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Let k be a field of characteristig 2 and letQ., . (1, ..., Zn, Y1, Ym)
=22+, . +22 —(y?+...+y>2,) be aquadratic form ovér. Let R(Q,, )
= Rym = k[z1,.. ., Zn, Y1, Ym]/(Qn.m — 1). In this note we will
caIcuIatef(o(Rn,m) for everyn, m > 0. We will also calculate” Hy(R,, )
and the Euler class group &, ,,, whenk = R.
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1. INTRODUCTION

In this paperk will denote a field of characteristic# 2. LetA,, , = k[z1,...,zy]/
(37 22—1). Itis well known (see [1]) thatN(O(An R) is periodic of period. More
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precisely,I?O(AnR) is Z,7/27 or 0 depending on whetheris {1,5}, {2,3} or
{0,4,6, 7} modulo8. Similarly, IN(O(An ¢) is periodic of perio®. More precisely,
f(o(An ¢) is Z or 0 depending on whether is odd or even.

It will be interesting to know iff(O(An,k) is also periodic for arbitrary field
k. Further, ifA,, , = k[z1,...,2,) /(3722 + 1), then we would like to know if
Ko(An ) is periodic. In this paper we answer these questions in affirmative.

Some experts may consider these results as easy computations. However, there
is no written reference to these results. These results are derived by application of
the celebrated results of Swan [8]. We are confident that this article will serve as
valuable resource for the researchers and graduate students in this area.

FOr Rym = k@1, ..oy Tny Y1, ym) /O 22 = SO0 yj 1), we will prove
following results.

Theorem1.1 — Assume that:®> + 4% + 22 = 0 has only trivial zero ink®
. . (L)
(equivalently the quaternion algeb ? is a division algebra ovek). Then
Ko(Ry0) and Ko(Rq,,) are periodic of period8. More precisely,

(1) I?O(ano) is Z,7/27 or 0 depending on whethet is {1,5}, {2,3} or
{0,4, 6,7} modulos.

(2) f{O(Ro,m) is Z,7Z/2Z or 0 depending on whethen. is {3,7}, {5,6} or
{0,1,2,4} modulos.

(3) Ko(Rpm) = Ko(Rn_myo) if n > m and Ko(Rpm) = Ko(Rom_n) if

n <m.

Theoreml1.2 — Assume/—1 € k. ThenIN(O(Rmm) is Z or 0 depending on
whethern + m is odd or even.

Theorem1.3 — Assume that/—1 ¢ k and —1 is a sum of two squares in
k (equivalently, the quaternion algebfa—— L ‘1) is not a division algebra ovek).
ThenKo(Rom) andKO(Rn,g) are periodic of periodt. More precisely,
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(1) I?0<R0,n) = 7,7./27 or 0 depending on whether is {3}, {2} or {0,1}
modulo4.

(44) I?O(Rn,o) = Z,Z/27Z or 0 depending on whetheris {1}, {2} or {0, 3}
modulo4.

(iii) Ko(Rnm) = Ko(Rn_myo) if n > m and Ko(Rym) = Ko(Rom-_n) if

n < m.

2. PRELIMINARIES

We will recall some results from [7] for later use. ¢fzy,...,z,) is a non-
degenerate quadratic form overthenR(q) will denote thek-algebrak[zy, . .., ]/
(¢(x1,...,zn) — 1) andC(q) will denote the Clifford algebra af.

If ¢ = a123 + -+ + a,22 with a; € k, thenC(q) is generated by, ..., e,
with relationse;e; + e;je; = 0 for i # j ande? = a;. The elements;, - - - e;, with
1 <i <...<i, <nformak-base forC(q). Further, definéletq :=a; ...a,
andds g := (—1)""D/2det q.

A binary quadratic form is called hyperbolic if it has the foriiz,y)
= 22 — 32, By a linear change of variables this is equivalentac, y) = xy.

Lemma2.1 ([7], 8.1 and 8.2) — Ib is a binary quadratic form, thefi(b L
q) = CO(b)®C((dsb)q). In particular, if b is hyperbolic, thenC'(¢ L h)>
C(q)®C(h).

Lemma2.2 ([7], 8.3)(a) — If ¢ has even rank, thefi(q) is central simple over
k and is a tensor product of quaternion algebras.

(b) If ¢ has odd rank, thet¥) if \/dsq € k, thenC(q) = A x A, whereA is
central simple ovek and is a tensor product of quaternion algebfas,otherwise
C(q) is simple with centerk(\/dsq) and is a tensor product of its center with
quaternion algebras ovér
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It follows from (2.2) that all simple”(¢)-modules have the same dimension
overk. We denote this dimension lifq).

Lemma2.3 ([7], Lemma 8.4) —a) d(q L 1) is eitherd(q) or 2d(q).

() If C(q) = A x A, thend(q L 1) = 2d(q).

See [7] for the definition oA BS(q).

Proposition2.4 ([7], Proposition 8.5Ja) — If C(q) = A x A, i.e rank of
q is odd andy/dsq € k, then ABS(q) = Z generated by either of the simple
C(g)-modules.

(b) If C(q) is simple, then(:) ABS(q) = 01if d(¢ L 1) = d(q) and (i7)
ABS(q) =Z/2Zif d(q L 1) = 2d(q).

We state the following result of Swan ([8], Corollary 10.8)

Theorem2.5 — Assume thaf? is regular,1/2 € Randq 1< —1 >isa
non-singular quadratic form. TheABS(q)—=Ko(R(q))/Ko(R).

In particular, if R is a field, thenABS(q)~Ko(R(q)).
Using (2.4 and 2.5), we get the following result which will be used later.

Theorem2.6— If ¢(x1,...,z,) L< —1 > is a non-singular quadratic form
overk, then

(i) If C(q) = Ax A (i.e. rank ofgis odd and\/ds ¢ € k), thenKy(R(q)) = Z.

(i) If C(q) is simple, thena) Ko(R(q)) = 0if d(¢ L 1) = d(q) and (b)
Ko(R(q)) = Z/2Zif d(q L 1) = 2d(q).

3. MAIN THEOREM

In this section, we fix quadratic forngg = — (22 +- - -+22) andgq), = 22+ - -+22
overk. We write C,, andC}, for the Clifford algebrag”(¢,) andC(q),). Then we
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have the following result. In ([1], Proposition 4.2), it is proved ko= R, but the
same proof works over any field

Proposition3.1 — There exist isomorphisnt, ®,C5~C, ., and C;,®;C5

—Un4t2.
3.1—1is not a sum of two squares in

We begin with the following well known result (see [6], p. 15). kgob € k,

the quaternion algebt%,;—b), which is ak-algebra defined byand; with relations
i’ = a, j2 = bandij + ji = 0, is a division algebra if and only if*> = ay? + bz>

has only trivial zero.

In this section we will assume that + y? 4 22 = 0 has only trivial zero in
. L . —1,-1) . L
k3 which is same as the quaternion algeéiﬁaki) is a division algebra over

(e.g. any real field). We denote the division algegall’f;l) by H. LetC be the
subalgebra of{ generated by overk. ThenC = k[z]/(x? + 1) is a field.

The following is a well known result. We will give proof for completeness.
Recall thatF'(n) denote the algebra ef x n matrices over.

Lemma3.2 — If ' denote one of, C or H, then we have the following
identities (i) F(n)—=k(n)@iF, (ii) k(n)@gk(m)—=k(nm), (iii) CorC=CaC,
(iv) HRrC=C(2), (v) HORrHk(4).

In particular, wherk = R the field of real numbers, theh= C and’H = H.
PROOF: (i) and(i) are straightforward.

(797) The mapleC—C®;C defined by(1,0) — 1/2(1®1+i®i) and(0,1) —
1/2(1®1 — i®i) is an isomorphism.

(iv) Since’H is aC vector space under left multiplication, the map C x
H—Homg(H, H) defined byr, .(x) = yxZ is k-bilinear, wherey € C, z,z € H
andz = al — bi — ¢j — dij is the conjugate of = al + bi + ¢j + dij with
a,b,c,d € k. Hence, we get &-linear mapr : C®,H—Homg(H,H). Since
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Tyz O My o1 = Tyy -2, the mapr is ank-algebra homomorphism. Further, it is
easy to see that is injective. Since Hom(H, H)—C(2), we getdim;, CoyH =
8 = dimy, C(2) (note thatdim C(2) = 4). Hencer is an isomorphism.

(v) Define amapr : H x H—Hom,(H, H) by m, .(x) = yaZ, wherey, z, z €
‘H. Thenr is k-bilinear. Hence itinducesfalinear mapr : H®,H—Homy (H, H),
which is an algebra homomorphism,(, o,/ .» = m,, ../). Furtherm is injective.
Since both sides are vector spaces of dimensaver k, 7 is an isomorphism.
Note that Hom (7, H)=k(4). This proves the result. O

Let us begin the proof of our first result. It is easy to seethat C, Cy = H,
C1 = k@k andC!, = k(2). Using (3.1), we get that

n Cn Ch d(gn) | d(gn)
1 C k®k 2 1
2 H k(2) 4 2
3| HoH (2) 4 | 4
4 HQ2) H(2) 8 8
51 c) |HE@eHE)| 8 | 8
6| Kk(8) H(4) 8 | 16
7 | k(8)®k(8) C(8) 8 | 16
8| k(16) k(16) 16 | 16

Note thatCy,—=CY, Cpis—Cp@iCy, Cpis—C,@Cs. Further Cs=k(16).
Hence, ifC, = F(m), thenC,s—F(16m). Similarly, if C!, = F(m), then

If h = 22 — 42, thenC(h)>k(2). From (2.1), ifh” = h L ... L h
(r times), thenC'(h") = k(2)®...®k(2)>k(27). Now, if C(q) = F(m), then
C(g L 1) = F(m)®k(2")SF(2"m).

Sinceqry L 1=qx_1 L h,C(gx L1)=C(qr—1)®k(2). Write g L 1 asqy.
Furtherg;, L 1 =¢;_,. HenceC(q, L 1) = C(q;,,) andd(q), L 1) = d(q},,)-

Write s = 16”. Then we have the following table.
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08T+n Cér+n C(E]V&”-i-n) d(Q8r+n) d(qlsm.n) d(E]VSr—i-n)

1| C(s) | k(s)? k(2s) 2s s 2s
2| H(s) | k(29) C(2s) 4s 2s 4ds
3| H(s)? | C(2s) H(2s) 4s 4s 8s
4| H(2s) | H(2s) | H(2s)? 8s 8s 8s
5| C(4s) | H(2s)2 | H(4s) 8s 8s 165
6| k(8s) | H(4s) C(8s) 8s 16s 16s
7| k(8s)2 | C(8s) | k(16s) 8s 165 165
8 | k(165) | k(165) | k(16s)? 16s 16s 16s

Using (2.6), we get the following result.

Theorem3.3 — Assumer? + 2 + 22 = 0 has only trivial zero ink®. Note
RO,n = R(Qn) anan,O = R(qg) Then

(1) f(o(Rmo) is Z,7Z/27Z or 0 depending on whethet is {1,5}, {2,3} or
{0,4, 6,7} modulos8.

(2) f{O(RO,m) is Z,Z/2Z or 0 depending on whether is {3,7}, {5,6} or
{0,1,2,4} modulos.

For n, m positive integers, consided,, (71, ..., Tn, Y1, - Ym) = >y T3

m, 2
— 2.1 Y

Assumen > m. ThenQum—d,_,, L h™ andC(Qnm)—>C!,_,,@k(2™).
Henced(Qn,m) = d(q),_,,)2™. FurtherQy, »,, L 15¢),_,, 1 L h™andd(Qnm L
1) = d(q),—yn4+1)2™. Henced(Qnm L 1)/d(Qnm) = d(dn—m)/Adp—m41)-

Assumen < m. ThenQu m—qm—n L h" andQym L 15¢m—pn—1 L A",
FurtherC(Qn.m)—C(qm—n)®@k(2") andC(Qnm L 1) = C(gm-n—1)®@k(2"T1).
Hence,d(Qn.m) = d(gm-n)2" andd(Qnm L 1) = d(gm-n-1)2"". The quo-
tientd(Qn,m L 1)/d(Qnm) is equal t02d(gpm—n—1)/d(gm—n). Using (2.6), we
get



126 MANOJ K. KESHARI AND SATYA MANDAL

Theorem3.4— Assumer? + y? + 22 = 0 has only trivial zero ink®. Then
Ko(R(Qnm)) is same aso(R(¢,_,,)) whenn > m and Ko(R(¢m_,)) when

n<m.

Remark3.5 : We note that the following classical result generalizes (3.4) (see
[7], 10.1). Letf € k[xi,...,z,] be non-zero. Le¥ = k[zy1,...,x,]/(f) and
B = klzy,... 20, u,0]/(f + uv). ThenGo(A)=>Go(B). However, for a regular
ring R, it is well known thatGo(R)=K(R). In this paper, we have computed
Ko(R(gn)) explicitly.

3.2y/—1 € k,i.e.—1isasquare irk

In this caseC,,~C!. Further, using (3.1), we get, >—C,®C,. SinceC}
= kdk andCy = k(2), we getCy, = k(2") andCay,q1 = k(2")Bk(2™). There-
fore, by (2.6), we get the following result.

Theorem3.6— If /—1 € k, thenK(R(gan)) = 0 and Ko(R(gan+1)) = Z-

3.3—1is a sum of two squares ard—1 ¢ k

Assumey/—1 ¢ k buta? +y? + 2% = 0 has a non-trivial zero i&3. We denote the
, . b\ . . :
field k[z] /(2 + 1) by C. Recall that a quaternion aIgeb(%) is isomorphic to

My (k) if and only if it is not a division algebra.

It is easy to see that, = C, C] = k®k, C2 = k(2) = C4. Further,Cs
= IR0y = k(2)@k(2), C4 = C1@C), = C(2) andCy = CLoCy = k(4) = Cy.

Forn = 4r + 4, wherei € {1,2,3,4}, we haveC,, = C],_,®Cs = C,_4®
ClaCy = Cpoy®@Cy = Chy®k(4) = ... = C;®k(4"). Similarly, C,
= C/Qk(4").
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Write s = 4". Then we have the following table.

n | Carin Czllr+n C(qarn L 1) | d(qarin) d(qéllr—&-n) d(qar4n L 1)
1| C(s) | k(s)? k(2s) 2s s 2s
2| k(2s) | k(2s) C(2s) 2s 2s 4s
3| k(25)% | C(2s) k(4s) 25 45 45
4| k(4s) | k(4s) k(4s)? 45 4s 4s

By (2.6), we get the following result.

Theorem3.7— Assume/—1 ¢ k and—1 is a sum of two squares i Let
Rom =klx1, . 20, y1y- o ym) /O 22 = 3 y]2 —1). Then

(i) Ko(Ron) = Z,7/27Z or 0 depending on whether is {3}, {2} or {0,1}
modulo4.

(i1) Ko(Rno) = Z,7,/27Z or 0 depending on whether is {1}, {2} or {0, 3}
modulo4.

(iii) Ko(Rnm) = Ko(Rn_mo) if n > m and Ko(Rym) = Ko(Rom-_n) if

n < m.

4. SOME AUXILIARY RESULTS

1. Let A = Rz, ..., xn]/(aozd + ... + anz? — b) with a;,b € R and let
E(A) be the Euler class group df with respect to4 (see [3] for definition).
Let EC(A) be the subgroup af (A) generated by all the complex maximal
ideals ofA. By ([4], Lemma 4.2), all the complex maximal ideals 4fare
generated by. elements, hencEC(A) = 0. Using ([5], Theorem 2.3), we
get the following results.

(i) B(A)=E(R(X)), whereX = Sped 4) andR(X) is the localization
Ag of A with S as the set of all elements df which do not have any real
zero.
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(i1) CHo(A)SCHy(R(X)).
Further, there is a natural surjectiéi{A) — CHy(A).

Assume thatl = R[xzg, ..., z,]/(z3 + ... + 22 + 1). ThenA has no real
maximal ideal and hencB(A) = EC(A) = 0 and hence? Hy(A) = 0.

ForA = R[zo,...,z,)/ (28 +...+ 22 — 1), itis known thatE(A) = Z and
CHy(A) = Z/2Z.

. AssumeA = Rizg,...,z,)/(> g 2? — >0 27 — 1) with m < n and

m—+1 "1
X = SpeqA). ThenX (R) has no compact connected component. Hence,

by ([2], Theorem 4.21)E(R(X)) = 0. From above, we get(A) = 0 and
CHy(A) = 0.

(2

In general, letd = Riz,y,z1,...,2,]/(zy + f(z1,...,2,)) and letX
= Sped 4). Then X (R) has no compact connected component. All the
connected components &f(R) is unbounded. For this, note thatif, b, ¢,

., ¢n) € X(R), thenf(ci,...,cn) = —aband if (zo, yo) iS any point on
the hyperbolary = ab, then(xo, o, c1, .. .,cn) € X(R).

By ([2], Theorem 4.21)E(R(X)) = 0 and henceZ(A) = EC(A). Using
([5], Theorem 2.3), we geE(A)=CHy(A). Further, it is known (see [3],
Theorem 5.5) that for a smooth affine domairof dimension> 2 overR,
CHy(A)=Ey(A), the weal Euler class group ¢f. HenceE(A) = Ey(A)
SCHy(A) and E(A) is generated by complex maximal ideals 4f In
particular, if all the complex maximal ideals of are generated by
elements, the®’(A) = 0 as is the case i(2) above.
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