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We establish the starshapedness (with respect to the origin) of coincidence
set in the obstacle problem for second order elliptic equations.
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1. INTRODUCTION

In this paper we consider the obstacle problem for second order elliptic equations
associated with the operator

Au = —div a(Vu) inD'(Q),
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where() is an open bounded domain®¥ (N > 2) and the functio: = a(n) :
RN — R¥ is continuously differentiable im; € RY \{0}. Given a function
P € WHP(Q)(1 <p< o), we define

Ky = {veWyP(Q); v >, ae. inQ},
which is nonempty provided™ e Wol’p(Q).
A functionu in Ky, is a solution to the obstacle problem

Au=f in{u>¢}={r € Qu(x) > Y(x)}, (1.2)

/ a(Vu)V(v — u)dz > / flv—u)dz, Yve Ky,
Q Q
wheref is a given function in somé&?((2).

Let I(¢)) be the coincidence set defined by

I(¢) = {z € Qyu(z) = P(z)}.

According to the known results (see [1-8] for instance), any bounded solution
u to (1.1) isCH7(Q) for somer € (0,1) wheng > N. Moreover,

Au — (AY — fxpw) = f a.e.infd.

But there is only little information regarding the coincidence Ke#) or the
free boundanyI(y). For N = 2, under the hypotheses of convexity @fand
analyticity and strong concavity af, it was shown in [9] and [10] thak(¢)) is a
regular analytic Jordan curve (see also [11]). For> 2, it is not known whether
or not the same hypotheses imply the same conclusion. In 1984, Sakaguchi con-
sidered the obstacle problem for the harmonic operator (see [12]). Using an idea
of Caffarelli and Spruck [13], the author showed that the coincidence set is star-
shaped with respect to the origin, and théf«) is a regular analytic hypersurface
under certain conditions on the obstacle. Later then, using an idea of Lewis [14],
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Sakaguchi proved that the solution to the obstacle problem is real analytic in the
noncoincidence set. Proceeding as in the case of the harmonic operator, the author
obtained the starshapedness of the coincidence set fgr-tharmonic operator

with p > 1 (see [15]).

We should note that it is important to assufaés convex andp is concave to
establish the starshapedness of the coincidence set (see [11, 12, 15]). Moreover,
we should note that in the earlier year, starshapedness of level sets of the solution
to the obstacle problem with = 2 was proved by Kawohl [16].

Thanks to theC':®—regularity in the obstacle problem fpr-Laplacian type
equations withp > 1
—diva(z,Vu) = f in{u> ¢},

obtained by Rodrigues recently [1], this paper will focus on the starshapedness
in the obstacle problem (1.1) by using a similar technique to [12,15]. The result
obtained in this paper is naturally an extensiop-eharmonic obstacle problem.

We use the standard structural assumptions on the opetatswe [1,17,18]),
namely

a'(0) =0, (1.2)
N 9al
> 5 (&&= vl el (1.3)
ij=1 j
da’
< p—2 14
!anj(n)l_vlln\ 7 (1.4)
for some positive constantg,y; > 0, all » € RV\{0}, and all¢ € RV i, =

1,..,N.

Under the assumptions on the operatgrone may get the following weak
comparison principle for general elliptic equations (see [19]).

Propositionl.1 (Weak Comparison Principle) — Suppoésatisfies the struc-
tural conditions (1.2)-(1.4). Let,v € WHP(Q) N L*°(Q) satisfy

—div a(Vu) < —diva(Vv) inf.
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If Q' C Qisopenand: < vond,thenu <wvin .

For the existence of a solution to (1.1) wittblder continuous gradient, we
assume that

f, A € L*°(Q), 99 € ¢ for somea € (0, 1).

Remarkl.2 : According to [1], there exists a unique solutioto (1.1). More-
over,u € C1#(Q) for somes € (0, 1).

In order to obtain starshapedness of coincidence set, we need to make more
restrictive assumptions oA, i.e.

(A1) a(n) is C2—continuous im € RV \ {0}.

(Aq) For anyn € RY satisfying|n| < M, there exists a constat, =
Co(Mp) such thaly™ " ai, ()1 = Coal, (n) holds for alli, j = 1,..., N.

Remarkl.3 : One may verify easily that the-Laplace operator satisfi€é8.;)
and(Az).

2. STARSHAPEDNESS OFCOINCIDENCE SET

In this paper, as the previous work done by Sakaguchi, we asSuisia convex
domain inR™ with the origin0 € Q and f = 0 (we state Remark 2.6 fof # 0

in the end of this paper). Lét € C1(Q) N C?(22\ {0}) be a nonnegative convex
function which is positive oS and homogeneous of degree- 1 in 2. Give the
certain obstacle) € C*(Q) N C?(Q2\ {0}), which is negative 002, defined by

Y(x) = —h(z) + ¢, (2.1)

wherec > 0 is a positive constant.

Under the assumptions on the operator A((1.2)-(1.4),) and(A»)), letu be
the solution to (1.1). The main result in this paper is as follows.
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Theorem?2.1 — The coincidence seft(v)) is starshaped with respect to the
origin 0.

The proof of Theorem 2.1 will be given later. Firstly, we claim
Proposition2.2 — There exists a number> 0 such thatB,.(0) C I(v).

PrROOF: Let I; be the set of pointg € 2 for which the tangent plane of the
graph('> w()) at (yv ¢(y))1

Oy, anp1 = Wy(z) = Vo(y) - (z —y) + ¥ (v),

does not meédt x {0}. Sinceh is homogeneous of degregsoh(0) = 0, maxq ¢ =
(0) = ¢ > 0, thus0 € I;. Moreover, since) € C*(Q), I; contains a neighbor-
hood of0. Now for anyy € I, we claimu(xz) < Wy (z) in .

Indeed,
W, > 0 =u onof,
Wy > =winI(v). (2.2)
Particularly, due to the closednessiof)), we have

Wy > ¢ =wuondl(v).

On the other hand, it is easy to see

AWy = —div a(VWy(z)) = —diva(Vi(y)) =0 = Auin Q\ I(¢)).

We deduce from Weak Comparison Principle (Proposition 1.1)dka; <
Wy(x)inQ\ I(v). Furthermore, we get(z) < W, (z) in Q by (2.2).

Now note that)(y) < u(y) < Wy(y) = ¥(y). Thusy € I(¢). It follows that
I, C I(v). This completes the proof.

Now, basing on Remark 1.2, we introduce the function C°(Q2) defined by

v(x) = - V(u—9)(r) = s(u—y)(x). (2.3)
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It follows from the homogeneity of degree bfz) that
x - Vh(xz) = sh(z) ingQ, (2.4)
which and (2.1) and (2.3) imply

v(z) =z - Vu —su(z) + sc inQ. (2.5)

For v defined by (2.3), we claim
Proposition2.3 —v > 0 on 9f).

PROOF: Fix any pointz? € 0. By convexity ofQ2 and Proposition 2.2, one
may find a planéI; through the tangent t6Q at z° which is tangent to the graph
(+,9(-)) at some point. Also, througH; one may find anther plarié; which is
tangent to the graph, ¢ (-)) at some pointz, ¢ (z)) € © x R such that

z €I, ¥(z) >0,
and

W, (z%) = Vii(2) - (2 — 2) +9(2) = 0.

Note thatiV, > 0 =uonoQ, W, > ¢ =win I(y), I(¢) is closed, and

AW, =0=Au inQ\ I(s).

It follows from Weak Comparison Principle that
W, >u inQ\ ().
SinceW,(z°) = 0 = u(z?) andz? is regarded as an outward directed vector
from Q atz® € 99, we have

2 V(u(z®) - 0) > 2% - V(W,(2°) — 0).
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Therefore

2V Vu(z?) > 20 VIV, (20) = 2% - Vi (2) = —p(2) + 2 - Vi(2).

By (2.1)(2.4) and (2.6), we deduce
2% Vu(x®) 4+ sc > (s — 1)(2),

which implies

v(aY) 2% Vu(z?) — su(z®) + sc
2% Vu(x?) + sc

(s —1)u(z) > 0.

Y

v

This completes the proof of Proposition 2.3.
Now we prove

Lemma2.4 —v > 0in Q.

(2.6)

PrROOF: We use analogous technique as [15] to prove this lemma. Slince

0 inQ\ I(y), we have

N N ; au
ZZ a;f =0 InQ\ ().
i=1 j=1 v

77]

Applying the differential operatar - V to (2.7) and using (2.5), we get

N
Z 37 (Vu)vg,z; + Z Z an;n (Vu)ug,,z; ) va;

(2.7)

7j=1 i,m=1
N
Zag Vuux]ml
i,0=1
N
(s—1) Z o (VW)U Uz, =0 IN QN I(2)).

Z ,m=

411
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On the other hand, by (2.7) ang At follows

N N
(S - 1) Z a%jn’m (vu)uxjxiuan = CO(S - 1) Z a%j (vu)u%ml
i,7,m=1 ij=1
= 0 inQ\I(y). (2.8)
Therefore,
. N .
L(v) = div [(Vv)(aﬁ,j(Vu))%XN] = Z a%j (V) Uz,
ij=1
N N '
+Z( Z a%j"]mummxi)v$j
7j=1 i;m=1
= 0=L(0) inQ\I(s), (2.9)

) _ i i T . .
wherea; (Vu) = a; (Vu)(Vu), (%(W))NW istheN x N matrix

ay, (Vu) aﬁ;l (Vu
1 N
7 T _ CL772 (VU) Qy, (Vu)
(an (vu))NXN "
ay (Vu) ... all (Vu) NN

By Proposition 2.3 and the fact= 0 on9I(v), we havev > 00n9(Q\I1(v))).
We deduce from comparison principle for linear operator that0 in €.

Proof of Theorem 2.1: By Lemma 2.4, we have> 0 in  \ I(¢), which
implies

x-Vu—1)>s(u—1)>0inQ\ I(Y). (2.10)

By the definition of (), we deduce that the coincidence g¢t)) is star
shaped with respect to the origin. Indeed, if this is not true, then there exist a
unit vectoré € RY and two positive constants,t, with t; < t, such that

1€ € I(v),t2€ € I(v) andtg € Q\I(y) forallt € (¢1,t2). Since(u—1)(t;€) =
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0(i = 1,2), we get by the mean value theorem thet- V(u — 9)(t0&) = 0 for
somety € (t1,t2), which is a contradiction to (2.10).

Remark2.5: Itis obvious thatit > 2 andf(z) = C is a nonpositive constant,
then Theorem 2.1 holds.

Remark2.6 : Suppose € C''(Q) is homogeneous of degree> 0 in 2, andc
is a nonnegative constant. Lgtbe nonpositive if2 and given byf = —g — ¢. If
Cy>0,s>2andt > 0,0rCy > 0,s > 1 andt > max{2 — s,0}, then Theorem
2.1 holds. Indeed, sincg is nonpositive, one can apply comparison principle in
Proposition 2.3 and Theorem 2.2 as well. Now we need to show the process of
Lemma 2.4 is valid. It suffices to note that (2.8) becomes

N N
(s—1) Z a%jnm(Vu)uxjxiumm = Co(s—1) Z al (V)i z,
ivjvmzl ’LJ:l

= —Co(s—1)f InQ\I[).

and (2.9) becomes

N
L(v) = dv[(Vo)(a), (Va)Fn] Z (V)0

N
7
+Z Z Ay Yeme, | Uz,
Jj=1

i,m=1

= flt+Co(s—1)+s—=2]—tc<0=L(0) iInQ\ I(¢).
Remark2.7 . If the obstacle functiog is cone-like (“cone” with smooth ver-
tex), i.e.,h is given as below
(Hy) h(kx) = kh(z)inQ\ B, (0), Vk € Rs.t.kx € Q\ B, (0),
wheree is a positive constant and small enough.

(H2) hg= sup h<ec.
Be, (0)

Then one can obtain the desired result as well.
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Indeed one may prove the following proposition.

Proposition2.2 — There exists a number> 0 such thatB.,(0) C B,(0)
C I(¥).

PROOF: Let I7 be the set of pointg € 2 for which the tangent plane of the
graph('7 ﬂ’()) at (y> w(y))i

Iy oy = Wy(x) =Vi(y) - (z —y) +¥(y),

does not meef2 x {0}. Sinceh satisfies(H>), by the definition ofy, it follows
infp, ¢ > 0. ThusB, C I;. Moreover, since) € C1(Q), I contains a neigh-
borhood ofB,,. As Proposition 2.2, one may get the desired result.

Now definev = z-V (u—1)— (u—1) in . By (2.9) we have:-Vh(z) = h(x)
inQ\ I(y))andv =z -u—wu+cinQ\ I(x). Due to Proposition 2.2’, one may
use the same method as before to prove 0 on 9Q andv > 0in Q \ I(v) by
replacings > 1 with s = 1in Q\ I(¢)). Then one may obtain the starshapedness
of the coincidence set.
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