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We establish the starshapedness (with respect to the origin) of coincidence

set in the obstacle problem for second order elliptic equations.
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1. INTRODUCTION

In this paper we consider the obstacle problem for second order elliptic equations

associated with the operator

Au = −div a(∇u) in D′
(Ω),
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whereΩ is an open bounded domain inRN (N ≥ 2) and the functiona = a(η) :
RN → RN is continuously differentiable inη ∈ RN \{0}. Given a function

ψ ∈ W 1,p(Ω)(1 <p< ∞), we define

Kψ = {v ∈ W 1,p
0 (Ω); v ≥ ψ, a.e. inΩ},

which is nonempty providedψ+ ∈ W 1,p
0 (Ω).

A functionu in Kψ is a solution to the obstacle problem

Au = f in {u > ψ} = {x ∈ Ω;u(x) > ψ(x)}, (1.1)

if
∫

Ω
a(∇u)∇(v − u)dx ≥

∫

Ω
f(v − u)dx, ∀ v ∈ Kψ,

wheref is a given function in someLq(Ω).

Let I(ψ) be the coincidence set defined by

I(ψ) = {x ∈ Ω; u(x) = ψ(x)}.

According to the known results (see [1-8] for instance), any bounded solution

u to (1.1) isC1,τ (Ω) for someτ ∈ (0, 1) whenq > N . Moreover,

Au− (Aψ − f)χI(ψ) = f a.e. inΩ.

But there is only little information regarding the coincidence setI(ψ) or the

free boundary∂I(ψ). For N = 2, under the hypotheses of convexity ofΩ and

analyticity and strong concavity ofψ, it was shown in [9] and [10] that∂I(ψ) is a

regular analytic Jordan curve (see also [11]). ForN > 2, it is not known whether

or not the same hypotheses imply the same conclusion. In 1984, Sakaguchi con-

sidered the obstacle problem for the harmonic operator (see [12]). Using an idea

of Caffarelli and Spruck [13], the author showed that the coincidence set is star-

shaped with respect to the origin, and that∂I(ψ) is a regular analytic hypersurface

under certain conditions on the obstacle. Later then, using an idea of Lewis [14],
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Sakaguchi proved that the solution to the obstacle problem is real analytic in the

noncoincidence set. Proceeding as in the case of the harmonic operator, the author

obtained the starshapedness of the coincidence set for thep−harmonic operator

with p > 1 (see [15]).

We should note that it is important to assumeΩ is convex andψ is concave to

establish the starshapedness of the coincidence set (see [11, 12, 15]). Moreover,

we should note that in the earlier year, starshapedness of level sets of the solution

to the obstacle problem withp = 2 was proved by Kawohl [16].

Thanks to theC1,β−regularity in the obstacle problem forp−Laplacian type

equations withp > 1

−div a(x,∇u) = f in {u > ψ},
obtained by Rodrigues recently [1], this paper will focus on the starshapedness

in the obstacle problem (1.1) by using a similar technique to [12,15]. The result

obtained in this paper is naturally an extension ofp−harmonic obstacle problem.

We use the standard structural assumptions on the operatorA( see [1,17,18]),

namely

ai(0) = 0, (1.2)
N∑

i,j=1

∂ai

∂ηj
(η)ξiξj ≥ γ0|η|p−2|ξ|2, (1.3)

|∂ai

∂ηj
(η)| ≤ γ1|η|p−2, (1.4)

for some positive constantsγ0, γ1 > 0, all η ∈ RN\{0}, and allξ ∈ RN , i, j =
1, ..., N.

Under the assumptions on the operatorA, one may get the following weak

comparison principle for general elliptic equations (see [19]).

Proposition1.1 (Weak Comparison Principle) — SupposeA satisfies the struc-

tural conditions (1.2)-(1.4). Letu, v ∈ W 1,p(Ω) ∩ L∞(Ω) satisfy

−div a(∇u) ≤ −div a(∇v) in Ω.
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If Ω′ ⊆ Ω is open andu ≤ v on∂Ω′, thenu ≤ v in Ω′.

For the existence of a solution to (1.1) with Hölder continuous gradient, we

assume that

f, Aψ ∈ L∞(Ω), ∂Ω ∈ C1,α for someα ∈ (0, 1).

Remark1.2 : According to [1], there exists a unique solutionu to (1.1). More-

over,u ∈ C1,β(Ω) for someβ ∈ (0, 1).

In order to obtain starshapedness of coincidence set, we need to make more

restrictive assumptions onA, i.e.

(A1) a(η) is C2−continuous inη ∈ RN \ {0}.

(A2) For anyη ∈ RN satisfying |η| ≤ M0, there exists a constantC0 =
C0(M0) such that

∑N
m ai

ηjηm
(η)ηm = C0a

i
ηj

(η) holds for alli, j = 1, ..., N .

Remark1.3 : One may verify easily that thep−Laplace operator satisfies(A1)
and(A2).

2. STARSHAPEDNESS OFCOINCIDENCE SET

In this paper, as the previous work done by Sakaguchi, we assumeΩ is a convex

domain inRN with the origin0 ∈ Ω andf ≡ 0 (we state Remark 2.6 forf 6= 0
in the end of this paper). Leth ∈ C1(Ω) ∩ C2(Ω \ {0}) be a nonnegative convex

function which is positive on∂Ω and homogeneous of degrees > 1 in Ω. Give the

certain obstacleψ ∈ C1(Ω) ∩ C2(Ω \ {0}), which is negative on∂Ω, defined by

ψ(x) = −h(x) + c, (2.1)

wherec > 0 is a positive constant.

Under the assumptions on the operator A((1.2)-(1.4),(A1) and(A2)), let u be

the solution to (1.1). The main result in this paper is as follows.
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Theorem2.1 — The coincidence setI(ψ) is starshaped with respect to the

origin 0.

The proof of Theorem 2.1 will be given later. Firstly, we claim

Proposition2.2 — There exists a numberr > 0 such thatBr(0) ⊂ I(ψ).

PROOF : Let I1 be the set of pointsy ∈ Ω for which the tangent plane of the

graph(·, ψ(·)) at (y, ψ(y)),

Πy : xN+1 = Wy(x) = ∇ψ(y) · (x− y) + ψ(y),

does not meetΩ×{0}. Sinceh is homogeneous of degrees, soh(0) = 0, maxΩ ψ =
ψ(0) = c > 0, thus0 ∈ I1. Moreover, sinceψ ∈ C1(Ω), I1 contains a neighbor-

hood of0. Now for anyy ∈ I1, we claimu(x) ≤ Wy(x) in Ω.

Indeed,

Wy ≥ 0 =u on∂Ω,

Wy ≥ ψ = u in I(ψ). (2.2)

Particularly, due to the closedness ofI(ψ), we have

Wy ≥ ψ = u on∂I(ψ).

On the other hand, it is easy to see

AWy = −div a(∇Wy(x)) = −div a(∇ψ(y)) = 0 = Au in Ω \ I(ψ).

We deduce from Weak Comparison Principle (Proposition 1.1) thatu(x) ≤
Wy(x) in Ω \ I(ψ). Furthermore, we getu(x) ≤ Wy(x) in Ω by (2.2).

Now note thatψ(y) ≤ u(y) ≤ Wy(y) = ψ(y). Thusy ∈ I(ψ). It follows that

I1 ⊂ I(ψ). This completes the proof.

Now, basing on Remark 1.2, we introduce the functionv ∈ C0(Ω) defined by

v(x) = x · ∇(u− ψ)(x)− s(u− ψ)(x). (2.3)
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It follows from the homogeneity of degree ofh(x) that

x · ∇h(x) = sh(x) in Ω, (2.4)

which and (2.1) and (2.3) imply

v(x) = x · ∇u− su(x) + sc in Ω. (2.5)

Forv defined by (2.3), we claim

Proposition2.3 —v > 0 on∂Ω.

PROOF : Fix any pointx0 ∈ ∂Ω. By convexity ofΩ and Proposition 2.2, one

may find a planeΠ1 through the tangent to∂Ω atx0 which is tangent to the graph

(·, ψ(·)) at some point. Also, throughΠ1 one may find anther planeΠ2 which is

tangent to the graph(·, ψ(·)) at some point(z, ψ(z)) ∈ Ω× R such that

z ∈ I1, ψ(z) > 0,

and

Wz(x0) = ∇ψ(z) · (x0 − z) + ψ(z) = 0.

Note thatWz ≥ 0 =u on∂Ω, Wz ≥ ψ = u in I(ψ), I(ψ) is closed, and

AWz = 0 = Au in Ω \ I(ψ).

It follows from Weak Comparison Principle that

Wz ≥ u in Ω \ I(ψ).

SinceWz(x0) = 0 = u(x0) andx0 is regarded as an outward directed vector

from Ω atx0 ∈ ∂Ω, we have

x0 · ∇(u(x0)− 0) ≥ x0 · ∇(Wz(x0)− 0).
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Therefore

x0 · ∇u(x0) ≥ x0 · ∇Wz(x0) = x0 · ∇ψ(z) = −ψ(z) + z · ∇ψ(z). (2.6)

By (2.1)(2.4) and (2.6), we deduce

x0 · ∇u(x0) + sc ≥ (s− 1)ψ(z),

which implies

v(x0) = x0 · ∇u(x0)− su(x0) + sc

≥ x0 · ∇u(x0) + sc

≥ (s− 1)ψ(z) > 0.

This completes the proof of Proposition 2.3.

Now we prove

Lemma2.4 —v ≥ 0 in Ω.

PROOF: We use analogous technique as [15] to prove this lemma. SinceAu =
0 in Ω \ I(ψ), we have

N∑

i=1

N∑

j=1

∂ai(∇u)
∂ηj

∂uxj

∂xi
= 0 in Ω \ I(ψ). (2.7)

Applying the differential operatorx · ∇ to (2.7) and using (2.5), we get

N∑

i,j=1

ai
ηj

(∇u)vxixj +
N∑

j=1

(
N∑

i,m=1

ai
ηjηm

(∇u)uxmxi)vxj

+ (s− 2)
N∑

i,j=1

ai
ηj

(∇u)uxjxi

+ (s− 1)
N∑

i,j,m=1

ai
ηjηm

(∇u)uxjxiuxm = 0 in Ω \ I(ψ).



412 JUN ZHENGet al.

On the other hand, by (2.7) and A2, it follows

(s− 1)
N∑

i,j,m=1

ai
ηjηm

(∇u)uxjxiuxm = C0(s− 1)
N∑

i,j=1

ai
ηj

(∇u)uxjxi

= 0 in Ω \ I(ψ). (2.8)

Therefore,

L(v) = div [(∇v)(ai
ηj

(∇u))T
N×N ] =

N∑

i,j=1

ai
ηj

(∇u)vxixj

+
N∑

j=1

(
N∑

i,m=1

ai
ηjηm

uxmxi)vxj

= 0 = L(0) in Ω \ I(ψ), (2.9)

whereai
ηj

(∇u) = ai
ηj

(∇u)(∇u), (ai
ηj

(∇u))T

N×N
is theN ×N matrix

(ai
ηj

(∇u))T

N×N
=




a1
η1

(∇u) ... aN
uη1

(∇u)

a1
η2

(∇u) ... aN
uη2

(∇u)
...

...

a1
ηN

(∇u) ... aN
ηN

(∇u)




N×N

.

By Proposition 2.3 and the factv = 0 on∂I(ψ), we havev ≥ 0 on∂(Ω\I(ψ)).
We deduce from comparison principle for linear operator thatv ≥ 0 in Ω.

Proof of Theorem 2.1: By Lemma 2.4, we havev ≥ 0 in Ω \ I(ψ), which

implies

x · ∇(u− ψ) ≥ s(u− ψ) > 0 in Ω \ I(ψ). (2.10)

By the definition ofI(ψ), we deduce that the coincidence setI(ψ) is star

shaped with respect to the origin. Indeed, if this is not true, then there exist a

unit vector ξ ∈ RN and two positive constantst1, t2 with t1 < t2 such that

t1ξ ∈ I(ψ), t2ξ ∈ I(ψ) andtξ ∈ Ω\I(ψ) for all t ∈ (t1, t2). Since(u−ψ)(tiξ) =
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0(i = 1, 2), we get by the mean value theorem thatt0ξ · ∇(u − ψ)(t0ξ) = 0 for

somet0 ∈ (t1, t2), which is a contradiction to (2.10).

Remark2.5 : It is obvious that ifs ≥ 2 andf(x) ≡ C is a nonpositive constant,

then Theorem 2.1 holds.

Remark2.6 : Supposeg ∈ C1(Ω) is homogeneous of degreet ≥ 0 in Ω, andc̃

is a nonnegative constant. Letf be nonpositive inΩ and given byf = −g − c̃. If

C0 ≥ 0, s ≥ 2 andt ≥ 0, or C0 ≥ 0, s > 1 andt ≥ max{2− s, 0}, then Theorem

2.1 holds. Indeed, sincef is nonpositive, one can apply comparison principle in

Proposition 2.3 and Theorem 2.2 as well. Now we need to show the process of

Lemma 2.4 is valid. It suffices to note that (2.8) becomes

(s− 1)
N∑

i,j,m=1

ai
ηjηm

(∇u)uxjxiuxm = C0(s− 1)
N∑

i,j=1

ai
ηj

(∇u)uxjxi

= −C0(s− 1)f in Ω \ I(ψ).

and (2.9) becomes

L(v) = div [(∇v)(ai
ηj

(∇u))T
N×N ] =

N∑

i,j=1

ai
ηj

(∇u)vxixj

+
N∑

j=1




N∑

i,m=1

ai
ηjηm

uxmxi


 vxj

= f [t + C0(s− 1) + s− 2]− tc̃ ≤ 0 = L(0) in Ω \ I(ψ).

Remark2.7 : If the obstacle functionψ is cone-like (“cone” with smooth ver-

tex), i.e.,h is given as below

(H1) h(kx) = kh(x) in Ω \Bε0(0), ∀ k ∈ R s.t.kx ∈ Ω \Bε0(0),

whereε0 is a positive constant and small enough.

(H2) h0 = sup
Bε0(0)

h < c.

Then one can obtain the desired result as well.
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Indeed one may prove the following proposition.

Proposition2.2 — There exists a numberr > 0 such thatBε0(0) ⊂ Br(0)
⊂ I(ψ).

PROOF : Let I1 be the set of pointsy ∈ Ω for which the tangent plane of the

graph(·, ψ(·)) at (y, ψ(y)),

Πy : xN+1 = Wy(x) = ∇ψ(y) · (x− y) + ψ(y),

does not meetΩ × {0}. Sinceh satisfies(H2), by the definition ofψ, it follows

infBε0
ψ > 0. ThusBε0 ⊂ I1. Moreover, sinceψ ∈ C1(Ω), I1 contains a neigh-

borhood ofBε0 . As Proposition 2.2, one may get the desired result.

Now definev = x·∇(u−ψ)−(u−ψ) in Ω. By (2.9) we havex·∇h(x) = h(x)
in Ω \ I(ψ) andv = x · u− u + c in Ω \ I(ψ). Due to Proposition 2.2’, one may

use the same method as before to provev ≥ 0 on ∂Ω andv ≥ 0 in Ω \ I(ψ) by

replacings > 1 with s = 1 in Ω \ I(ψ). Then one may obtain the starshapedness

of the coincidence set.
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