and return x∗ = sign(xm); otherwise update

k := k + 1, tk :=
k

M + 1
, x0 := xm; goto Step 2.

3.2 Convergence Results : Below we study the properties of Algorithm
LS-TFW.

Lemma 3.3 — If µ > 0 and

2µ + ‖A‖∞ + 1−
√

(‖A‖∞ + 1)2 + 4µ

2µ
< t < 1, (3.10)

any x ∈ {−1, 1}n is a KKT point of Q(t; µ) (2.5).

Proof : The given condition (3.10) implies

t

1− t
− (1− t)µ > ‖A‖∞. (3.11)

For each i, if xi = 1,

(∇xH(x; µ; t))i = 2(Ax)i − 2(
t

1− t
− (1− t)µ) < 2(Ax)i − 2‖A‖∞

≤ 2
n∑

j=1

|Aij | − 2‖A‖∞ ≤ 0,

AN EFFICIENT LAGRANGIAN SMOOTHING HEURISTIC 691

otherwise xi = −1,

(∇xH(x; µ; t))i = 2(Ax)i + 2(
t

1− t
− (1− t)µ) > 2(Ax)i + 2‖A‖∞

≥ −2
n∑

j=1

|Aij |+ 2‖A‖∞ ≥ 0.

In either case, it holds that xi(∇xH(x; µ; t))i ≤ 0. Due to Lemma 3.1,
x ∈ {−1, 1}n is a KKT point. ¤

Lemma 3.4 — To solve Q(t; µ) (2.5) with µ > 0 and

2µ + λmax(A) + 1−
√

(λmax(A) + 1)2 + 4µ

2µ
< t < 1, (3.12)

for any given initial point x0 ∈ [−e, e], suppose the next iterative point
generated by Frank-Wolfe algorithm is denoted by x1, then x1 ∈ {−1, 1}n.

Proof : The condition (3.12) implies

A− (
t

1− t
− (1− t)µ)I ≺ 0, (3.13)

hence H(x;µ; t) is concave for such given µ and t.

Applying Frank-Wolfe algorithm to solve Q(t; µ), we first solve the linear
programming subproblem (see also (3.1))

min ∇xH(x0; µ; t)T (x− x0)
s.t. −e ≤ x ≤ e,

(3.14)

and get an optimal solution x∗0 ∈ {−1, 1}n (see (3.2)). Since x0 is feasible in
(3.14), we have

∇xH(x0; µ; t)T (x∗0 − x0) ≤ 0. (3.15)

Then d0 = x∗0 − x0 is a descent direction at x0. We do the line search

α∗ = arg min
α∈[0,1]

H(x0 + αd0; µ; t) (3.16)

and obtain

x1 = x0 + α∗d0 = x0 + α∗(x∗0 − x0). (3.17)

692 YONG XIA AND ZI XU

To complete the proof, it is sufficient to show α∗ = 1 is the strict global
optimal solution of (3.16) in the nontrivial case of x0 6= x∗0.

Since H(x + αd0; µ; t) is a quadratic function of x,

H(x∗0; µ; t) = H(x0;µ; t) +∇xH(x0; µ; t)T (x∗0 − x0)

+
1
2
(x∗0 − x0)T (A− (

t

1− t
− (1− t)µ)I)(x∗0 − x0)

< H(x0; µ; t),

where the final inequality follows from (3.15) and (3.13).

Therefore, for all 0 ≤ α < 1,

H(x0 + αd0;µ; t) = H((1− α)x0 + αx∗0; µ; t)

≥ (1− α)H(x0; µ; t) + αH(x∗0; µ; t)

> H(x∗0; µ; t),

where the first inequality follows from the concavity of H(x; µ; t). ¤

Lemma 3.5 — Suppose µ > 0 and A is a symmetric matrix with zero
diagonal elements, then

2µ + λmax(A) + 1−
√

(λmax(A) + 1)2 + 4µ

2µ

≤ 2µ + ‖A‖∞ + 1−
√

(‖A‖∞ + 1)2 + 4µ

2µ
< 1

Proof : Let Ax = λmax(A)x (x 6= 0), we have

0 ≤ λmax(A) =
‖λmax(A)x‖∞

‖x‖∞ =
‖Ax‖∞
‖x‖∞ ≤ ‖A‖∞.

The proof is completed since

f(x) =
2µ + x + 1−

√
(x + 1)2 + 4µ

2µ

is a monotone increasing function for x ≥ 0 and limx→∞ f(x) = 1. ¤

Theorem 3.1 — Suppose A 6= 0 is a symmetric matrix with zero diag-
onal elements and the finite integer parameters fulfill m ≥ 1 and

M >
2µ√

(‖A‖∞ + 1)2 + 4µ− ‖A‖∞ − 1
− 1, (3.18)

AN EFFICIENT LAGRANGIAN SMOOTHING HEURISTIC 693

Then Algorithm LS-TFW finitely terminates at a KKT point of Q(t; µ) (2.5).

Proof : A 6= 0 is a symmetric matrix with zero diagonal elements
implies µ = −λmin(A) > 0. (3.18) implies

M

M + 1
>

2µ + ‖A‖∞ + 1−
√

(‖A‖∞ + 1)2 + 4µ

2µ
.

Let t = M
M+1 due to Lemma 3.5 and Lemma 3.4, after one Frank-Wolfe

iteration, we obtain an x∗ ∈ {−1, 1}n, which is a KKT point of Q(t; µ)
according to Lemma 3.3. Due to Lemma 3.1, it satisfies the stopping criteria
(3.15), i.e., Algorithm LS-TFW terminates at Step 2. ¤

Remark 3.1 : The computational complexity of Algorithm 3.1 is at most
O(Mmn2).

3.3. A New Sufficient Optimality Condition : To further study the qual-
ity of x∗ returned by Algorithm LS-TFW, we consider sufficient optimal
conditions for Max-Cut (1.4)-(1.5).

Lemma 3.6 (Beck and Teboulle [2]) — If x ∈ {−1, 1}n satisfy

λmin(A)e ≥ Diag(x)Ax, (3.19)

then x is a globally optimal solution for Max-Cut (1.4)-(1.5).

Lemma 3.7 (Xia [11]) — Let x ∈ {−1, 1}n and γp be a suitable lower
bound of the following problem

min
n∑

i=1

n∑

j=1

Aijyiyj , (3.20)

s.t.
n∑

i=1

y2
i = p, (3.21)

yi ∈ {−1, 0, 1}, i = 1, · · · , n. (3.22)

If
(

min
p∈{1,··· ,n}

γp

p

)
e ≥ Diag(x)Ax, (3.23)

then x is a globally optimal solution for Max-Cut (1.4)-(1.5).

694 YONG XIA AND ZI XU

Lemma 3.7 implies Lemma 3.6 if we choose

γp = min yT Ay (3.24)

s.t. yT y = p, (3.25)

whose optimal solution is the eigenvector corresponding to the minimal
eigenvalue of A, i.e.,

γp = p · λmin(A). (3.26)

More tight choices of γp are discussed in [11]. Here we show that Lemma
3.7 can be further strengthened.

Definition 3.1 (Xia [11]) — Define the p-distance (1 ≤ p ≤ n) ring solu-
tion x′ ∈ {−1, 1}n as

(x′)T Ax′ ≤ min xT Ax

s.t. ‖x− x′‖0 = p,

x ∈ {−1, 1}n,

where ‖x− x′‖0 is the Hamming distance, i.e., the number of different com-
ponents between x and x′.

Theorem 3.2 — Let x ∈ {−1, 1}n and γp be a suitable lower bound of
Problem (3.20)-(3.22). If

(
min

p∈{1,··· ,[n
2]}

γp

p

)
e ≥ Diag(x)Ax, (3.27)

where
[

n
2

]
denotes the largest integer smaller than or equal to n

2 , then x is a
globally optimal solution for Max-Cut (1.4)-(1.5).

Proof : As shown in [11], first it is not difficult to verify that x ∈
{−1, 1}n is a p-distance ring solution of Max-Cut (1.4)-(1.5) only if

γp

p
e ≥ Diag(x)Ax. (3.28)

Then Lemma 3.7 follows from the fact that x is globally optimal if and
only if it is p-distance ring solution for all p = 1, · · · , n.

Let x′ ∈ {−1, 1}n satisfy
γp

p
e ≥ Diag(x′)Ax′ = Diag

(−x′
)
A

(−x′
)
. (3.29)

AN EFFICIENT LAGRANGIAN SMOOTHING HEURISTIC 695

Therefore, (−x′) is a p-distance ring solution of Max-Cut (1.4)-(1.5), i.e.,

(−x′)T A (−x′) ≤ min xT Ax

s.t. ‖x− (−x′) ‖0 = p

x ∈ {−1, 1}n

,

which is further equivalent to the following inequality since ‖x−(−x′) ‖0 = p

if and only if ‖x− x′‖0 = n− p for any x, x′ ∈ {−1, 1}n:

x′T Ax′ ≤ min xT Ax

s.t. ‖x− x′‖0 = n− p

x ∈ {−1, 1}n

.

Now we can see that x′ is an (n − p)-distance ring solution of Max-Cut
(1.4)-(1.5). In sum, the inequality (3.28) is a sufficient condition under which
x is not only a p-distance but also an (n− p)-distance ring solution. ¤

3.4 Error Estimation : In this subsection, we first establish some condi-
tions under which the returned solution is globally or locally optimal. We
then estimate the distances between the returned solution and some local
minimizers.

Theorem 3.3 — Suppose Algorithm LS-TFW stops in k outer iterations
and

k ≤ min
p∈{1,··· ,[n

2]}


1− 2

1 + γp

p +
√

(1 + γp

p)2 + 4µ


 (M + 1) (3.30)

where γp is a suitable lower bound of Problem (3.20)-(3.22), the returned x∗

is the globally optimal solution of Max-Cut (1.4)-(1.5).

Proof : The termination x∗ satisfies x∗ ∈ {−1, 1}n and Diag(x∗)
∇xH(x∗; µ; t) ≤ 0. That is, for every i,

Diag(x∗)Ax∗ + Diag(x∗)
(
− t

1− t
+ (1− t)µ

)
x∗ ≤ 0, (3.31)

or equivalently,

Diag(x∗)Ax∗ ≤
(
− t

1− t
+ (1− t)µ

)
e, (3.32)

which implies Inequality (3.27) under the assumption (3.33). The proof is
then completed due to Theorem 3.2. ¤

696 YONG XIA AND ZI XU

Corollary 3.2 — If Algorithm LS-TFW stops in the first outer iteration
(i.e., k remains 0), then the returned x∗ is also a globally optimal solution
for Max-Cut (1.4)-(1.5).

Proof : Choose γp = p · λmin(A). Then Inequality (3.33) reduced to
k ≤ 0. ¤

Definition 3.2 — Define the q-neighbour (1 ≤ q ≤ [n2]) solution x′ ∈
{−1, 1}n as

(x′)T Ax′ ≤ min xT Ax

s.t. ‖x− x′‖0 ≤ q,

x ∈ {−1, 1}n.

It is trivial to verify that a q-neighbour solution must be p-distance ring
solutions (see Definition 3.1) for p = 1, 2, · · · , q and vice versa. Similarly, we
have

Theorem 3.4 — Suppose Algorithm LS-TFW stops in k outer iterations
and

k ≤ min
p∈{1,··· ,q}


1− 2

1 + γp

p +
√

(1 + γp

p)2 + 4µ


 (M + 1) (3.33)

where 1 ≤ q ≤ [n
2] and γp is a suitable lower bound of Problem (3.20)-(3.22),

the returned x∗ is a q-neighbour solution of Max-Cut (1.4)-(1.5).

Remark 3.2 : Theorem 3.4 implies that the smaller the k, the better the
solution x∗.

Corollary 3.3 — Suppose A is a symmetric matrix with zero diagonal
elements and Algorithm LS-TFW stops in k outer iterations. If

k ≤
(

1− 2
1 +

√
1 + 4µ

)
(M + 1) (3.34)

then the returned x∗ is a 1-neighbour solution of Max-Cut (1.4)-(1.5).

Proof : This is the special case when q = p = 1. The optimal objective
function value of the problem (3.20)-(3.22) is zero since p = 1 and Aii = 0
for all i. Therefore we can set γ1 = 0. The proof is completed. ¤

AN EFFICIENT LAGRANGIAN SMOOTHING HEURISTIC 697

Theorem 3.5 — Suppose Algorithm LS-TFW stops at xk in k outer
iterations and p is an integer lying between 1 and n. Let γp be a lower bound
of the problem (3.20)-(3.22), then

(xk)T Axk − (x∗)T Ax∗ ≤ −4p

(
− k

M + 1− k
+

M + 1− k

M + 1
µ

)
+ 4γp (3.35)

where x∗ is the p-distance ring solution (see Definition 3.1) of Max-Cut
(1.4)-(1.5) at xk.

Proof : The termination xk satisfies xk ∈ {−1, 1}n and Diag(xk)
∇xH(xk; µ; t) ≤ 0. That is, for every i,

0 ≥ xk
i (

n∑

j=1

Aijx
k
j) + (− t

1− t
+ (1− t)µ)(xk

i)
2

= xk
i (

n∑

j=1

Aijx
k
j) + (− t

1− t
+ (1− t)µ).

Let N = {1, 2, · · · , n}. For any Np ⊆ N with p elements, we have

∑

i∈Np

xk
i (

n∑

j=1

Aijx
k
j) + p(− t

1− t
+ (1− t)µ) ≤ 0. (3.36)

Therefore,

∑

i∈Np

xk
i (

∑

j 6∈Np

Aijx
k
j) ≤ −p(− t

1− t
+ (1− t)µ)−

∑

i∈Np

xk
i (

∑

j∈Np

Aijx
k
j)

≤ −p(− t

1− t
+ (1− t)µ) + γp.

Now for any Np,

(x∗)T Ax∗ =
∑

i6∈Np

∑

j 6∈Np

Aijx
k
i x

k
j +

∑

i∈Np

∑

j∈Np

Aijx
k
i x

k
j − 2

∑

i∈Np

xk
i (

∑

j 6∈Np

Aijx
k
j)

= (xk)T Axk − 4
∑

i∈Np

xk
i (

∑

j 6∈Np

Aijx
k
j)

≥ (xk)T Axk + 4p(− t

1− t
+ (1− t)µ)− 4γp.

698 YONG XIA AND ZI XU

4. Numerical Comparison

In this section, we first use a simple example to show the different perfor-
mances of our LS-TFW algorithm and the LS-TPG algorithm. Consider the
following problem,

min −xT x (4.1)

s.t. x2
i = 1, i = 1, . . . , n. (4.2)

Let x0 = ε(1, 1, . . . , 1)T , where ε is an adjustable parameter. It is easy to
see that ∀ε > 0, our LS-TFW algorithm terminates at an optimal solution
(1, 1, . . . , 1)T in one step. But when LS-TPG algorithm is used, it only
converges linearly if ε < 1− 2βj√

n
and m is large enough.

Then we numerically compared our LS-TFW algorithm with the LS-
TPG algorithm and the famous rank-two algorithm (Burer, Monteiro and
Zhang [5]). The test problems are created with rudy, a machine indepen-
dent graph generator written by Rinaldi, which is standard for the Max-Cut
problem (Helmberg and Rendl [9]). For LS-TFW algorithm and LS-TPG
algorithm, 10 random initial points are chosen for each test problem and
the best (maximal) cut values over 10 runs are reported, respectively. The
parameters of LS-TFW algorithm and LS-TPG algorithm are set to be the
same as Alperin and Nowak [1], i.e., βj ≡ 5, m = 10 and M = 20. MATLAB
7.6 software was used to run LS-TFW algorithm and LS-TPG algorithm on
a PC machine with an AMD Turion 1.6G×2 MHZ processor. Results of
the rank-two algorithm with parameters N = 10 and M = 8 were obtained
on a SGI Origin2000 machine with a 300 MHZ R12000 processor (Burer,
Monteiro and Zhang [5]).

The numerical results are reported in Table 1, where the first two columns
contain information concerning the tested graphs, ’n’ denotes the dimension,
’m̂’ denotes the number of the nonzero elements of A, column ’value’ gives
the best (maximal) cut values detected by all algorithms and column ’times
(s)’ shows the average running CPU time in seconds. For simplicity, in
Table 1, the LS-TFW algorithm, the LS-TPG algorithm and the rank-two
algorithm are denoted by FW, PG and RT respectively. We can see that
our LS-TFW algorithm always produces better-quality solutions than the
LS-TPG algorithm in less time.

AN EFFICIENT LAGRANGIAN SMOOTHING HEURISTIC 699

Table 1: Comparison of our algorithm with the existing smoothing algorithm

Test Size Time (s) Value
Problem (n, m̂) RT FW PG RT FW PG

g11 (800, 1600) 3.88 0.02 0.03 554 556 556
g12 (800, 1600) 3.76 0.02 0.04 552 550 548
g13 (800, 1600) 3.45 0.02 0.03 572 580 570
g14 (800, 4694) 5.53 0.04 0.06 3053 3034 3016
g15 (800, 4661) 5.91 0.03 0.06 3039 3022 3007
g20 (800, 4672) 5.56 0.04 0.10 939 931 911
g22 (2000, 19990) 22.31 0.10 0.38 13331 13288 13245
g24 (2000, 19990) 27.30 0.12 0.42 13287 13269 13209
g31 (2000, 19990) 19.61 0.10 0.37 3255 3255 3204
g32 (2000, 4000) 13.09 0.04 0.08 1380 1378 1376
g34 (2000, 4000) 9.82 0.04 0.07 1358 1356 1356

Conclusions

The Max-Cut problem is a famous NP-hard problem in combinatorial op-
timization and widely used in network, statistical physics and many other
fields. The Lagrangian smoothing heuristic (LS-TPG) is a recent efficient
approach to solve the Max-Cut problem.

In this article, we proposed a more efficient Lagrangian smoothing algo-
rithm (LS-TFW). The continuous subproblems arising from the smoothed
functions were solved by the truncated Frank-Wolfe algorithm. We estab-
lished practical stopping criteria and proved that our LS-TFW algorithm
finitely terminates at a KKT point, the distance between which and the
neighbour optimal solution is also estimated. We further gave sufficient
upper bounds on the outer iteration to make the obtained solution at differ-
ent optimization level. Additionally, we obtain a new sufficient optimality
condition for Max-Cut, see Theorem 3.2. A simple example was given to un-
derstand that our LS-TFW algorithm can be much faster than the LS-TPG
algorithm. Finally we did numerical experiments using the same test prob-
lems and the same parameters as the LS-TPG algorithm. Numerical results
indicated that our LS-TFW algorithm always obtained better solutions in
less time than that of the LS-TPG algorithm.

700 YONG XIA AND ZI XU

References

1. H. Alperin and I. Nowak, “Lagrangian smoothing heuristics for Max-Cut”,
Journal of Heuristics, 11 (2005), 447-463.

2. A. Beck and M. Teboulle, “Global optimality conditions for quadratic opti-
mization problems with binary constraints”, SIAM Journal on Optimization,
11(1) (2000), 179-188.

3. D. Bertsimas and Y. Ye, “Semidefinite Relaxations, Multivariate Normal
Distributions, and Order Statistics,” In D.-Z. Du and P. Pardalos, (eds.),
Handbook of Combinatorial Optimization, Kluwer Academic Publishers, 1-
19, (1998).

4. M. Borchardt, “An exact penalty approach for solving a class of minimization
problems with boolean variables”, Optimization, 19(6) (1988), 829-838.

5. S. Burer, R. D. C. Monteiro and Y. Zhang, “Rank-two relaxation heuris-
tics for MAX-CUT and other binary quadratic programs”, SIAM Journal on
Optimization, 12 (2001), 503-521.

6. P. Festa, P. M. Pardalos, M. G. C. Resende and C. C. Ribeiro, “Randomized
Heuristics for the Max-Cut Problem.” Optimization Methods and Software,
7 (2002), 1033-1058.

7. M. Frank and P. Wolfe, “An algorithm for quadratic programming”, Naval
Research Logistics Quaterly, 3 (1956), 95-110.

8. M. X. Goemans and D. P. Williamson, “Improved approximation algorithms
for maximum cut and satifiablity problemsusing semidefinite programming”,
Journal of the ACM, 42 (1995), 1115-1145.

9. C. Helmberg and F. Rendl, “A Spectral Bundle Method for Semidefinite
Programming”, SIAM Journal on Optimization, 10(3) (2000), 673-695.

10. Y. Xia, “A New Continuation Approach to Quadratic Assignment and Re-
lated Problems”, In Ya-Xiang Yuan et al (Eds) Proceedings of the Eighth
National Conference of Operations Research Society of China, Global-Link
Informatics Limited, HongKong, 262-269 (2006).

11. Y. Xia, “New Optimality Conditions for Quadratic Optimization Problems
with Binary Constraints”, Optimization Letters, 3(2) (2009), 253-263.

