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This paper is concerned with the study of an initial boundary value problem

for a nonlinear second order pseudoparabolic equation arising in the unidi-
rectional flow of a thermodynamic compatible third grade fluid. We establish

some goriori bounds for the solution and prove its existence.
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1. INTRODUCTION

The analysis of the flow of an incompressible non-Newtonian fluid has drawn much
attention in the recent years. This is because of relevance of the applications of the
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non Newtonian fluids in industry and engineering. Examples of the non-Newtonian
fluids include multi-grade oils, paints, food products, inks, glues, soaps, mud, cer-
tain polymers etc. The observed flow of the non-Newtonian fluids are markedly dif-
ferent from that of its Newtonian counterpart. The relationships between the shear
stress and the flow field in the non-Newtonian fluids are more complicated in com-
parison to the Newtonian fluids. The governing equations of the non-Newtonian
fluids are higher order and much nonlinear than equations of the Newtonain flu-
ids. Besides all these challenges, several recent investigators [1-7], [14-16] have
even carried out the analysis on various types of flows in the non-Newtonain fluid
mechanics. Generally, the non-Newtonian fluids are classified under the three cat-
egories known as the differential type, rate type and integral type. A simplest
subclass of the differential type fluid is called the second grade. This subclass can
describe the normal stress effects and is not able to predict the shear thinning and
shear thickening characteristics in the steady flows with rigid boundaries. The third
grade fluids although can explain such features.

In this paper, we deal with an initial boundary value problem for a nonlinear
second order equation. Such nonlinear equation appears when unidirectional flow
of a third grade fluid is considered in a thermodynamic sense. The fluid is consid-
ered between the two non-porous plates. To obtain some a priori estimates for the
solution of probelm (10)-(13) stated below, we apply the energy estimate method
inspired from functional analysis, see for example [9-13]. The technique of de-
riving such a priori estimate is based on a conveniently chosen multiplier. From
the resulted energy estimate, it is possible to establish the solvability of the posed
problem.

2. STATEMENT OF THE PROBLEM

Let us examine the flow of an incompressible and homogeneous third grad fluid
between two parallel stationary plates distanapart. Thez* and y* axes are
chosen along and perpondicular to the channel walls. The flow is governed by the
following equations

divV =0, 1)
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vV _ _
P = —pl + divS, (2)

whereV is the velocity,p the fluid density,d/dt the material derivativep the
pressure] an identity tensor and an extra stress tergor a thermodynamic third
grade fluid is described by the following expression [8]

S = (M + g(ter)) Ay + a1 ds + OQZi (3

with 1 > 0, € > 0, |ag + ae| < /24ué,

dA,
dt*
Here we refep: as the dynamic viscosity of fluidy the trace T the matrix

transposeg; (i = 1,2) and¢ the material parameters ardd(i = 1, 2) the first two
Rivlin-Ericksen tensors.

A= (VV)+ (V)" Ay = L4 A (V) + (V)T 4. (4)

We define the velocity field as

V= (U*(y*7t*)7070)' %)

Now equation(1) is identically satisfied and equatio(®) — (5) in absence of
modified pressure gradient yield

ou* 0%u* 0Pu* our\? 9%u*
Por Moy T M ayrar T <<9y) oy ©
The appropriate boundary and initial conditions are
u*(0,t%) = u*(h,t*) =0, (7)
u(y*,0) = g(y"). (8)

To explore the analysis in dimensionless form, we introduce the following vari-

ables ,
_ut _ Uoy* _ Ugtr
{ u = Uy’ n=—2" t= v

_ alUg 8= 66U
pv

(9)

pl/2 ) )
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whereUj is the characteristic velocity andthe kenematic viscosity. The non-
dimensional problem can be written as

Ut = Upy + Qe + Butiyy
u(n,0) = a(n), (10)
u(l,t) =0, u(0,t) =0,

whereo (n) = g/Uy andl = Uph/v.
LetT > 0, = (0,1),and
Q=0x(0,T)={(nt)eR*:neQ, 0<t<T},

we consider the following nonlinear mixed problem

Lu = U — Upy — Oyt — ﬁu%unn = f(n,t), (12)
tu = u(n,0) = o(n), (12)
u(l,t) =0, u(0,t) =0, (13)

wheref(n,t), ando(n) are given functions and and are positive constants

For the investigation of this problem, we introduce the following function
spaces.

Let L2(Q) be the Hilbert space of square integrable functions having the fi-
nite normHuH%Q(Q) = fQ u?dn, and the associated inner prodiet v)2q) =
Jo uvdn. And H'(Q2) is the Hilbert space with inner produ@t, v) g1 (o) = [, uvdn+
Jo unvydn, and equipped with the norlﬁuH%z(Q) + ||un||i2(m :

We establish ariori bound and prove the existence of a solution of the problem
(11)-(13). LetLu = F,whereL = (L, ¢),andF = ({, o) be the operator equation
corresponding to problem (11)-(13). The operafowith domain of definition
D(L) = {ue L*(Q)/ ut, ty, gy, ungy € L*(Q)}, satisfying conditions (13),
acts fromFE to F' defined as follows. The Banach spdceonsists of all functions
u(n, t) with the finite norm

lullf = sup_ w7l + lenlzgg) (14)

<7<
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The Hilbert spacd’ consists of the vector valued functiofs= (f, o) with
the norm

1% = 1£1Z20q) + lloll72(q) - (15)
We assume that the data functiersatisfies the conditions of the form (13),
o(0) =0o(l) =0. (16)

We first establish a priori estimate for the solution of problem (11)-(13).

3. A PRIORI BOUND FOR THESOLUTION

Theorem3.1 — For any functionu € D(L), there exists a positive constant
independent of such that

2 2
sup [, 7)) + gl

0<r<T
< (If72g) + o) (17)
where
atl G
C = ,ye'yT’ v = maX(‘T’ 12 1) . (18)

PROOF: For the equation (11) am@™ = Q2 x (0, 7), we have

(,C’LL, U)LQ(QT) = (Ut, U)L2 (QT) — (unm U)L2 (QT)
— (e, w) 2gry — (Buiguny, w2y (19)

By using conditions (12) and (13), the right-hand side of (19) can be evaluated
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as follows
1 2 T2
(ue, u)r2(Qry = B [lw(n, T 720) — B lollZ2 () - (20)
1
_(UnmU)B(QT) = 5”“%”%2(@)7 (21)
o o
_<0‘unnta“)L2(QT) = b) Hun(nﬂ')H%Q(Q) ) HUUH%Q(Q)v (22)
B[ 8
—(ﬁu%um],u)Lz(QT) = -3 u%u I dt+3/QT u%dndt. (23)

0
Equality (23) implies that
2 AT 24
—(Busytiam; u) 12(Qr) = 3 HUnHLzl(er (24)
Substituting (20)-(22) and (24) into (19), we obtain
1 o B
9 ”U(%T)H%?(Q) + HUWH%Q(QT) + 9 ”UW(WT)H;(Q) + 3 \\unlli4(Qf)

1 2 o 2
Y ||U||L2(Q) + 9 H%Hm(g) + (Lu, u)r2(gr)- (25)

If we discard the fourth term on the left-hand side of (25) and apply Catichy
inequality, we get

HU(T], T)H%{HQ) + HUWH%Z(QT)

IN

1 (113 oy + 1122(gm) + NulZ2(gr)

7 (Il @) + 1 132gr) + Iiliaory) (26)

VAN

where

I

2O|Q [po)—

)
3

Application of Gronwall’s lemma [14] to the inequality (26), implies that

max

)

min(z,

S NG

(T 1y + lumll72 )
< 707 (12 + ol @7
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As the right-hand side of the above inequality (27) is independentwé take
the least upper bound in its left-hand side with respeetfimm 0 to 7', to obtain
the desired inequality

2 2
sup ||u(n, T + ||u
zup a7 + lual 2 g

< 7" (12 + ol ) - (28)

Let R(L) be the range of the operatér However, since we do not have any
information aboui?(L), exceptthafz(L) C F, we must extend,, so that estimate
(28) holds for the extension and its range is the whole spadte first state the
following proposition.

Proposition3.2 — The operatof. : £ — F admits a closurd..
PrROOF: The proof is similar to that in [13].
Let L be the closure of this operator, with domain of definition L).

We define a strong solution of problem (10)-(13) as the solution of the operator
equation:Lu = (f,o) forallu € D(L).

The apriori estimate (17) can be extended to strong solutions, i.e., we have the
estimate

2 2
sup ||u(n, T + ||lu
0gr< [Ju( )HL?(SZ) | 77”[,2(@)

< (B2 +llolie) . ¥ue D). (29)

It can be deduced from the a priori estimate estimate (29) that the ranige

of the operatoL is closed inF" and is equals to the closufé(L) of R(L), that is
R(L) = R(L).
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4. EXISTENCE OFSOLUTION

Theorem4.1— For all F = (f,0) € F, there exists a unique strong solution
w=T 'F = L-F of the problem (11)-(13).

PROOF: From the fact thal?(L) = R(L), we deduce that to prove the exis-
tence of the strong solution, it is sufficient to show the range of the opekaor
everywhere dense in the spaEethat isL is injective. To this end, we first prove
the following proposition.

Proposition4.2 — Let Dy (L) be the set of all: € D(L) vanishing in a neigh-
bourhood oft = 0. If for ¢ € L?(Q) and for allu € Dy(L), we have

(EU, ¢)L2(Q) =0, (30)
then the functior vanishes almost everywheregh

PrRoOF(of proposition 4.2) : Assume that (30) holds for ang Dy(L). Using
this fact, it can be expressed in a particular form. First define the funetimnthe
formula

T
o(0.6) = [ (n.5)ds. (31)
t
Let 0u/0t be a solution of the equation
And let

U(77» t) = ¢ . (33)

It follows from above that

¢(777 t) = _utt(na t)' (34)
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We have the following result:

Lemma4.3 — The functionu defined by (32) and (33) has derivatives with
resect tat up to the second order belonging#é(Q.),whereQ. = Q x (z,T).

PROOF: For the proof, the reader should refer to [11].

To complete the proof of proposition 4.2, we replagén, t) in (30) by its
representation (34). We have

— (e, wet) p2(Q) + (U, unt) £2(Q) + (e, uet) 12(qQ)

+(Butiny, ) L2(Q) = 0. (35)

Invoking relations (32), (33) and the boundary conditions (13), and carrying
out appropriate integrations by part of each term of (35), we obtain

1
— (e, un) p2(@) = 5 llue(n, 2@y - (36)

(Unna Utt)LQ(Q) = ”uth%ﬁ(Qz) ) (37)

T
(aunnt,utt)Lz(Q) = a/ Ut dndt = a/untutt |f) dt—a/ Ut Uggndndt
Q Q=

z

l
= —a/ufﬁ H d77+04/Q Ut U dndt. (38)
0 z
Equality (38) gives
«
(e, wet) 12(@) = 5 Iluen(n, T2y (39)
(5“3“nnvutt)L2(Q) = ﬁ/QU%UmyUttd??dt

T
= ﬁ/u%utt \6 dt—ﬁ/ uiuttndxdt
Q-
z

-2 / u%um,uttdndt. (40)
Q=
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It follows from (40) that

B
(ﬂu%unn,utt)Lz(Q) = -3 0 uguttndndt

l

= _g/u gy L d77+ﬂ/ u utndndt
= 0 / U utndndt (42)

Substitution of (36), (37), (39) and (41) into (35), yields
HUt(n, )||L2(Q) + Huthm(Qz) +5 Hum(m )Hi%g)
+ﬂ/ U umdndt = 0. (42)
It follows from (42) thatp(n, t) = 0 almost everywhere ip).. Proceeding in

this way step by step, we prove thét), t) = 0 almost everywhere iy. Therefore,
the proof of Proposition 4.2 is complete.

Now consider the general case.

Theorem4.4— The rangeR(L) of the operatorL coincides with the whole
spaceF.

PROOF: Assume that for somé& = (¢, go) € {R(L)}™*

(Lu, G)F = (Lu, ) r2(q) + (bu, go)2() = 0, (43)

We must show that! = 0.
Puttingu € Dy(L) in (43), we obtain

(L:U, @)LQ(Q) =0, u € D[)(L)

Hence, Proposition 4.2 implies that= 0. Thus (43) takes the form

(Cu, go)r2(q) = 0, Yu € D(L). (44)
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As the range of the trace operatois everywhere dense in the Hilbert space

L?(9), then relation (44) implies that = 0. Hence,G = 0, and thusR(L) = 0.
Remark The same analysis can be done to treat the problem

Lu = Ut — Upn — QUnnt — ﬁu%unn = f(na t)
u(n,0) =0,
uw(0,t) =1, wu(l,t) — 0 whenl — oo

which reduces to Stokes’ first problem.
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