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Let k be a field of characteristic6= 2 and letQn,m(x1, . . . , xn, y1, . . . , ym)
= x2

1 + . . .+x2
n− (y2

1 + . . .+y2
m) be a quadratic form overk. LetR(Qn,m)

= Rn,m = k[x1, . . . , xn, y1, . . . , ym]/(Qn,m − 1). In this note we will

calculateK̃0(Rn,m) for everyn,m ≥ 0. We will also calculateCH0(Rn,m)
and the Euler class group ofRn,m whenk = R.

Key words : K0(A); Clifford algebra; Euler class group.

1. INTRODUCTION

In this paper,k will denote a field of characteristic 6= 2. LetAn,k = k[x1, . . . , xn]/
(
∑n

1 x2
i−1). It is well known (see [1]) that̃K0(An,R) is periodic of period8. More
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precisely,K̃0(An,R) is Z,Z/2Z or 0 depending on whethern is {1, 5}, {2, 3} or

{0, 4, 6, 7}modulo8. Similarly,K̃0(An,C) is periodic of period2. More precisely,

K̃0(An,C) isZ or 0 depending on whethern is odd or even.

It will be interesting to know ifK̃0(An,k) is also periodic for arbitrary field

k. Further, ifÃn,k = k[x1, . . . , xn]/(
∑n

1 x2
i + 1), then we would like to know if

K̃0(Ãn,k) is periodic. In this paper we answer these questions in affirmative.

Some experts may consider these results as easy computations. However, there

is no written reference to these results. These results are derived by application of

the celebrated results of Swan [8]. We are confident that this article will serve as

valuable resource for the researchers and graduate students in this area.

ForRn,m = k[x1, . . . , xn, y1, . . . , ym]/(
∑n

1 x2
i −

∑m
1 y2

j − 1), we will prove

following results.

Theorem1.1 — Assume thatx2 + y2 + z2 = 0 has only trivial zero ink3

(equivalently the quaternion algebra
(−1,−1)

k
is a division algebra overk). Then

K̃0(Rn,0) andK̃0(R0,m) are periodic of period8. More precisely,

(1) K̃0(Rn,0) is Z,Z/2Z or 0 depending on whethern is {1, 5}, {2, 3} or

{0, 4, 6, 7} modulo8.

(2) K̃0(R0,m) is Z,Z/2Z or 0 depending on whetherm is {3, 7}, {5, 6} or

{0, 1, 2, 4} modulo8.

(3) K̃0(Rn,m) = K̃0(Rn−m,0) if n ≥ m and K̃0(Rn,m) = K̃0(R0,m−n) if

n < m.

Theorem1.2 — Assume
√−1 ∈ k. ThenK̃0(Rn,m) is Z or 0 depending on

whethern + m is odd or even.

Theorem1.3 — Assume that
√−1 /∈ k and−1 is a sum of two squares in

k (equivalently, the quaternion algebra(−1,−1
k ) is not a division algebra overk).

ThenK̃0(R0,n) andK̃0(Rn,0) are periodic of period4. More precisely,
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(i) K̃0(R0,n) = Z,Z/2Z or 0 depending on whethern is {3}, {2} or {0, 1}
modulo4.

(ii) K̃0(Rn,0) = Z,Z/2Z or 0 depending on whethern is {1}, {2} or {0, 3}
modulo4.

(iii) K̃0(Rn,m) = K̃0(Rn−m,0) if n ≥ m and K̃0(Rn,m) = K̃0(R0,m−n) if

n < m.

2. PRELIMINARIES

We will recall some results from [7] for later use. Ifq(x1, . . . , xn) is a non-

degenerate quadratic form overk, thenR(q) will denote thek-algebrak[x1, . . . , xn]/
(q(x1, . . . , xn)− 1) andC(q) will denote the Clifford algebra ofq.

If q = a1x
2
1 + · · · + anx2

n with ai ∈ k, thenC(q) is generated bye1, . . . , en

with relationseiej + ejei = 0 for i 6= j ande2
i = ai. The elementsei1 · · · eir with

1 ≤ i1 < . . . < ir ≤ n form ak-base forC(q). Further, definedet q := a1 . . . an

andds q := (−1)n(n−1)/2det q.

A binary quadratic form is called hyperbolic if it has the formh(x, y)
= x2 − y2. By a linear change of variables this is equivalent toh′(x, y) = xy.

Lemma2.1 ([7], 8.1 and 8.2) — Ifb is a binary quadratic form, thenC(b ⊥
q) ∼→ C(b)⊗C((ds b)q). In particular, if h is hyperbolic, thenC(q ⊥ h) ∼→
C(q)⊗C(h).

Lemma2.2 ([7], 8.3)(a) — If q has even rank, thenC(q) is central simple over

k and is a tensor product of quaternion algebras.

(b) If q has odd rank, then(i) if
√

ds q ∈ k, thenC(q) = A × A, whereA is

central simple overk and is a tensor product of quaternion algebras,(ii) otherwise

C(q) is simple with centerk(
√

ds q) and is a tensor product of its center with

quaternion algebras overk.
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It follows from (2.2) that all simpleC(q)-modules have the same dimension

overk. We denote this dimension byd(q).

Lemma2.3 ([7], Lemma 8.4) —(a) d(q ⊥ 1) is eitherd(q) or 2d(q).

(b) If C(q) = A×A, thend(q ⊥ 1) = 2d(q).

See [7] for the definition ofABS(q).

Proposition2.4 ([7], Proposition 8.5)(a) — If C(q) = A × A, i.e rank of

q is odd and
√

ds q ∈ k, thenABS(q) = Z generated by either of the simple

C(q)-modules.

(b) If C(q) is simple, then(i) ABS(q) = 0 if d(q ⊥ 1) = d(q) and (ii)
ABS(q) = Z/2Z if d(q ⊥ 1) = 2d(q).

We state the following result of Swan ([8], Corollary 10.8)

Theorem2.5 — Assume thatR is regular, 1/2 ∈ R and q ⊥< −1 > is a

non-singular quadratic form. ThenABS(q) ∼→K0(R(q))/K0(R).

In particular, if R is a field, thenABS(q) ∼→K̃0(R(q)).

Using (2.4 and 2.5), we get the following result which will be used later.

Theorem2.6— If q(x1, . . . , xn) ⊥< −1 > is a non-singular quadratic form

overk, then

(i) If C(q) = A×A (i.e. rank ofq is odd and
√

ds q ∈ k), thenK̃0(R(q)) = Z.

(ii) If C(q) is simple, then(a) K̃0(R(q)) = 0 if d(q ⊥ 1) = d(q) and (b)
K̃0(R(q)) = Z/2Z if d(q ⊥ 1) = 2d(q).

3. MAIN THEOREM

In this section, we fix quadratic formsqn = −(x2
1+· · ·+x2

n) andq′n = x2
1+· · ·+x2

n

overk. We writeCn andC ′
n for the Clifford algebrasC(qn) andC(q′n). Then we
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have the following result. In ([1], Proposition 4.2), it is proved fork = R, but the

same proof works over any fieldk.

Proposition3.1 — There exist isomorphismsCn⊗kC
′
2
∼→C ′

n+2 andC ′
n⊗kC2

∼→Cn+2.

3.1−1 is not a sum of two squares ink

We begin with the following well known result (see [6], p. 15). Fora, b ∈ k,

the quaternion algebra(a,b)
k , which is ak-algebra defined byi andj with relations

i2 = a, j2 = b andij + ji = 0, is a division algebra if and only ifx2 = ay2 + bz2

has only trivial zero.

In this section we will assume thatx2 + y2 + z2 = 0 has only trivial zero in

k3 which is same as the quaternion algebra
(−1,−1)

k
is a division algebra overk

(e.g. any real field). We denote the division algebra
(−1,−1)

k
byH. Let C be the

subalgebra ofH generated byi overk. ThenC = k[x]/(x2 + 1) is a field.

The following is a well known result. We will give proof for completeness.

Recall thatF (n) denote the algebra ofn× n matrices overF .

Lemma3.2 — If F denote one ofk, C or H, then we have the following

identities(i) F (n) ∼→k(n)⊗kF , (ii) k(n)⊗kk(m) ∼→k(nm), (iii) C⊗kC ∼→C⊕C,

(iv)H⊗kC ∼→C(2), (v)H⊗kH ∼→k(4).

In particular, whenk = R the field of real numbers, thenC = C andH = H.

PROOF : (i) and(ii) are straightforward.

(iii) The mapC⊕C→C⊗kC defined by(1, 0) 7→ 1/2(1⊗1+i⊗i) and(0, 1) 7→
1/2(1⊗1− i⊗i) is an isomorphism.

(iv) SinceH is a C vector space under left multiplication, the mapπ : C ×
H→HomC(H,H) defined byπy,z(x) = yxz is k-bilinear, wherey ∈ C, x, z ∈ H
andz = a1 − bi − cj − dij is the conjugate ofz = a1 + bi + cj + dij with

a, b, c, d ∈ k. Hence, we get ak-linear mapπ : C⊗kH→HomC(H,H). Since
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πy,z ◦ πy′,z′ = πyy′,zz′ , the mapπ is ank-algebra homomorphism. Further, it is

easy to see thatπ is injective. Since HomC(H,H) ∼→C(2), we getdimk C⊗kH =
8 = dimk C(2) (note thatdimC C(2) = 4). Henceπ is an isomorphism.

(v) Define a mapπ : H×H→Homk(H,H) byπy,z(x) = yxz, wherey, x, z ∈
H. Thenπ isk-bilinear. Hence it induces ak-linear mapπ : H⊗kH→Homk(H,H),
which is an algebra homomorphism (πy,z◦πy′,z′ = πyy′,zz′). Further,π is injective.

Since both sides are vector spaces of dimension16 overk, π is an isomorphism.

Note that Homk(H,H) ∼→k(4). This proves the result. ¤

Let us begin the proof of our first result. It is easy to see thatC1 = C, C2 = H,

C ′
1 = k⊕k andC ′

2 = k(2). Using (3.1), we get that

n Cn C ′
n d(qn) d(q′n)

1 C k⊕k 2 1
2 H k(2) 4 2
3 H⊕H C(2) 4 4
4 H(2) H(2) 8 8
5 C(4) H(2)⊕H(2) 8 8
6 k(8) H(4) 8 16
7 k(8)⊕k(8) C(8) 8 16
8 k(16) k(16) 16 16

Note thatC4
∼→C ′

4, Cn+4
∼→Cn⊗kC4, Cn+8

∼→Cn⊗C8. FurtherC8
∼→k(16).

Hence, ifCn = F (m), thenCn+8
∼→F (16m). Similarly, if C ′

n = F (m), then

C ′
n+8 = F (16m).

If h = x2 − y2, then C(h) ∼→k(2). From (2.1), if hr = h ⊥ . . . ⊥ h

(r times), thenC(hr) = k(2)⊗ . . .⊗k(2) ∼→k(2r). Now, if C(q) = F (m), then

C(q ⊥ hr) = F (m)⊗k(2r) ∼→F (2rm).

Sinceqk ⊥ 1 = qk−1 ⊥ h, C(qk ⊥ 1) = C(qk−1)⊗k(2). Write qk ⊥ 1 asq̃k.

Furtherq′k ⊥ 1 = q′k+1. HenceC(q′k ⊥ 1) = C(q′k+1) andd(q′k ⊥ 1) = d(q′k+1).

Write s = 16r. Then we have the following table.
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n C8r+n C ′
8r+n C(q̃8r+n) d(q8r+n) d(q′8r+n) d(q̃8r+n)

1 C(s) k(s)2 k(2s) 2s s 2s

2 H(s) k(2s) C(2s) 4s 2s 4s

3 H(s)2 C(2s) H(2s) 4s 4s 8s

4 H(2s) H(2s) H(2s)2 8s 8s 8s

5 C(4s) H(2s)2 H(4s) 8s 8s 16s
6 k(8s) H(4s) C(8s) 8s 16s 16s
7 k(8s)2 C(8s) k(16s) 8s 16s 16s
8 k(16s) k(16s) k(16s)2 16s 16s 16s

Using (2.6), we get the following result.

Theorem3.3 — Assumex2 + y2 + z2 = 0 has only trivial zero ink3. Note

R0,n = R(qn) andRn,0 = R(q′n). Then

(1) K̃0(Rn,0) is Z,Z/2Z or 0 depending on whethern is {1, 5}, {2, 3} or

{0, 4, 6, 7} modulo8.

(2) K̃0(R0,m) is Z,Z/2Z or 0 depending on whetherm is {3, 7}, {5, 6} or

{0, 1, 2, 4} modulo8.

For n,m positive integers, considerQn,m(x1, . . . , xn, y1, . . . , ym) =
∑n

1 x2
i

−∑m
1 y2

i .

Assumen ≥ m. ThenQn,m
∼→q′n−m ⊥ hm andC(Qn,m) ∼→C ′

n−m⊗k(2m).
Henced(Qn,m) = d(q′n−m)2m. Further,Qn,m ⊥ 1 ∼→q′n−m+1 ⊥ hm andd(Qn,m ⊥
1) = d(q′n−m+1)2

m. Henced(Qn,m ⊥ 1)/d(Qn,m) = d(q′n−m)/d(q′n−m+1).

Assumen < m. ThenQn,m
∼→qm−n ⊥ hn andQn,m ⊥ 1 ∼→qm−n−1 ⊥ hn+1.

FurtherC(Qn,m) ∼→C(qm−n)⊗k(2n) andC(Qn,m ⊥ 1) = C(qm−n−1)⊗k(2n+1).
Hence,d(Qn,m) = d(qm−n)2n andd(Qn,m ⊥ 1) = d(qm−n−1)2n+1. The quo-

tient d(Qn,m ⊥ 1)/d(Qn,m) is equal to2d(qm−n−1)/d(qm−n). Using (2.6), we

get
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Theorem3.4 — Assumex2 + y2 + z2 = 0 has only trivial zero ink3. Then

K̃0(R(Qn,m)) is same asK̃0(R(q′n−m)) whenn ≥ m and K̃0(R(qm−n)) when

n < m.

Remark3.5 : We note that the following classical result generalizes (3.4) (see

[7], 10.1). Letf ∈ k[x1, . . . , xn] be non-zero. LetA = k[x1, . . . , xn]/(f) and

B = k[x1, . . . , xn, u, v]/(f + uv). ThenG̃0(A) ∼→G̃0(B). However, for a regular

ring R, it is well known thatG̃0(R) ∼→K̃0(R). In this paper, we have computed

K̃0(R(qn)) explicitly.

3.2
√−1 ∈ k, i.e.−1 is a square ink

In this caseCn
∼→C ′

n. Further, using (3.1), we getCn+2
∼→Cn⊗C2. SinceC1

= k⊕k andC2 = k(2), we getC2n = k(2n) andC2n+1 = k(2n)⊕k(2n). There-

fore, by (2.6), we get the following result.

Theorem3.6— If
√−1 ∈ k, thenK̃0(R(q2n)) = 0 andK̃0(R(q2n+1)) = Z.

3.3−1 is a sum of two squares and
√−1 /∈ k

Assume
√−1 /∈ k butx2 +y2 +z2 = 0 has a non-trivial zero ink3. We denote the

field k[x]/(x2 + 1) by C. Recall that a quaternion algebra

(
a, b

k

)
is isomorphic to

M2(k) if and only if it is not a division algebra.

It is easy to see thatC1 = C, C ′
1 = k⊕k, C2 = k(2) = C ′

2. Further,C3

= C ′
1⊗C2 = k(2)⊕k(2), C ′

3 = C1⊗C ′
2 = C(2) andC4 = C ′

2⊗C2 = k(4) = C ′
4.

For n = 4r + i, wherei ∈ {1, 2, 3, 4}, we haveCn = C ′
n−2⊗C2 = Cn−4⊗

C ′
2⊗C2 = Cn−4⊗C4 = Cn−4⊗k(4) = . . . = Ci⊗k(4r). Similarly, C ′

n

= C ′
i⊗k(4r).
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Write s = 4r. Then we have the following table.

n C4r+n C ′
4r+n C(q4r+n ⊥ 1) d(q4r+n) d(q′4r+n) d(q4r+n ⊥ 1)

1 C(s) k(s)2 k(2s) 2s s 2s

2 k(2s) k(2s) C(2s) 2s 2s 4s

3 k(2s)2 C(2s) k(4s) 2s 4s 4s

4 k(4s) k(4s) k(4s)2 4s 4s 4s

By (2.6), we get the following result.

Theorem3.7 — Assume
√−1 /∈ k and−1 is a sum of two squares ink. Let

Rn,m = k[x1, . . . , xn, y1, . . . , ym]/(
∑n

1 x2
i −

∑m
1 y2

j − 1). Then

(i) K̃0(R0,n) = Z,Z/2Z or 0 depending on whethern is {3}, {2} or {0, 1}
modulo4.

(ii) K̃0(Rn,0) = Z,Z/2Z or 0 depending on whethern is {1}, {2} or {0, 3}
modulo4.

(iii) K̃0(Rn,m) = K̃0(Rn−m,0) if n ≥ m and K̃0(Rn,m) = K̃0(R0,m−n) if

n < m.

4. SOME AUXILIARY RESULTS

1. Let A = R[x0, . . . , xn]/(a0x
2
0 + . . . + anx2

n − b) with ai, b ∈ R and let

E(A) be the Euler class group ofA with respect toA (see [3] for definition).

Let EC(A) be the subgroup ofE(A) generated by all the complex maximal

ideals ofA. By ([4], Lemma 4.2), all the complex maximal ideals ofA are

generated byn elements, henceEC(A) = 0. Using ([5], Theorem 2.3), we

get the following results.

(i) E(A) ∼→E(R(X)), whereX = Spec(A) andR(X) is the localization

AS of A with S as the set of all elements ofA which do not have any real

zero.
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(ii) CH0(A) ∼→CH0(R(X)).

Further, there is a natural surjectionE(A) ³ CH0(A).

2. Assume thatA = R[x0, . . . , xn]/(x2
0 + . . . + x2

n + 1). ThenA has no real

maximal ideal and henceE(A) = EC(A) = 0 and henceCH0(A) = 0.

ForA = R[x0, . . . , xn]/(x2
0 + . . .+x2

n−1), it is known thatE(A) = Z and

CH0(A) = Z/2Z.

3. AssumeA = R[x0, . . . , xn]/(
∑m

0 x2
i −

∑n
m+1 x2

i − 1) with m < n and

X = Spec(A). ThenX(R) has no compact connected component. Hence,

by ([2], Theorem 4.21),E(R(X)) = 0. From above, we getE(A) = 0 and

CH0(A) = 0.

4. In general, letA = R[x, y, z1, . . . , zn]/(xy + f(z1, . . . , zn)) and letX

= Spec(A). ThenX(R) has no compact connected component. All the

connected components ofX(R) is unbounded. For this, note that if(a, b, c1,

. . . , cn) ∈ X(R), thenf(c1, . . . , cn) = −ab and if (x0, y0) is any point on

the hyperbolaxy = ab, then(x0, y0, c1, . . . , cn) ∈ X(R).

By ([2], Theorem 4.21),E(R(X)) = 0 and henceE(A) = EC(A). Using

([5], Theorem 2.3), we getE(A) ∼→CH0(A). Further, it is known (see [3],

Theorem 5.5) that for a smooth affine domainA of dimension≥ 2 overR,

CH0(A) ∼→E0(A), the weal Euler class group ofA. HenceE(A) ∼→E0(A)
∼→CH0(A) and E(A) is generated by complex maximal ideals ofA. In

particular, if all the complex maximal ideals ofA are generated byn

elements, thenE(A) = 0 as is the case in(2) above.
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