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ABSTRACT. The present text consists of notes of several lectures on the proof of the

Sato-Tate Conjecture given up through 2008. The goal of the lectures was to explain the

statement and the main ideas of the proof. The notes are somewhat dated; shortly after

they were written, the author, together with Bernet-Lamb, Geraghty, and Taylor, were

able to prove the analogue of the Sato-Tate conjecture for all elliptic modular forms. In

particular, Theorems 2.4 and 2.5 are not conditional, and the condition on the j-invariant

in Theorem 1.1 is superfluous. Moreover, the methods of proof outlined in sections 3 and

4 have been generalized and extended in a number of ways, notably in a series of articles

by Barnet-Lamb, Gee, Geraghty, and Taylor, by Thorne, and by Calegari and Geraghty.

Key words : Elliptic curve; Sato-Tate Conjecture; automorphic representation; Galois

representation; Taylor-Wiles method

1. INTRODUCTION

An elliptic curve is the setE of solutions of a cubic curve in two variables, for example

E : y2 + y = x3 + x.

1Institut des Math́ematiques de Jussieu, U.M.R. 7586 du CNRS. Membre, Institut Universitaire de France.
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I will only consider elliptic curves with rational coefficients, which after a change of variables

can be written

y2 = x3 + Ax + B.

As abstract algebraic curves, these are not all distinct, and one can isolate two invariants: the

discriminant

∆E = −16(4A3 + 27B2)

which is not really an invariant ofE, but which has the following property: if∆E 6= 0 thenE

is non-singular, which we always assume. There is also thej-invariant, which really depends

onE and not just on the equation:

j(E) = 1728 · 4A3

4A3 + 27B2
.

The quantityj(E) determinesE up to isomorphism over an algebraically closed field.

Without (much) loss of generality, we may assumeA, B ∈ Z. It then makes sense to reduce

the equation modulo a primep and ask how many solutionsE has modulop:

Np(E) = |E(Fp)|.

Suppose for the moment we replaceE by a lineL, given by alinear equation

L : y = ax + b.

Then the number of solutions ofL in the planeFp
2 obviously equalsp, to which we add1 for

the point at infinity:

|L(Fp)| = p + 1.

It turns out thatp+1 is in a natural sense the optimal number of points for a curve ofanygenus

(or degree). Skipping over quadric curves, we define an integerap(E), for each primep, by

Np(E) = p + 1− ap(E).

We only considerp for which E remains nonsingular modulop, which is somewhat weaker

than the condition that∆E 6= 0 (mod p). Such ap is called aprime of good reduction.

One can date the beginning of arithmetic algebraic geometry to Hasse’s discovery that

|ap(E)| ≤ 2
√

p
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for any prime of good reduction. In other words,p + 1 is a good approximation toNp(E) to

square-root order. This can be compared to the square-root good approximation toπ(x), the

number of primes less thanx:

π(x) =
∫ x

2

dx

logx
+ Error(x)

where the Riemann hypothesis is the assertion that

Error(x) = O(x
1
2 )

andindeed Hasse’s theorem was generalized by Weil to a version of the Riemann hypothesis

valid for all curves over finite fields.

The next question is whether anything can be said about the behavior of theap(E) asp varies.

Is ap(E) more likely to be positive or negative? Is it more likely to cluster around0 or around

±2
√

p? The rough answer is that it is as random as possible, but it is not immediately obvious

how to make sense of this. We normalize all theap(E) simultaneously to allow them to be

compared:

anorm
p (E) =

1
2
√

p
ap(E) ∈ [−1, 1].

Thusthere is a uniqueθp = θp(E) ∈ [0, π] such thatanorm
p (E) = cos(θp). We ask about the

distribution of theanorm
p in [−1, 1], or equivalently of theθp ∈ [0, π]. Over forty years ago,

Sato and Tate independently formulated the following conjecture:

Sato-Tate Conjecture.SupposeE has no complex multiplication. Then theanorm
p (E) (resp.

theθp) are equidistributed in[−1, 1] (resp.[0, π]) with respect to the probability measure

2
π

√
1− t2dt (resp.

2
π

sin2(θ)dθ ) .

Regarding the initial hypothesis mostE have no complex multiplication. In particular, if

j(E) ∈ Q − Z, thenj(E) has no complex multiplication. In this setting the conjecture was

proved in 2006:

Theorem 1.1 (Clozel, Harris, Shepherd-Barron, Taylor)2 Supposej(E) is not an integer.

Then the Sato-Tate Conjecture is valid forE.

2Somereferences, e.g. [G, p. 347], have chosen to save space by offering an abbreviated version of this list.
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For E with complex multiplication the distribution of theanorm
p (E) is different: for half of

p, ap(E) = 0. The distribution has a more natural description in terms of the quadratic field

defining the complex multiplication, and is an easy consequence of class field theory.

Serre explained in his 1968 notes on elliptic curves [S1] how to derive the Sato-Tate conjecture

from Tauberian theorems of the sort used to prove the prime number theorem. The main input

is the following. One needs to rewrite the expression forNp(E):

Np(E) = (1−√peiθp)(1−√pe−iθp) = (1− αp)(1− βp)

and to define more generally

(1.2) Lp(s,E) = [(1− αpp
−s)(1− βpp

−s)]−1; Np(E) = Lp(0, E)−1

Let S be the set of primes of bad reduction forE, and define

L(s,E) =
∏

p/∈S

Lp(s,E)×
∏

p∈S

Lp(s,E)

with explicit factorsLp(s,E) for p ∈ S, simpler than those for primes of good reduction.

It follows from Hasse’s estimate thatL(s, E) converges absolutely forRe(s) > 3
2 . Now one

can attach a very similar Dirichlet series to a holomorphic modular (cusp) formf of weight2.

This is a holomorphic function on the upper half plane{x + iy ∈ C | y > 0} that satisfies the

following functional equation:

f(
az + b

cz + d
) = (cz + d)2f(z)

for all z and all

(
a b

c d

)
belonging to an appropriate subgroupΓ ⊂ SL(2,Z) of finite

index. Such a modular cusp form is also assumed to satisfy an appropriate growth condition

that implies that it admits a Fourier expansion

f(z) =
∞∑

n=1

an(f)qn, q = e2πiz

whose corresponding Dirichlet series is defined by

L(s, f) =
∞∑

n=1

bnn−s.
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It is known thatL(s, f) extends to an entire analytic function that satisfies a functional equation

relatingL(s, f) to L(2 − s, f), and such thatL(s, f) 6= 0 for Re(s) ≥ 3
2 . The most striking

development of number theory in recent years was Wiles’ discovery of a technique for proving

that anyL(s,E) is also anL(s, f), specifically

(1.3) L(s,E) = L(s, fE), fE = q +
∑

n≥2

an(E)qn

where whenn = p is a prime not inS, the coefficientan(E) is theap(E) defined above.

With help from Taylor, Wiles applied this technique to a sufficiently large family ofE to prove

Fermat’s Last Theorem. A few years later, Taylor, together with Breuil, Conrad, and Diamond,

proved that everyL(s,E) is anL(s, f). In particular,

Theorem [BCDT]. L(s,E) extends to an entire analytic function with no zeroes on the half-

planeRe(s) ≥ 3
2 .

From the information contained in theNp(E) one can construct an infinite family ofL-

functions. For eachn ≥ 0, define

Lp(s,E, Symn) = [
n∏

j=0

(1− αj
pβ

n−j
p p−s)]−1

if p /∈ S; I again omit the definition forp ∈ S. We define

L(s,E, Symn) =
∏
p

Lp(s,E, Symn).

Thus forn = 0 we find the Riemann zeta function and forn = 1 we haveL(s,E). Hasse’s

estimates imply thatL(s,E, Symn) converges absolutely forRe(s) > 1 + n
2 .

Theorem 1.4 (Serre, [S1]).SupposeE is an elliptic curve and, for alln > 0, L(s,E, Symn)

extends to a meromorphic function that is holomorphic and non-vanishing forRe(s) ≥ 1 + n
2 .

Thenthe Sato-Tate Conjecture holds forE.

The results of the three papers [CHT], [HST], and [T] together imply this sufficient condition:

Theorem 1.5 (Clozel, Harris, Shepherd-Barron, Taylor).SupposeE is an elliptic curve over

Q with non-integralj-invariant. Then for alln > 0, L(s,E, Symn) extends to a meromorphic

function that is holomorphic and non-vanishing forRe(s) ≥ 1 + n
2 .

Thenext section reviews the proof of Theorem 1.4 in the language of Galois representations,

the perspective emphasized in [S1].
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2. EQUIDISTRIBUTION

2.1. Galois representations and associatedL functions. Let F+ be a totally real field. Those

who prefer can assumeF+ = Q.

LetE be an elliptic curve overF+. ToE we associate a2-dimensional̀ -adic representation for

any prime`: let ρE,` : Gal(Q/F+) → GL(2,Q`) denotethe representation onH1(EQ,Q`),

i.e. the dual of thè -adic Tate module. AssumeF+ = Q for the time being. Then this

representation encodes all information about|E(Fp)| for almost allp, in the following sense.

Remember that in the previous section we mentioned primes of good reduction. Supposep is

a prime of good reduction forE, and suppose alsop 6= `. Then we can recoverap(E) from

ρE,`. Let Frobp ∈ Gal(Q/Q) bea Frobenius element forp. This is defined at the beginning

of a course in algebraic number theory. We know thatGal(Fp/Fp) is generated by an element

φp with the property that,

∀x ∈ Fp, φp(x) = xp.

For technical reasons, we prefer to work withFrobp = φ−1
p . This is an element ofGal(Fp/Fp),

but if we extend thep-adic valuation onQ to a valuationv onQ, the decomposition subgroup

Γv ⊂ Gal(Q/Q) fixing v is isomorphic toGal(Q̄p/Qp). SinceE has good reduction atp and

p 6= `, the representationρE,` is unramifiedat p, which means in particular that it is trivial

on the inertia subgroupIv ⊂ Γv, hence factors throughΓv/Iv ' Gal(Fp/Fp). Thus we can

defineρE,`(Frobp). This depends on the choice of extensionv of the p-adic valuation, but

any two extensions are conjugate by an element ofGal(Q/Q). In particular, the characteristic

polynomial

(2.1.1) Pp,E(T ) = det(I − ρE,`(Frobp)T ) ∈ Q`[T ]

depends only onp. Moreover, it is well known thatPp,E(T ) has coefficients inQ and is

independent of̀ 6= p. Thus the complex functionPp,E(p−s) is well defined for all primes of

good reduction. In fact, we know that

Pp,E(p−s) = 1− ap(E)p−s + p1−2s.

Let

Lp(E, s) = Pp,E(p−
1
2
−s)−1 = 1− anorm

p (E)p−s + p−2s.
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The complexL-function ofE is

(2.1.2) L(s,E) =
∏
p

Lp(E, s),

where for primes of bad reduction one has another definition ofLp(E, s). With our chosen

normalization, this function converges absolutely forRe(s) > 1.

A general conjecture is thatL(s,E) extends to an entire function and satisfies a functional

equation. This is known forF+ = Q (Wiles, [BCDT]) and meromorphic continuation is known

for general totally realF+ [TFM]. One proves thatL(s,E) is an entire function, forF+ = Q,

by proving that it is theL-function of the modular formfE defined in (1.3) . For more general

F+, one wants to prove that it is theL-function of acuspidal automorphic representationof

GL(2, F+) (cf. the Appendix for more details). In that case one says thatE is automorphic

overF+.

Suppose it is known thatE is automorphic: that there exists a cuspidal automorphic representa-

tion ΠE of GL(2, F+) such that (up to normalization)L(s,ΠE) = L(s,E) as Euler products.

Forn ≥ 1 let

ρn
E,` = Symn−1ρE,` : Gal(Q/F+) → GL(n,Q`).

With ρ = ρn
E,`, we define

(2.1.3) L(s, ρ) =
∏
v

Lv(s, ρ)

wherev runs over finite places of the fieldF+ and with the local factors defined for almost all

v by analogy with (2.1.1):

(2.1.4) Lv(s, ρ) = det(I − ρ(Frobv)Nv−s)−1.

HereNv is the number of elements in the residue field of the placev (soNv = p if v is the

rational primep) andρ can be taken to be any representation for which the coefficients of the

characteristic polynomials of Frobenius elements can be identified with complex numbers.

For almost allp, the elliptic curveE has good reduction atp, which means that the local factor

ΠE,p is unramified. This representation is determined by itsSatake parametersαp, βp, an

unordered pair of complex numbers that can be expressed explicitly in terms of the number of

points modulop:

ap(E) = p
1
2 (αp + βp), αp · βp = 1.
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Hasse’s theorem mentioned above has a meaning in terms ofΠE .

Hasse, Eichler-Shimura (“Ramanujan conjecture”).

|αp| = |βp| = 1.

Up to permutation we haveαp = eiθp , βp = e−iθp , say, with0 ≤ θp ≤ π. I restate the

Sato-Tate Conjecture:

Sato-Tate Conjecture. AssumeE has no complex multiplication. Then theθp are equidis-

tributed in[0, π] with respect to the measuredST (θ) := 2
πsin2θ dθ.

The Sato-Tate measure is the push-forward of the Haar measure onSU(2) to a measure on the

set of conjugacy classes inSU(2), which can be identified with[0, π]. The conjecture makes

sense for the automorphic representationΠE , without reference to elliptic curves, and also

makes sense for modular forms of higher weight.

Let X = [0, π]. For anyf ∈ C(X) andx > 0 define

S(f, x) =
∑

p≤x

f(θp).

The Sato-Tate conjecture asserts the following: for any continuous functionf ∈ C(X), we

have

(∗) lim
x→∞

S(f, x)
S(1, x)

= lim
x→∞

∑
p≤x f(θp)∑

p≤x 1
=

∫

X
f(θ)dST (θ).

Now the diagonal matrixdiag(αp, βp) belongs toSU(2). There is an obvious mapφ :

SU(2) → X identifying X with the space of conjugacy classes inSU(2), anddST (θ) is

the image with respect toφ of the Haar measure onSU(2) with total mass1. It suffices to

prove (*) for f in an orthogonal basis ofL2(X). Such an orthogonal basis is given by the

charactersχn of the irreducible representationsSymn of SU(2). For f = χ0, which is the

trivial representation, (*) is obvious. Forf = χn with n > 0, we have
∫

X
χn(θ)dST (θ) =

∫

X
χn(θ) · 1 dST (θ) =< χn, χ0 >= 0

because the characters form an orthogonal basis.

In general

χn(θp) =
n∑

j=0

αj
pβ

n−j
p .
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This is why it is convenient to use the Satake parameters ofΠE,p. So we need to show

(2.2) lim
x→∞

∑

p≤x

χn(θp) = o(π(x)).

Now we use a standard argument from analytic number theory. WithρE = ρE,` (any`), let

L∗(s,E, Symn) = L∗(s, ρn+1
E ) = L(s +

n

2
, ρn+1

E )

normalized to be absolutely convergent forRe(s) > 1. In other words,

L∗(s,E, Symn) =
∏
p

L∗p(s, ρ
n+1
E )

where forp /∈ S,

L∗p(s, ρ
n+1
E ) =

n∏

j=0

(1− αj
pβ

n−j
p p−s)−1.

Comparing this with (1.1), we find

d

ds
log(L∗(s,E, Symn)) = −

∑
p

∑
m

χn(θm
p )log p

pms

= −
∑

p

χn(θp)log p

ps
+ ϕ(s)

whereϕ(s) is holomorphic forRe(s) > 1
2 andthe first equality is only up to a finite set of bad

factors which are irrelevant for the second equality.

Let L∗(s) be a Dirichlet series absolutely convergent forRe(s) > 1. We sayL∗(s) is invertible

if it extends to a meromorphic function onC and ifL∗(s) has no zeroes forRe(s) ≥ 1 and no

poles forRe(s) ≥ 1 except for a possible pole ats = 1.

SupposeE is an elliptic curve overQ with non-integralj-invariant. Then Theorem 1.5 [CHT,

T, HST] implies that, for alln ≥ 0, the functionL∗(s,E, Symn) is invertible and has no pole

ats = 1 unlessn = 0. Thus for eachn > 0,

d

ds
log(L∗(s,E, Symn)) = L∗,′(s,E, Symn)/L∗(s,E, Symn)

is a quotient of meromorphic functions that are holomorphic and non-vanishing forRe(s) ≥ 1.

Corollary. Under the hypotheses of Theorem 1.5,
∑

p
χn(θp)logp

ps hasno pole forRe(s) ≥ 1.
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The Wiener-Ikehara tauberian theorem states that ifD(s) =
∑

i
bi
is is a Dirichlet series con-

vergent forRe(s) > 1 and non-singular except for a possible first-order pole ats = 1, with

residueα, then ∑

i<x

bi = α · x + o(x).

For the prime number theorem, this is applied withbi = p · log p if i = p is prime,bi = 0

otherwise, to yield a form of the prime number theorem:

∑
p<x

log p = x + o(x).

Forn > 0, Theorem 2.3 implies

∑

p≤x

χn(θp)log p = o(x).

Applying Abel summation to get rid of the logs, we find

S(χn, x) =
∑

p≤x

χn(θp) = o(x/logx)

and since

S(1, x) = S(χ0, x) =
∑

p≤x

1 = x/logx + o(x/logx)

by the prime number theorem we have

lim
x→∞

S(χn, x)
S(1, x)

= 0

for all n > 1. This yields the estimate (2.1), and hence equidistribution.

Two elliptic curves

One can define two elliptic curvesE andE′ to beisogenousif they are related by a non-trivial

group homomorphism; thenap(E) = ap(E′) for almost allp, and this can be taken to be the

definition of isogeny by a very deep theorem of Faltings (another conjecture of Tate). Now

supposeE andE′ are two elliptic curves overQ. One can consider the pair

(anorm
p (E), anorm

p (E′)) ⊂ [−1, 1]× [−1, 1].

If E andE′ are isogenous, this point always lies on the diagonal. If not, the conjecture is the

following, a special case of a completely general Sato-Tate conjecture for motives, formulated

by Serre in [S2]:
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Conjecture 2.3. Let F+ be a totally real field, letE andE′ be elliptic curves overF+, and

assumeE andE′ do not become isogenous over an abelian extension ofF+. For any primev

of F+ whereE andE′ both have good reduction, we let

|E(kv)| = (1− q
1
2
v eiφv)(1− q

1
2
v e−iφv)

|E′(kv)| = (1− q
1
2
v eiψv)(1− q

1
2
v e−iψv)

whereφv, ψv ∈ [0, π].

Then the pairs(φv, ψv) ∈ [0, π]× [0, π] are uniformly distributed with respect to the measure

4
π2

sin2φ sin2ψ dφdψ.

Now if we have two non-isogenous elliptic curvesE andE′ as above, we can form

L∗(s, ρn
E ⊗ ρm

E′) =
∏
p

L∗p(s, ρ
n
E ⊗ ρm

E′)

where forp /∈ S

L∗p(s, ρ
n
E ⊗ ρm

E′) =
n∏

j=0

m∏

k=0

(1− αj
pβ

n−j
p (α′p)

k(β′p)
m−kp−s)−1,

an expression easier to understand as the determinant of a certain tensor product matrix. The

above conjecture follows from

(Conditional) Theorem 2.4.Assume the expected results of the “book project” ([Book1] and

subsequent books). For all(m,n) 6= (0, 0) L∗(s, ρn
E ⊗ ρm

E′) is invertible and has no pole at

s = 1.

A proof of this theorem is given in [H] but it is conditional on work in progress, including

notably the results of [L], [CHL1], [CHL2], [CH], and [Shin]. It is a consequence of the

following result, also proved conditionally in [H]:

(Conditional) Theorem 2.5. Assume the expected results of the “book project”. For every

m,n ≥ 1, there is a totally real Galois extensionFm,n/Q such that theL-function ofρn
E,Fm,n

=

ρn
E |Gal(Q/Fm,n) (resp. ρm

E′,Fm,n
) is theL-function of a cuspidal automorphic representation

ΠE,n of GL(n, Fm,n) (resp.ΠE′,m of GL(m,Fm,n)).

Unconditionally, it is proved in [CHT], [HST], [T] that this is true whenm andn are botheven

(or when eitherm = 1 or n = 1). If we admit Theorem 2.5, then Theorem 2.4 follows from
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properties of Rankin-SelbergL-functions and an argument using Brauer’s theorem on finite

group characters first applied by Taylor. See the discussion in§6.

Three or more elliptic curves?For three elliptic curves we would need something like

L∗(s, ρn
E ⊗ ρm

E′ ⊗ ρr
E′′).

Unfortunately, at present there is no analytic theory of suchL-functions. This is a major barrier

to the further development of automorphic forms. The case of triples is in some sense the

crucial case.

The error in the error. Barry Mazur has been interested in the question of the discrepancy

between the Sato-Tate distribution and the actual distributions of theap(E). The rate of con-

vergence to the Sato-Tate distribution of the pointwise distributions, forp < X is a statistical

problem whose optimal solution is intimately related to the Generalized Riemann Hypothesis

for the L-functionsL∗(s, ρn
E), cf. [M2].

Brief synopsis.The Langlands conjectures predict thatL(s,E, Symn−1) can be associated to

a cuspidal automorphic representation ofGL(n)Q. This would imply thatL(s,E, Symn−1)

is entire (Godement-Jacquet) and is non-vanishing on the indicated domain. We do not prove

this. Instead, we prove that forn even,L(s,E, Symn−1) is potentially automorphic; that is, it

is associated to a cuspidal automorphic representation ofGL(n) over some totally real Galois

extension ofQ. This argument involves two parts. The first is an extension of Wiles’ technique

for identifying L-functions of elliptic curves withL-functions of modular forms, and is based

essentially on Galois cohomology and an analysis of automorphic representations of different

sorts of groups, especially unitary groups. This is begun in [CHT] and completed in [T], and is

described in§3 and§4, below. The second is an extension of an idea used by Taylor to prove

meromorphic continuation ofL-functions attached to two-dimensional Galois representations,

using weak approximation on moduli spaces. In [HST], we found a moduli space that could be

used to studyn-dimensional Galois representations for any evenn; it is a twisted form of the

moduli space of certain Calabi-Yau varieties originally studied by Dwork in certain cases, and

more generally by physicists interested in mirror symmetry. These results and their applications

to potential automorphy are explained in§5.

It is explained in§6 how potential automorphy ofL(s,E, Symn−1) for all evenn implies

Theorem 2.3 for alln. As we have already seen, this analytic property of theL-functions
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implies the Sato-Tate conjecture for the elliptic curveE.

3. DEFORMATION RINGS OFGALOIS REPRESENTATIONS

For the next few sections we will forget about everything connected with elliptic curves and

retain only the Galois representationρn
E , which we denote simplyρ. For the momentρ is

a representation ofΓF = Gal(Q/F ) for an arbitrary number fieldF . In fact, we will only

retain a few of its properties. Representations likeρ given by the action ofΓF on the`-adic

cohomology of a (smooth, proper) algebraic variety3 may be calledmotivic. The general

machinery of̀ -adic cohomology implies the following important properties:

1. There is a finite setS of primes ofF such that, for all primesv /∈ S, the restriction ofρ

to the local Galois groupΓv = Gal(F̄v/Fv) is unramified;

2. For all primesv of F dividing `, the restriction ofρ to the local Galois groupGal(F̄v/Fv)

is de Rhamin the sense of Fontaine.

One often compares̀-adic representations of Galois groups of number fields to finite-dimensional

representations of fundamental groups of Riemann surfaces. In the geometric setting, condition

(1) corresponds to the condition that the Riemann surface is algebraic, that is it is the comple-

ment in a projective algebraic curve of a finite set of points, which correspond to the points of

ramification of the representation of the fundamental group of the closed curve. I know of no

geometric analogue of condition (2), whose proof is one of the main theorems ofp-adic Hodge

theory (herep = `).

Fontaine and Mazur call aǹ-adic Galois representationρ of ΓF geometricif it satisfies (1)

and (2). TheFontaine-Mazur conjecturesare an adaptation of the Langlands program to`-adic

representations of Galois groups of number fields. One of the conjectures states that any geo-

metric`-adic representationρ is necessarily motivic. More relevant to our present discussion

is another conjecture of Fontaine-Mazur that states (or would state, if it were written down

for generaln) that any geometricn-dimensional̀ -adic representationρ of ΓF is necessarily

associated to acuspidal automorphic representationΠ(ρ) of GL(n, F ); the conjecture even

3Therepresentationρn
E is not actually realized on the cohomology of the smooth proper varietyEn but rather

on the part of the cohomology invariant under the permutations of the factors. This difference is immaterial for the

purposes of the present paper.
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gives an explicit recipe forΠ(ρ) as abstract representation. The (commutative) casen = 1

is an interpretation of class field theory combined with the Shimura-Taniyama-Weil theory of

complex multiplication and Hecke characters. The set of cuspidal automorphic representations,

whatever they are, have strong finiteness properties and together the Fontaine-Mazur conjec-

tures therefore imply that the set of motives with given Hodge numbers unramified outsideS

is finite. In this way the Langlands program has very stringent consequences for diophantine

geometry.

The program initiated by Wiles reduces certain cases of the Fontaine-Mazur to a counting prob-

lem. The present section explains how to count geometric`-adic Galois representations in the

case of interest. The next section explains how to count those geometric`-adic representa-

tions that do come from automorphic representations, together with the generalization of the

Taylor-Wiles theorem that establishes a sufficiently strong version of equality.

Henceforward̀ is an odd prime. The first step is to identifyρ as a point on an appropriate

moduli space, or parametrized family of geometric`-adic representations. LetO be a finitely

generated local noetherianZ`-algebra with maximal idealm and residue fieldk. For the time

being we assumeO to be the integers in a finite extension ofQ`. Letρ : ΓF → GL(n,O) be a

continuous representation and letρ̄ : ΓF → GL(n, k) be its reduction modulom. Fix a finite

set of primesS including all primes dividing̀ and all primes at which̄ρ is ramified, and let

ΓF,S denote the Galois group of the maximal extension ofF unramified outsideS.

Definition 3.1. Let A be a noetherian localO-algebra with maximal idealmA and residue

field k. A lifting of ρ̄ to A (understood to be unramified outsideS) is a homomorphism̃ρ :

ΓF,S → GL(n,A) together with an isomorphism

ρ̃ (mod mA) −̃→ ρ̄

compatible with the natural mapO/m = A/mA = k. A deformation of ρ̄ to A is an equiva-

lence class of liftings, where two liftings are equivalent if one can be obtained from the other

by conjugation by an element ofId + mAM(n,A) ⊂ GL(n,A).

Let Defρ̄,S be the functor on the category of Artinian localO-algebras that toA associates

the set of equivalence classes of deformations ofρ̄ to A (unramified outsideS). This can be

extended to a (pro)-functor on the category of noetherian localO-algebras, and the starting

point of the theory is Mazur’s theorem
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Theorem 3.2 (Mazur).Supposēρ is absolutely irreducible (or more generallyEnd(ρ̄⊗ k̄) =

k̄). ThenDefρ̄,S is (pro)representable by a noetherian localO-algebraRρ̄,S .

We writemR for the maximal ideal ofRρ̄,S when this does not cause confusion. The Zariski

tangent spaceHom(mR/(mR)2, k) = Defρ̄,S(k[ε]), with ε2 = 0, has a natural interpretation

in terms of Galois cohomology.

Proposition 3.3.There is a natural isomorphism

Hom(mR/(mR)2, k) −̃→H1(ΓF,S , ad(ρ̄)),

wheread(ρ̄) is then2-dimensional Galois moduleHom(ρ̄, ρ̄).

The isomorphism is obtained as follows. There is a short exact sequence

1 → εM(n, k) → GL(n, k[ε]) → GL(n, k) → 1.

Thus any two liftingsr and r0 of ρ̄ to GL(n, k[ε]) differ by a map[r − r0] : ΓF,S →
M(n, k) −̃→ εM(n, k), where[r − r0](g) = r(g)r0(g)−1 − I. Sincer andr0 are homomor-

phisms, one calculates easily that[r−r0] is a cocycle with values inad(ρ̄) that is a coboundary

if and only if r andr0 are equivalent as deformations ofρ̄. In what follows, we will consider

r0 to be a base point and write[r] instead of[r − r0].

The vector spaceH1(ΓF,S , ad(ρ̄)) is finite-dimensional, and this is used to prove thatRρ̄,S is

noetherian, but does not correspond in general to a counting problem that can be solved. Im-

posing supplementary restriction on deformations ofρ̄ define alternative moduli problems. In

many cases these can be proved to be representable and related to variants ofH1(ΓF,S , ad(ρ̄))

with better properties. We sketch the calculation of the dimension of the tangent spaces to the

deformation rings used in the Taylor-Wiles method. The reader willing to take these on faith is

invited to skip ahead to the result of the calculation, given in (3.7).

It seems the Taylor-Wiles method only works for Galois representations equipped with some

sort of polarization. In particular, we need to assume from now on thatF is either a totally

real field or a CM field – a totally imaginary quadratic extension of a totally real field, so

that in particular there is a well-defined complex conjugationc ∈ Aut(F ) of order1 or 2,

whose fixed field is a totally real field denotedF+, as above. The representationρn
E admits a

non-degenerate bilinear form

ρn
E ⊗ ρn

E → Q`(1− n),
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whereQ`(m) is the one-dimensional vector spaceQ` on whichΓF acts by themth power of

the cyclotomic character. The pairing is alternating ifn is even and symmetric ifn is odd.

More generally, we considerρ admitting non-degenerate pairings

ρ⊗ ρ ◦ c → O⊗Q`(1− n),

with c as above. Suchρ will be calledof unitary typeand will be related to automorphic forms

on unitary groups.

Of coursēρ admits a similar polarization with values ink(1−n), defined analogously. One can

consider deformations of̄ρ together with its polarization. This defines a representable moduli

problem whose tangent space is isomorphic to toH1(ΓF+,S , ad(ρ̄)), where the extension of

ad(ρ̄) to ΓF+,S ⊃ ΓF,S is defined in terms of the pairing.4

The next step is to impose local conditions at primes inS, which is now considered a set of

primes ofF+ all of which split in the quadratic extensionF/F+; in particular this is true of all

primes dividing`. A deformation problemis then a collectionS = {Dv, v ∈ S} of conditions

on the restriction of a deformatioñρ to Γv for v ∈ S that

(i) define a representable moduli problem (so it can be studied abstractly) and

(ii) can be expressed in terms of the natural restriction map

(3.4) locv : H1(ΓF+,S , ad(ρ̄)) → H1(Γv, ad(ρ̄)), v ∈ S

(so that its numerical invariants can be calculated)

In the setting of [CHT], the most important local conditions are of two types.

(v - `) In this case, we wantDv to beminimal, which roughly means that̃ρ is no more ramified

thanρ̄. More precisely, we define ak-subspaceLv ⊂ H1(Γv, ad(ρ̄)) so that thẽρ of type

Dv are precisely those such that the corresponding cohomology classlocv([ρ̃]) ∈ Lv

under the restriction map (3.4). ThenDv is minimal if and only ifdimLv = h0
v :=

dimH0(Γv, ad(ρ̄)) (cf. [CHT, 2.4.21]).

(v | `) Whenρ = ρn
E and ` is a prime of good reduction forE, thenρ |Γv is not only de

Rham, in Fontaine’s sense, but is crystalline and has Hodge-Tate weights correspond-

ing to the classical Hodge decomposition of the subspace ofHn−1(En,C) fixed under

4In [CHT] we instead consider homomorphisms fromΓF+,S with values in a certain algebraic group with two

connected components, but there is no need to go into that level of detail here.
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permutation of the factors. Under the standard convention, the Hodge-Tate weights are

thus0,−1, . . . , 1− n, each with multiplicity one. The local condition we impose is thus

thatρ be crystalline at all primesv dividing ` with the same Hodge-Tate weights asρn
E .

More generally, it suffices to assume thatρ is crystalline at each suchv with n distinct

Hodge-Tate weights; such aρ is calledHT regular. In order to make sense of this we

need to assumè> n and` unramified inF . Thenρ̄ and its liftings can be analyzed in

terms of Fontaine-Laffaille modules [FL]. All that is needed in what follows is that, if

Lv ⊂ H1(Γv, ad(ρ̄)) is the subspace corresponding to this deformation condition, then

dimLv − h0
v =

n(n− 1)
2

.

The SelmergroupH1
S(ΓF+,S , ad(ρ̄)) ⊂ H1(ΓF+,S , ad(ρ̄)) is defined to be∩v∈Sloc−1

v (Lv).

Now Tate’s local dualitydefines a perfect pairing for everyv ∈ S:

H1(Γv, ad(ρ̄))⊗H1(Γv, ad(ρ̄)(1)) → k,

wheread(ρ̄)(1) is ad(ρ̄) tensored with the cyclotomic character. LetL⊥v denote the annihilator

of Lv with respect to this pairing and define

H1
S∗(ΓF+,S , ad(ρ̄)) = ∩v∈Sloc−1

v (L⊥v ) ⊂ H1(ΓF+,S , ad(ρ̄)).

Abbreviateh1
S(ad(ρ̄)) = dimH1

S(ΓF+,S , ad(ρ̄)) and so on, and write

χv(S) = dimLv − h0
v.

For v real, we setχv(S) = −dimH0(Γv, ad(ρ̄)). For v finite not inS, we setχv(S) = 0.

This allows us to sum over all primes.

3.5. Sample calculation. An unramified representation ofΓv is just a representation of the

Frobenius elementFrobv. Consider the exact sequence:

0 → ker(Frobv) → ad(ρ̄) Frobv→ ad(ρ̄) → coker(Frobv) → 0.

Thenh0
v = dim ker(Frobv), whereas we havedim(Lv) = dim coker(Frobv) whenDv is the

condition that deformations are unramified atv. Since this is our assumption forv /∈ S, our

notation is consistent.

One tries to reduce all calculations ofχv(S) to considerations as simple as (3.5).
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Combining Tate’s global Euler characteristic formula for Galois cohomology with Poitou-Tate

global duality, we obtain the following important identity:

(3.6) h1
S(ad(ρ̄))− h1

S∗(ad(ρ̄)(1)) = h0(ad(ρ̄))− h0(ad(ρ̄)(1)) +
∑

v

χv(S)

The sum is over all placesv of F+. The Taylor-Wiles method introduces a new collection of

primesQ, split in F/F+ and not overlappingS, and additional deformation conditions with

the property that, forv ∈ Q, dimLv − h0
v = 1. The corresponding deformation problem

is denotedS(Q), and the corresponding deformation ring is denotedRρ̄,S(Q). Formula (3.6)

remains valid in this generality, with everyS replaced byS(Q). This allowsh1
S(ad(ρ̄)) to

grow while simultaneously shrinkingh1
S∗(ad(ρ̄)(1)). In fact, in the applications we have the

following simplifications:

(a) h0(ad(ρ̄)) = h0(ad(ρ̄)(1)) = 0.

(b) Forv real5, dimH0(Γv, ad(ρ̄)) = dim ad(ρ̄)c=1 = n(n−1)
2

(c) Thereis a collectionQ of (Taylor-Wiles) primes such thath1
S(Q)∗(ad(ρ̄)(1)) = 0.

The existence of collections of Taylor-Wiles primes, which need to satisfy several other prop-

erties in addition to (c), is guaranteed provided the image ofρ̄ is not degenerately small. We

will soon need many such collectionsQ. For each suchQ, we obtain the following very simple

formula:

(3.7) dimmRρ̄,S(Q)
/m2

Rρ̄,S(Q)
= h1

S(Q)(ad(ρ̄)) = |Q|.

In the next section we will see that this expression yields a natural upper bound for deformations

of ρ̄ attached to automorphic forms. The Taylor-Wiles method shows this is also a lower bound.

Remark. Formula (3.7) says that an important property of the residual representationρ̄ of the

Galois group of the number fieldF can be expressed in terms of its restrictions to carefully

chosen local Galois groups. This is very roughly analogous to the (obvious) fact that the space

of sections of a vector bundle on a compact manifold can be embedded in the sum of the fibers

5In [CHT] the equality (b) is only deduced at the end, but there is an independent proof due to Bellaı̈che and

Chenevier.
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at carefully chosen finite sets of points. This corresponds in both cases to adding certain kinds

of singularities at the chosen points. What is remarkable in the Taylor-Wiles method is that the

singularities at sets of Taylor-Wiles primes can be made to approximate arbitrarily closely the

full structure of the original deformation ringRρ̄,S(Q).

4. AUTOMORPHICGALOIS REPRESENTATIONS ANDHECKE ALGEBRAS

Let F be a number field. A version of the global Langlands correspondence of particular

interest to number theorists, is the conjectural dictionary:

(4.1)





(Certain) cuspidal

automorphic

representations

Π of GL(n,AF )





↔





Compatible systems

ρΠ,` of irreducible`-adic

representations of

ΓF = Gal(Q/F )

of dimensionn





To say that theρ` = ρΠ,` form a compatible systemis to say that all theρ` yield the same

(Artin, Hasse, Weil)L-functionL(s, ρ), defined as in (2.1.3, 2.1.4). This is a strong version of

the assertion thatL(s, ρ) has an analytic continuation and functional equation. Letn = dim ρ,

so the general Euler factor ofL(s, ρ) is of degreen. The form of the general Euler factor of

L(s,Π) at unramified places is recalled in§3, below.

The word “certain” in the above dictionary is crucial. Not all cuspidal automorphic repre-

sentations ofGL(n) are conjecturally associated to Galois representations. Maass forms for

GL(2,Q) are the most obvious example. They include, for example, cuspidal functions on

SL(2,Z)\H that are eigenfunctions for all Hecke operators and for the hyperbolic Laplacian.

Thanks to Selberg one knows the collection of such forms is large but, even allowing the level

to increase, practically none of them are supposed to be of Galois type. TheΠ of Galois type

were identified by Clozel in his article [C]; he called them “algebraic” and characterized them

as those for which the archimedean componentΠ∞ has infinitesimal character (character of

the center of the enveloping algebra) corresponding to an element of the weight lattice of the

Lie algebraGL(n, F∞). Call this thearchimedean weightof Π∞; it is well-defined modulo a

twisted action of the Weyl group which, forGL(n), is just the product of permutation groups

for the different archimedean places ofF . This is an integrality condition and can naturally be

interpreted in terms ofp-adic Hodge theory. In the setting of the Fontaine-Mazur conjectures
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[FM], one expects eachρ` in a compatible system to begeometricin the sense of Fontaine-

Mazur, as defined in§3. In particular, they areHodge-Tateat each prime dividing̀, and the

dictionary predicts the Hodge-Tate weights in terms of the infinitesimal character ofΠ∞.

All known methods only apply whenΠ∞ is not only algebraic butcohomological. This means

that the archimedean weight ofΠ∞ is a dominantweight, hence is the highest weight of the

dual of an irreducible finite-dimensional representationW (Π∞) of GL(n, F∞). The precise

condition is expressed in terms of relative Lie algebra cohomology:

H•(gl(n, F∞),K∞; Π∞ ⊗W (Π∞)∨) 6= 0.

HereK∞ is a chosen maximal compact subgroup ofGL(n, F∞) (in practice it is multiplied by

the center ofGL(n, F∞)); one has to make such a choice in order to define automorphic forms

in the first place.

Given additional restrictions onF , one can construct Galois representations. LetF be either

totally real or a CM field, and in either case letF+ ⊂ F be its maximal totally real subfield, so

that [F : F+] ≤ 2. Let c ∈ Gal(F/F+) be complex conjugation; by transport of structure it

acts on automorphic representations ofGL(n, F ). I want to talk particularly about the follow-

ing theorem whose proof is (at the time of writing) in the course of being written down [CHL2,

Shin, CH]:

Theorem 4.2 (Many people).There is an arrow from left to rightΠ 7→ {ρΠ,λ}, asλ runs

through non-archimedean completions of a certain number fieldE(Π) whenF is totally real

or a CM field, under the following hypotheses:




(1) The factorΠ∞

is cohomological

(2) Π ◦ c ∼= Π∨




⇒





(a)ρ = ρΠ,λ geometric,

HT regular

(b) ρ⊗ ρ ◦ c → Q`(1− n)





This correspondence has the following properties:

(i) For any finite placev prime to the residue characteristic̀of λ,

(ρΠ,λ |Gv)
ss = L(Πv ⊗ | • |

1−n
2

v ).

HereGv is a decomposition group atv andL is thenormalized local Langlands corre-

spondence. The superscriptss refers to semisimplification, but
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(ii) If n is odd or if the highest weight ofL(Π∞) is weakly regular, then one can replace

“semisimplification” above by “Frobenius semi-simplification”, which is the only sense

in whichL is defined; in particular, the local monodromy operator on the left-hand side

is as predicted by the right-hand side.

(iii) (At least) under the same regularity hypothesis, one can show thatΠv is (essentially)

tempered at allv;

(iv) The representationρΠ,λ |Gv is de Rham for anyv dividing` and the Hodge-Tate numbers

at v are explicitly determined by the archimedean weight ofL(Π∞). If Πv is unramified

thenρΠ,λ |Gv is crystalline.

An automorphic representation ofGL(n, F ), with F a totally real or CM field, satisfying

(1) and (2), or aǹ -adic Galois representation satisfying (a) and (b), is said to be ofCM type.

Remark. It is expected that theρΠ,λ are absolutely irreducible, but unfortunately this cannot

be shown in general; this is the main open question concerning these representations. For the

Π considered in [HT], and again in [CHT,T], one can prove by local arguments thatρΠ,λ is

necessarily absolutely irreducible.

Corollary 4.3. Under the hypotheses of Theorem 4.2, we have the following equality ofL-

functions.

L(s +
n− 1

2
, ρΠ,∗) = L(s,Π).

Here the right hand side is the Euler product attached by the formula of Artin and Serre

to the compatible family of Galois representationsρΠ,λ. The left-hand side is the standard

(Godement-Jacquet)L-function of the automorphic representationΠ.

The first results of this kind, forF = Q andn = 2, were proved by Eichler and Shimura

in the 1950s. They worked with elliptic modular Hecke eigenforms of weight2 rather than

automorphic representations ofGL(2,Q). WhenF = Q, theL-functions are Euler products

whose factors are indexed by prime numbers. For all but finitely many primesp the local factor

atp of L(s, ρΠ,λ) is

det(I − ρΠ,λ(Frobp)p−s)−1

whereFrobp ∈ Gal(Q/Q) is the Frobenius element we already encountered in§1. This

is (the inverse of) the value atp−s of the polynomial of degreen Pp,ρΠ,λ
(T ) = det(I −
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ρΠ,λ(Frobp)T ). The typical Euler factorLp(s,Π) of L(s,Π) is likewise (the inverse of) the

value atp−s of a degreen polynomial, which we write (cf. Appendix, A.3)

(4.4) Lp(s,Π) = (1− a1,p(Π)p−s + a2,p(Π)p−2s − · · ·+ (−1)nan,p(Π)p−ns)−1.

Theai,p(Π) are integers in the number fieldE(Π) and generalize the eigenvalues of the classi-

calHecke operatorsacting on elliptic modular forms. We return to these operators below.

The highest weight ofL(Π∞) can be expressed as a map from complex embeddings ofF to n-

tuples of integers,v 7→ (a1(v), a2(v), . . . , an(v)), where we may assume theai’s are ordered

so that

ai(v) ≥ ai+1(v) for all v.

The weak regularity condition, originally observed by Blasius and Rogawski in their work on2-

dimensional automorphic Galois representations, is that, for somev and at least oneodd index

i, the above inequality is strict. Under the weak regularity condition,ρΠ,λ can be constructed

as the representation ofΓF on a direct summand of the cohomology of an appropriate Shimura

variety.6 The remaining representations are constructed by means of`-adic congruences, using

results of Chenevier and Bellaı̈che-Chenevier oneigenvarietiesparametrizing̀ -adic automor-

phic forms on the unitary groupsG introduced below. However, one can replace the weak

regularity by the condition thatΠ be of discrete series type at some finite prime. This was the

approach used in [CHT] and [T], following [HT]; it suffices for the theorems stated in§1.

The condition (a), thatρ be HT-regular, was invoked in the previous section. All theρΠ,λ

of Theorem 4.2 have this property, as do the representationsρn
E,` that are our main object of

interest. However, the Hodge-Tate weights ofρn
E,` are incompatible with the weak regular-

ity condition. Thus it does not suffice to work in the setting of weakly regular automorphic

representations and the congruence methods mentioned above are crucial in general.

Let ρ be as in§3, satisfying conditions (a) and (b) of Theorem 4.2; in other words,ρ is of CM

type. We sayρ is automorphicif it is isomorphic toρΠ,λ for someΠ andλ as above. More

generally, we saȳρ is automorphic, orρ is residually automorphic, if ρ̄ ≡ ρ̄Π,λ for someΠ

andλ. For the remainder of this section, we assumeρ̄ to be automorphic, and we letΠ be the

corresponding automorphic representation.

6This is not strictly true; in general one can only realize the restrictions ofρΠ,λ to certain subgroups of index

2 in this way. A patching argument explained in [HT] and generalized by C. Sorensen reconstructs the entire

representationρΠ,λ from this information.
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Let Defaut
ρ̄,S be the functor on the category of Artinian localO-algebras that toA associates

the set of equivalence classes of deformations ofρ̄ to A (unramified outsideS) which are

automorphic. At least whenΠ satisfies an additional local hypothesis at some finite prime, it is

known that this subfunctor ofDefρ̄,S is representable by a quotientTρ̄,S of Rρ̄,S . Whenρ =

ρn
E,`, the local hypothesis corresponds to the requirement thatE have multiplicative reduction

at some finite place. This is the setting of [CHT] and [T], where it is assumed thatΠv is a

discrete series representation at some finitev prime to`. 7

The interest of this notion is that the quotientTρ̄,S of Rρ̄,S can be defined purely in terms

of automorphic forms. These forms are not functions on the adèles ofGL(n) but are rather

automorphic forms on a unitary groupG. Before introducing this group, I return briefly to

the case originally considered by Wiles. Recall that the ultimate result of the techniques he

introduced was the existence of a modular formfE =
∑

an(E)qn attached to the elliptic

curveE (cf. Theorem 1.3). ThefE belong to a spaceS2(N,C) of modular forms of weight

2 and some levelN , an integer divisible only by the primes in the setS of bad reduction.

More precisely,S2(N,C) is the space spanned bynewformsof level N , includingfE . The

newformsf =
∑

an(f)qn have the property that theZ-algebraTN generated by operatorsTp,

one for each primep not dividingN , acting on the newformf by ap(f), diagonalize the space

S2(N,C). Of course the operatorsTp have an independent group-theoretic definition, from

which one can prove that theZ-submoduleS2(N,C) of S2(N,C) consisting of series
∑

anqn

with all an ∈ Z is stable underTN. In particular, the eigenvaluesap(f) are all algebraic

integers, for each newformf , an obvious consequence of the definition forf = fE .

More importantly, the algebraTN, although it is semisimple, does not in general diagonalize

S2(N,Z). In other words, some elements ofS2(N,Z) cannot be written as integral linear com-

binations ofTN-eigenvectors, though they can be written as linear combinations with denomi-

nators. It is easy to see that iff1, f2 ∈ S2(N,Z) have the property that1m(f1−f2) ∈ S2(N,Z)

for some integerm, then the Fourier coefficients off1 andf2 are congruent modulom. But

if f1 and f2 are also (normalized) newforms, then among their Fourier coefficients are the

tracesap(fi) of a set of Frobenius operatorsFrobp, p - N that suffice to determine the Galois

representationsρfi attached tofi, i = 1, 2. In other words,

ρf1 ≡ ρf2 (mod m),

7It is likely that work in progress of L. Guerberoff will permit the removal of this hypothesis.
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or again, for any primè dividing m, ρf2 is a deformation of the reduction mod` ρ̄f1 of ρf1 .

It is in this way that congruences among automorphic forms translate into deformations of

residual Galois representations.

Early work on congruences of modular forms, for example [M1] and [Hida], found it useful

to view newforms asfunctionson the Hecke algebraTN and to use geometric properties of

modular forms to derive algebraic properties ofTN, and thus of the corresponding Galois rep-

resentations. This was also the viewpoint of [W] and [TW]. For other kinds of automorphic

forms there is no convenient theory of newforms, and thus no convenient way basis for func-

tions on the relevant Hecke algebras. Diamond and Fujiwara [D,F] independently realized that,

with the help of some basic constructions in commutative algebra, the module structures of

automorphic forms over varying Hecke algebras could serve as a substitute for the theory of

newforms.

To simplify the exposition, I will assume for the remainder of this section thatL(Π∞) is the

trivial representation8 and F is a field of the formQ(
√−d) for some positive integerd.

The groupG is easiest to understand as the unitary group of a positive-definiten-dimensional

hermitian vector space overF .9 The automorphic forms in question are functions on the adèles

of G that are trivial on the group of real pointsG(R) which, in our situation, is acompact

group. Being automorphic, they are also trivial on the rational pointsG(Q), and moreover

right-invariant under an open compact subgroupKf of the finite ad̀elesG(Af ) of G. In other

words, the automorphic forms belong to

SKf
(G,C) = {f : ShKf

(G) = G(Q)\G(A)/G(R) ·Kf → C}.

By reduction theory, the setShKf
(G) is finite. However, the finite-dimensional vector space

SKf
(G,C) is endowed with a rich structure by the action of theHecke operators, which are

Z-valued functions on the discrete setKf\G(Af )/Kf with compact (finite) support. These

Hecke operators are attached to the groupG rather than toGL(n), but the theory of stable base

change, due in this setting to Labesse, establishes close relations between the Hecke operators

acting onSKf
(G,C) and the coefficientsai,p(Π) introduced in (4.4):

8In particular, it is not even weakly regular. Fortunately this condition plays no role in [CHT,T].
9the algebraic groupG used in [CHT] and [T] is a twisted unitary group with a more complex description.
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Theorem 4.5

(1) There is a commuting set of hermitian operators{Tp,i} on the finite-dimensional space

SKf
(G,C), wherep runs through (half of the)10 prime numbers and1 ≤ i ≤ n, whose

simultaneous eigenspaces are in bijection with a subset of the set ofΠ satisfying (1) and

(2) of Theorem 4.2; the eigenvector ofTp,i on the eigenspaceV (Π) corresponding toΠ

is the coefficientai,p(Π) of (4.4).11

(2) AsKf varies, every suchΠ occurs.

(3) TheTp,i stabilize theZ-submoduleSKf
(G,Z) ⊂ SKf

(G,C) ofZ-valued functions, and

in particular ai,p(Π) is an algebraic integer for alli, p, andΠ.

Let TKf
be theZ-subalgebra ofEnd(SKf

(G,Z)) generated by theTp,i. For anyΠ as above,

let V +(Π) ⊂ SKf
(G,C) be the sum of theV (Π′) such that

(4.6) ai,p(Π′) ≡ ai,p(Π) (mod `) ∀i, p.

(Here we are implicitly assuming all theai,p(Π′) ∈ Z, as is the case for theΠE,n of Theorem

2.5. In general, (4.6) has to be modified to allow congruences in other coefficient fields.)

Consider thè-adic completionTΠ,Kf
of the projection ofTKf

onEnd(V +(Π)∩SKf
(G,Z)).

Consider the mod̀ representation̄ρ = ρ̄Π and the quotientTρ̄,S of Rρ̄,S introduced above.

Assumeρ̄ is absolutely irreducible. The following theorem is an application of a result of

Carayol, together with the theory summarized in Theorem 4.5:

Theorem 4.7.For an appropriate choice ofKf = Kf (S), there is a natural isomorphism

Tρ̄Π,S −̃→ TΠ,Kf (S)

We thus obtain surjective maps

(4.8) Rρ̄Π,S → TΠ,Kf (S)

The main theorem of [CHT] is roughly

10Namely, the prime numbers that split in the imaginary quadratic fieldF . One can include all but finitely many

of the remaining primes but their indexing is more complicated and their presence is superfluous.
11At present, this has only been established in this form for the twisted unitary groups used in [CHT] and [T]. A

version of this theorem for a more general fieldF is due to Labesse [L].
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Modularity Lifting Theorem 4.8 [CHT]. Assume the deformation conditionS is minimal,`

is split in the imaginary quadratic fieldF , andΠ is unramified at primes dividing̀. Suppose

further that the image of̄ρΠ is not too small. Then (4.8) is an isomorphism.

In other words, every (minimal) deformation of the residually automorphic Galois representa-

tion ρ̄Π comes from automorphic forms. This theorem is valid when the quadratic imaginary

field F is replaced by any CM field. For the applications to the Sato-Tate conjecture, minimal

deformation conditions are unfortunately insufficient. Adapting a method of Kisin to handle

non-minimal deformation conditions, Taylor proved

Modularity Lifting Theorem 4.9 [T]. Assume,̀ is unramified inF and split inF/F+, andΠ

is unramified at primes dividing̀. Suppose further that the image ofρ̄Π is not too small. Then

– in sufficient generality for the applications – (4.8) induces an isomorphism

Rred
ρ̄Π,S → TΠ,Kf (S),

where the superscriptred denotes the quotient by the ideal of nilpotent elements.

This theorem implies in particular that any deformation ofρ̄Π of typeS with values in a ring

without nilpotents – a representation with values in the integers in an`-adic field, for example

– is aρΠ′,` for someΠ′ as in Theorem 4.2. In the following section, we show how these results

are used to prove Theorem 2.5.

The key to the proofs of Theorems 4.8 and 4.9 is the fact that the isomorphism (4.7) is valid

more generally:

(4.10) Rρ̄Π,S(Q) → TΠ,Kf (S(Q)

wheneverQ is a set of Taylor-Wiles primes. The estimate (3.7) gives an upper bound on the

size of the left-hand side. On the other hand, purely group-theoretic methods give a lower

bound on the size of the right-hand side. The elements ofQ are all primesq split in F such

that

q ≡ 1 (mod `N )

for varying N . Letting Q vary appropriately so thatN tends to infinity, an argument from

commutative algebra, systematized in [D] and [F], yields the isomorphism in the limit.

In the approach of [T], Taylor follows Kisin [Ki] in replacing the rings in (4.10) by algebras

over the moduli spaces of liftings of the local Galois representations at placesv for which the
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deformation conditionDv is not minimal. Much of [T] is devoted to a careful comparison

of these local moduli spaces with rigidified moduli spaces of nilpotent conjugacy classes in

GL(n) in characteristic̀ and their deformations to quasi-nilpotent classes in characteristic

zero. These structures are carried along, and the deformation ringsRρ̄Π,S(Q) are replaced

by rings classifyingframed deformationsin Kisin’s sense. This considerably complicates the

proof, but the Taylor-Wiles counting argument is still the basis of the method.

5. MODULI SPACES OFCALABI -YAU VARIETIES AND POTENTIAL MODULARITY

Consider the equation

(ft) ft(X0, X1, . . . , Xn) = (Xn+1
0 + · · ·+ Xn+1

n )− (n + 1)tX0 . . . Xn = 0,

wheret is a free parameter. This equation defines ann− 1-dimensional hypersurfaceYt ∈ Pn

and, ast varies, a family:

Y ⊂ Pn × P1

↘ ↓
P1

t

Let µn+1 denote the group ofn + 1’st roots of unity,

H = µn+1
n+1/∆(µn+1),

where∆ is the diagonal map, and let

H0 = {(ζ0, . . . , ζn) |
∏

i

ζi = 1}/∆(µn+1) ⊂ H.

The groupH0 acts on eachYt and defines an action on the fibrationY/P1. We examine theH0-

invariant part of the primitive cohomologyPHn−1(Yt) in the middle dimension. The family

Y was studied extensively by Dwork, who published articles about thep-adic variation of its

cohomology whenn = 2 (a family of elliptic curves) andn = 3 (a family ofK3 surfaces). In

what follows, we assumen even, so thatPHn−1(Yt) = Hn−1(Yt).

Becauseft is of degreen + 1, Yt, provided it is non-singular, is a Calabi-Yau hypersurface,

which means that its canonical bundle is trivial (Yt has a nowhere vanishing(n − 1)-form,

unique up to scalar multiples). This follows from standard calculations of cohomology of hy-

persurfaces. Whenn = 4, Y is a family of quintic threefolds inP4. The virtual number
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nd of rational curves (Gromov-Witten invariants) onYt is determined by certain solutions of

Picard-Fuchs equations describing monodromy onH3(Yt)H0 . This is the phenomenon of mir-

ror symmetry, predicted by the physicists Candelas, de la Ossa, Green, and Parkes, relating

the Gromov-Witten invariants ofYt with the Picard-Fuchs equation onH3((Yt/H0)∼), where

(Yt/H0)∼ is a desingularization of(Yt/H0), and proved mathematically in a number of situa-

tions, including this one.

Whent = ∞ Yt is the union of coordinate hyperplanes; this is the totally degenerate case. The

fiberY0 is the Fermat hypersurface

Xn+1
0 + · · ·+ Xn+1

n = 0.

This point is of great importance in the applications. The singular fibersYt are determined by

an elementary calculation. In any characteristic prime ton + 1, we find the mapft is smooth

overP∗P1 \ {∞, µn+1
n+1}. The singularities att ∈ µn+1 are ordinary quadratic singularities

and can be analyzed by Picard-Lefschetz theory. For any integerN prime ton + 1, the family

Rn−1ft,∗(Z/NZ)H0 is a local systemV [N ] in free rankn Z/NZ-modules overP∗. One

verifies that it descends via the mapt 7→ tn+1 to a local system overP+ = P1 \ {0, 1,∞},
with a new singularity at0 of finite order. This is arigid local systemand can be studied by

the methods of [K].

For our purposes, we are interested in the fact, highlighted by the mirror symmetry conjectures,

thatHn−1(Yt)H0 has Hodge numbersHp,n−1−p all equal to one,p = 0, 1, . . . , n−1, provided

Yt is nonsingular. This is calculated analytically, overC, using Griffiths’ theory of variation of

Hodge structure of hypersurfaces, which also determines the Picard-Fuchs equation as an ex-

plicit ordinary differential equation of hypergeometric type. The calculation of the Hodge num-

bers shows that, whent ∈ F+, the natural representationρt,` of ΓF onVt,` := Hn−1(Yt,Q`)H0

is Hodge-Tate regular, in the sense of sections 3 and 4 above. In particular, the Fontaine-Mazur

conjectures predict that this representation is obtained by the arrow of Theorem 4.2 from a

cuspidal automorphic representation ofGL(n, F+). This is in fact proved in many cases in

[HST], using the results of [CHT,T].

The identification of the Picard-Fuchs equation as a hypergeometric equation allows us to apply

the results of Beukers-Heckman [BH] to determine the Zariski closure ofπ1(P∗(C), t0) (any

base pointt0) in Aut(Vt0,`). This is in turn applied by Guralnick and Katz to calculate the

monodromy at finite level:
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Theorem 5.1 [Guralnick-Katz, GHK, §4]. SupposeN is a positive integer prime to2(n+1).

Then the image ofπ1(P∗(C), t0) in Aut(V [N ]t0) equals

Sp(V [N ]t0) −→ Sp(n,Z/NZ).

In other words, the minimal covering spaceMN of P∗ trivializing the local systemV [N ]

together with its natural symplectic (Poincaré duality) pairing is an irreducible Galois covering

with Galois groupSp(n,Z/NZ).

In [HST] a weaker version of this theorem, proved following suggestions of Katz, was used

to extend Taylor’spotential modularitytechnique to even dimensional representations of di-

mension greater than2. The idea is the following. Suppose you want to prove that an`-adic

representation, for exampleρn
E , is automorphic. The Modularity Lifting Theorems of§4 show

that, provided the image of the residual representationρ̄n
E is sufficiently large and a few other

technical conditions are satisfied, this can be done whenever there is an automorphic represen-

tationΠ of the type considered in Theorem 4.2 such that

(5.2) ρn
E ≡ ρΠ,` (mod mO),

whereO is the coefficient ring ofρΠ,`. This places the burden of the method on proving

residual modularityof ρn
E , in the sense of (5.2).

The main theorem of [HST] is motivated by the following ideal theorem:

Ideal Theorem 5.3.There is a pointt ∈ P∗(Q), a pair of rational primes̀ , `′, and a cuspidal

automorphic representationΠ′ of the type considered in Theorem 4.2, such that

(5.3.1) Vt,` −̃→ ρn
E (mod `)

(5.3.2) Vt,`′ ≡ ρΠ′,`′ (mod mO′)

as representations ofΓQ, whereO′ is the coefficient ring ofρΠ′,`′ andmO′ is its maximal ideal.

5.4. The basic strategy.Although it is unrealistic to expect to be able to prove such a theorem,

it is worth taking a moment to show how it can be used to deduce (5.2). AssumeVt,`′ andρn
E

both satisfy the hypotheses of Theorems 4.8 and 4.9; in other words, that they are deformations

of an appropriate typeS Condition (5.3.2) shows thatVt,`′ is residually automorphic. We thus

conclude thatVt,`′ is of the formρΠt,`′ for some automorphic representationΠt. Since the
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`-adic Galois representations on the cohomology ofYt form a compatible system, it follows

thatVt,` −̃→ ρΠt,` is also automorphic. Now (5.3.1) implies (5.2), withΠ = Πt, This allows us

to apply the Modularity Lifting Theorems toρn
E and to conclude thatρn

E is itself automorphic.

Imitating the method of [TFM], the main theorem of [HST] is roughly

Optimal Theorem 5.5. There is a totally real Galois extensionFn/Q, a pointt ∈ P∗(Fn), a

pair of rational primes̀ , `′ unramified inFn, and a cuspidal automorphic representationΠ′ of

GL(n)Fn of the type considered in Theorem 4.2, such that

(5.4.1) V [`]t −̃→ ρn
E |ΓFn

(mod `)

(5.4.2) Vt,`′ ≡ ρΠ′,`′ (mod mO′)

as representations ofΓQ, whereO′ is the coefficient ring ofρΠ′,`′ andmO′ is its maximal ideal.

Arguing as in 5.4, we find the following potential version of (5.2):

(5.2(potential)) ρn
E |ΓFn

≡ ρΠt,` (mod mO),

and we again conclude thatρn
E is potentially automorphic, in other words it becomes auto-

morphic only after restriction toΓFn . This is Theorem 2.5 withm = 1, Fn = F1,n. The

(unconditional) proof of this theorem in [CHT,T,HST] under the hypothesis thatj(E) /∈ Z, is

essentially what has just been described; I have omitted discussion of an additional intermedi-

ate step, needed to accomodate the possible incompatibility of the restrictions ofV [`]t andρn
E

to inertia groups at primes dividing̀.

The proof of a result similar to Optimal Theorem 5.5 is based on a diophantine approximation

argument known in the literature as “Rumely’s local-global principle” that roughly states that,

if an irreducible algebraic variety over a number field has points locally at a finite set of places

S, then it has points over a number field split at all places inS. In the applications, the number

field isQ, the setS consists of the real prime and the primes` and`′ (in factFn is only assumed

unramified at̀ and`′), in order to apply the modularity lifting theorems 4.7 and 4.9. The crucial

irreducibility condition is guaranteed by Theorem 5.1. As in [TFM], [HST] uses a version of

this principle, due to Moret-Bailly [MB], that is sufficiently flexible for our applications.

5.6. Remark. Theorem 5.1 and the local-global principle can be applied, as in 5.4, to a rather

general class of symplectic representationsρ of Galois groups of totally real fields with values
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in totally ramified extensions ofZ`. For the moment, the method is limited toρ for which

one can find local points over an unramified extension ofQ`. An analogous argument has

recently been found by T. Barnet-Lamb, using nonH0-invariant pieces of the cohomology of

the Dwork family, to treat representations of Galois groups of CM fields satisfying condition

(b) of Theorem 4.2 [B-L] but are not necessarily symplectic.

6. APPLICATIONS OFBRAUER’ S THEOREM

To explain how Theorem 2.3 can be derived from a result like 5.5, I will step back and recall the

theory of ArtinL-functions, which areL-functions of complex representations ofGal(Q/F ),

for any number fieldF .

Let

ρ : Gal(Q/F ) → GL(V ) ' GL(n,C)

bea continuous representation on ann-dimensional complex vector spaceV . Thus the image

of ρ is necessarily finite, hence factors throughGal(E/F ) for some finite extensionE of F ;

in particularρ is unramified outside the finite set of primes ofF that ramify inE. For any

prime idealv of F that is unramified inE, we can define a (geometric) Frobenius element

Frobv ∈ Gal(E/F ) as before. Again,Frobv is only well defined up to conjugacy, but

Lv(s, ρ) = det(I − ρ(Frobv)Nv−s)−1

depends only onv. If v is ramified, we letIv ⊂ Γv be the intertia group. ThenΓv/Iv acts on

V Iv , and we define

Lv(s, ρ) = det(I − ρ(Frobv, V
Iv)Nv−s)−1;

L(s, ρ) =
∏
v

Lv(s, ρ).

This product converges absolutely forRe(s) > 1. Perhaps the most important conjecture in

algebraic number theory is

Artin Conjecture. If ρ is irreducible and non-trivial, thenL(s, ρ) is entire and satisfies a

certain (explicit) functional equation.

One has known for some time that

Theorem 6.1.The functionL(s, ρ) is meromorphic, satisfies the expected functional equation,

and is continous and non-vanishing forRe(s) ≥ 1.
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This is essentially a consequence of Brauer’s theorem on characters. I need to explain a few

6.2. Facts about Galois representations and theirL-functions.

6.2.1. Semisimplification.The representationsρ and ρ′ have the same Jordan-Hölder con-

stituents if and only ifTr(ρ) = Tr(ρ′), and the latter is true if and only ifL(s, ρ) = L(s, ρ′)

as Euler products.

In particular, we can always replaceρ by its semisimplification (the direct sum of its Jordan-

Hölder constituents.

6.2.2. Additivity L(s, ρ⊕ ρ′) = L(s, ρ)L(s, ρ′).

6.2.3. Inductivity. LetF ′/F be a finite extension,ρ′ a continuous representation ofGal(Q/F ′),

ρ = IndF ′/F ρ′ the induced representation ofGal(Q/F ). Then

L(s, ρ′) = L(s, ρ).

If ρ is the trivial representation ofGal(Q/F ), thenL(s, ρ) = ζF (s) is the Dedekindζ-function

of F . More generally, ifρ is one-dimensional then it factors throughGal(Q/F )ab.

6.2.4.Abelian L-functions. Supposedim ρ = 1 andρ is non-trivial. ThenL(s, ρ) is entire and

satisfies the expected functional equation. Moreover,L(s, ρ) is continuous and non-vanishing

for Re(s) ≥ 1.

This is due to Hecke (Dirichlet whenF = Q) and follows from class field theory.

In particular, in the inductivity situation, ifρ′ is abelian and non-trivial. thenL(s, IndF ′/F ρ′)

satisfies the Artin conjecture.

Theorem 6.3 (Brauer). Let H be a finite group andρ : H → GL(n,C) be any finite-

dimensional representation. Then there are solvable subgroupsHi ⊂ H, charactersχi :

Hi → C×, and integersai such that

ρ ≡ ⊕iaiIndH
Hi

χi.

The decomposition above is not unique, and the integersai are certainly not assumed positive.

Applied toρ : H = Gal(E/F ) → GL(n,C), this and additivity implies

L(s, ρ) =
∏

i

L(s, IndFi/F χi)ai ,
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whereFi is the fixed field ofHi andχi is the character ofHi = Gal(E/Fi); and again this is

∏

i

L(s, χi)ai .

Since each of theL(s, χi) is entire and invertible forRe(s) ≥ 1, the product is meromor-

phic and invertible forRe(s) ≥ 1. The functional equation also follows from this product

expression. We have not yet used that theHi are solvable.

Now we return to the situation of an elliptic curveE/Q without complex multiplication, and

assumeFn/Q is a finite Galois extension. Let1Fn be thetrivial representation ofH =

Gal(Fn/Q). Brauer’s theorem applies to1:

1Fn = ⊕aiIndH
Hi

χi.

Let Li be the fixed field ofHi in Fn, ρn
E,Li

the restriction ofρn
E to Gal(Q/Li).

In general, ifρ is a representation ofH, ρ′ a representation of the subgroupH ′ ⊂ H, then

(IndH
H′ρ′)⊗ ρ = IndH

H′(ρ′ ⊗ResH
H′ρ),

whereResH
H′ρ is the restriction ofρ to H. Applying this toρ = ρn

E , with (H ′, ρ′) varying

amond the pairs(Hi, χi), it follows that

ρn
E = ⊕ai(IndH

Hi
χi)⊗ ρn

E = ⊕aiIndH
Hi

χi ⊗ ρn
E)

which implies

(6.4) L(s, ρn
E) =

∏
L(s, ρn

E,Li
⊗ χi)ai .

The following fact follows from a strengthened version of Arthur-Clozel base-change for cer-

tain kinds of automorphic representations of totally real fields.

Theorem 6.5. SupposeFn is totally real and Galois overQ, andρn
E,Fn

is automorphic (of a

certain type to be made precise below). Then for any solvable subgroupHi ⊂ H with fixed

field Li, and any characterχi of Gal(Q/Li), L(s, ρn
E,Li

⊗ χi) is entire, and is invertible for

Re(s) ≥ 1.

The invertibility statement in this theorem is due to Jacquet and Shalika and, in a more general

setting, to Shahidi [JS,Sh].
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Thus Theorems 5.5 and (the much older) 6.5 imply that the right-hand side of (6.4) is an

alternating product of invertible Euler products, hence is itself invertible. This suffices to imply

Theorem 2.3 forevenn. The case of oddn is deduced in [HST] by a tensor product trick

and Shahidi’s theorem applied to Rankin-SelbergL-functions. This completes the proof of

Theorem 2.3, which in turn implies the Sato-Tate conjecture for an elliptic curve with non-

integralj-invariant.

7. PROSPECTS

Since the appearance of Serre’s book [S1] it has been understood that the Sato-Tate Conjecture

for the elliptic curveE follows immediately once one has established certain analytic prop-

erties ofL-functions of the`-adic Galois representationsρn
E , summarized in Theorem 1.4.

The techniques reviewed in sections 3-5 of this paper derive the desired analytic properties by

proving the potential automorphy ofρn
E . These techniques can in principle be extended to more

general̀ -adic Galois representationsρ of CM type, but there are several obstacles. The most

immediate obstacle is the one mentioned in Remark 5.6: one needs to know that the restriction

of the residual representation̄ρ to an`-adic decomposition group becomes isomorphic over an

unramified extension to the local representation attached to some pointt on the moduli space

P∗. In [HST] this is used to prove potential automorphy of certain representations of the form

Vt,`; this argument has been generalized by Barnet-Lamb in [B-L].

The inequalitỳ > n mentioned briefly in§3 in connection with the Taylor-Wiles method is

specific toρn
E . For generalρ one obtains formula (3.7) only wheǹ> n(ρ), wheren(ρ) ≥ n

is determined bỳ-adic Hodge theory and is in general much larger thann. This inequality is

only compatible with the requirement of Remark 5.6 if the Hodge-Tate weights ofρ are exactly

0,−1, . . . , 1 − n, each with multiplicity one; in other words, the same as those ofρn
E for an

elliptic curveE. If such aρ is automorphic then the correspondingΠ must haveL(Π∞) = C
with the trivial representation. This is a serious restriction. Methods are known for relaxing

this restriction, especially whenn = 2 (see [TMC]) or whenρ is an ordinary representation at

`, but the application of the potential modularity methods of [HST] to more general`-adic rep-

resentations of CM type seems to require substantial progress in thep-adic Langlands program

(with p = `), which for the moment is only complete for the groupGL(2,Qp).

Automorphy of the Galois representations attached to the`-adic cohomology of curves of genus

> 1 should in principle provide information on the asymptotics of points of general algebraic
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varieties over number fields, in the style of the Sato-Tate conjecture. Such representations sat-

isfy condition (b) of Theorem 4.2 and are geometric in the sense of Fontaine-Mazur, but they

are never Hodge-Tate regular. One expects these Galois representations to be automorphic, but

they cannot only rarely occur directly in the cohomology of Shimura varieties. Existing meth-

ods in automorphic forms therefore provide no insight whatsoever into such representations,

which is another way of saying that an entirely new approach is needed. For general represen-

tations not of CM type, I know one (extremely modest) positive result, a simple consequence

of the results of [GHK]:

Theorem 7.1 [GHK]. Let F+ be totally real and letρ be a (finite-dimensional)̀-adic rep-

resentation ofΓF+ . Then there is aǹ-adic representationρ′ such thatρ ⊕ ρ′ is residually

potentially automorphic

Here potential automorphy is intended in the following strong sense: for any finite extension

M/F+, there is a totally real Galois extensionL/F+ linearly disjoint fromM such thatρ ⊕
ρ′ |ΓL

is residually automorphic overL. One even knows that

(7.2) ρ⊕ ρ′ |ΓL
≡ ρΠ,` (mod mr

O)

wheremO is as in (5.2),Π is an automorphic representation of CM type, andr is any integer,

thoughL may depend onr. And one has strong control ofρ′.

I want to insist, though, that the gap between this statement and genuine automorphy, or even

potential automorphy, remains inconceivably vast. The automorphic methods outlined in§4
are simply not well adapted to the questions that arise naturally in arithmetic geometry. Calabi-

Yau varieties are distinguished by the fact that a certain Hodge component of their middle-

dimensional cohomology is of dimension one. The Hodge-Tate regularity condition imposed

by existing methods in automorphic forms, applied to an algebraic variety, amounts to requiring

that all Hodge components of their middle-dimensional cohomology are of dimension one.

This requirement is relaxed slightly in the case of the Dwork family, where the action of the

symmetric group is used to single out a part of the cohomology that does satisfy the regularity

condition. For most varieties the regularity condition is too stringent to be applied in any way.

The fact that automorphic methods can be applied to elliptic curves, in some cases, has to be

seen as a fortunate accident. No other such accident is apparent on the immediate horizon, but

see [LBE].
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APPENDIX: PROPERTIES OF AUTOMORPHIC REPRESENTATIONS OFGL(n)

For the purposes of this article, the formal definition of automorphic representation is not at all

enlightening. What matters for our purposes is that the family of automorphic representations

satisfies a list of axiomatic properties, some of which are recalled below. We start with a

number fieldF . A cuspidal automorphic representationΠ of GL(n, F ) can be defined as the

representation of a certain locally compact group, theadèle groupGL(n,AF ) on an irreducible

constituent ofL0
2(GL(n, F ) · Z0\GL(n,AF )), whereZ0 ⊂ GL(n, F ⊗Q R) is a maximal

subgroup of the center ofGL(n, F ⊗QR) isomorphic to a product of copies ofR, andL0
2 ⊂ L2

is the subspace of cusp forms, whose definition is here omitted. This definition is convenient

for defining theL-function and determining its analytic properties but sheds little light on the

relation to number theory. What we need to know aboutΠ is contained in the following list of

properties.

A.1 (Factorization). For each place (prime ideal or archimedean valuation)v of F , Π has a

local factorΠv, which is an irreducible representation of the locally compact groupGL(n, Fv).

A.2 (Strong multiplicity one). SupposeΠ andΠ′ are two cuspidal automorphic representa-

tions andS is a finite set of places such thatΠv −̃→ Π′v for all v /∈ S. ThenΠ = Π′; they are

not only isomorphic but equal as subspaces ofL0
2(GL(n, F ) · Z0\GL(n,AF )).

A.3 (Hecke eigenvalues).For all but finitely many prime idealsv, the local factorΠv is

an unramified principal series representation. It is characterized by an (unordered)n-tuple

{α1,v, . . . , αn,v} of non-zero complex numbers, theSatake parameters, or equivalently by the

Hecke polynomial

PΠv(T ) =
n∏

i=1

(1− αi,vT ) = 1− a1,v(Π)T + a2,v(Π)T 2 − · · ·+ (−1)nan,v(Π)Tn.

The (ordered) set ofai,v(Π) are thelocal Hecke eigenvaluesof Π atv.

A.4 (L-function). For eachv there is a localL-factorL(s,Πv) – an Euler factor ifv is a prime

ideal, a normalized product of Gamma-functions ifv is archimedean – such that the product

L(s,Π) =
∏
v

L(s,Πv)
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converges absolutely forRe(s) > 1 and extends to an entire function that satisfies a functional

equation. For unramified placesv,

L(s,Πv) = PΠv(Nv−s)−1

whereNv is the cardinality of the residue field ofF atv.

A.5 EachΠv is determined by itslocal Langlands parameterwhich is Galois-theoretic ifv is

a prime ideal.

A.6 (Non-vanishing).The functionL(s,Π) has no zeroes along the lineRe(s) = 1.

A.7 (Arthur-Clozel base change).LetF ′/F be a cyclic extension of prime degree. Then there

is an automorphic representation (usually but not always cuspidal)BCF ′/F (Π) of GL(n, F ′).

If w is a place ofF ′ over the placev of F , the local factorBCF ′/F (Π)w depends only on

Πv. If Πv is unramified then so isBCF ′/F (Π)w, and its Satake parameters are given by an

explicit formula in terms of the Satake parameters ofΠv. The Galois-theoretic local Langlands

parameter ofBCF ′/F (Π)w is the restriction of that ofΠv to the Galois group of the completion

of F ′ at the prime idealw.
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Sup. 22 (1989), 181–194.

[S1] J.-P. Serre,Abelian `-adic representations and elliptic curves, New York: Benjamin

(1968).

[S2] ] J.-P. Serre, Propriét́es conjecturales des groupes de Galois motiviques et des représentations

`-adiques.Proc. Symp. Pure Math., 55, Part 1 (1994), 377-400.

[Sh] F. Shahidi, On certainL-functions,Am. J. Math.103(1981), 297–355.

[Shin] S.-W. Shin, Galois representations arising from some compact Shimura varieties,Annals

of Math.,173(2011), 1645–1741.



746 MICHAEL HARRIS

[TFM] R. Taylor, Remarks on a conjecture of Fontaine and Mazur,J. Inst Math. Jussieu, 1

(2002), 1–19.

[TMC] R. Taylor, On the meromorphic continuation of degree twoL-functions. Doc. Math.

(2006) Extra Vol., 729-779.
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