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ABSTRACT. The present text consists of notes of several lectures on the proof of the
Sato-Tate Conjecture given up through 2008. The goal of the lectures was to explain the
statement and the main ideas of the proof. The notes are somewhat dated; shortly after
they were written, the author, together with Bernet-Lamb, Geraghty, and Taylor, were
able to prove the analogue of the Sato-Tate conjecture for all elliptic modular forms. In
particular, Theorems 2.4 and 2.5 are not conditional, and the condition on the j-invariant
in Theorem 1.1 is superfluous. Moreover, the methods of proof outlined in sections 3 and
4 have been generalized and extended in a number of ways, notably in a series of articles
by Barnet-Lamb, Gee, Geraghty, and Taylor, by Thorne, and by Calegari and Geraghty.

Key words : Elliptic curve; Sato-Tate Conjecture; automorphic representation; Galois
representation; Taylor-Wiles method

1. INTRODUCTION

An elliptic curve is the seFE of solutions of a cubic curve in two variables, for example

E: y¥*+y=a2>+uz.
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| will only consider elliptic curves with rational coefficients, which after a change of variables
can be written

y? =13+ Az + B.

As abstract algebraic curves, these are not all distinct, and one can isolate two invariants: the
discriminant
Ap = —16(4A% + 27B?)

which is not really an invariant o/, but which has the following property: ik # 0 thenFE
is non-singular, which we always assume. There is alsg-heariant, which really depends
on E and not just on the equation:

443
4A3 4+ 27B?

The quantityj(E) determines” up to isomorphism over an algebraically closed field.

J(E) = 1728 -

Without (much) loss of generality, we may assurheB € Z. It then makes sense to reduce
the equation modulo a primeand ask how many solutiods has modulg:

Ny(E) = |E(Fp)]-
Suppose for the moment we repla€doy a line L, given by dinear equation
L: y=ax+0.

Then the number of solutions @fin the planeF,* obviously equalg, to which we add for
the point at infinity:

IL(E,)| =p+1.
It turns out thap + 1 is in a natural sense the optimal number of points for a curamgfenus
(or degree). Skipping over quadric curves, we define an intggé#), for each prime, by

Ny(E)=p+1—ap(E).

We only considep for which E remains nonsingular modujg which is somewhat weaker
than the condition thah g # 0 (mod p). Such g is called gprime of good reductian
One can date the beginning of arithmetic algebraic geometry to Hasse’s discovery that

|ap(E)| < 2¢/p
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for any prime of good reduction. In other worgs+ 1 is a good approximation t&/,(E) to
square-root order. This can be compared to the square-root good approximatiar),tthe
number of primes less than

v odx
= E
m(x) /2 logz + Error(z)

where the Riemann hypothesis is the assertion that

N[

Error(z) = O(x2)

andindeed Hasse’s theorem was generalized by Weil to a version of the Riemann hypothesis
valid for all curves over finite fields.
The next question is whether anything can be said about the behaviorgf(thigasp varies.
Is a,,(E) more likely to be positive or negative? Is it more likely to cluster arotiod around
+2,/p? The rough answer is that it is as random as possible, but it is not immediately obvious
how to make sense of this. We normalize all th¢E') simultaneously to allow them to be
compared:

Qo (E) = 2\1@%@) € [-1,1].
Thusthere is a uniqué, = 0,(E) € [0, 7] such that,*"™(E) = cos(6,). We ask about the
distribution of thea; " in [—1, 1], or equivalently of thé), € [0, 7]. Over forty years ago,

Sato and Tate independently formulated the following conjecture:

Sato-Tate Conjecture. Supposé~ has no complex multiplication. Then thg*™ (E) (resp.
thed,) are equidistributed in—1, 1] (resp.[0, ) with respect to the probability measure

g\/ 1 —t2dt (7“esp.g sin?(0)dh ) .
m m

Regarding the initial hypothesis mogt have no complex multiplication. In particular, if
J(E) € Q — Z, thenj(F) has no complex multiplication. In this setting the conjecture was
proved in 2006:

Theorem 1.1 (Clozel, Harris, Shepherd-Barron, Taylorf Supposegi(E) is not an integer.
Then the Sato-Tate Conjecture is valid for

2Somereferences, e.g. [G, p. 347], have chosen to save space by offering an abbreviated version of this list.
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For E with complex multiplication the distribution of the,"(E) is different: for half of

p, ap(E) = 0. The distribution has a more natural description in terms of the quadratic field
defining the complex multiplication, and is an easy consequence of class field theory.

Serre explained in his 1968 notes on elliptic curves [S1] how to derive the Sato-Tate conjecture
from Tauberian theorems of the sort used to prove the prime number theorem. The main input
is the following. One needs to rewrite the expressionNg(E):

Ny(E) = (1 — /pei%)(1 — \/pe~%) = (1 — a,)(1 — 3,)

and to define more generally
(1.2) Lp(sa E)=1[1- app_s)(l - ﬁpp_s)]_1§ Np(E) = Lp(O,E)_l

Let S be the set of primes of bad reduction #6r and define

L(s,E) = [[ Lp(s, B) x [ Lp(s, E)
pés pes
with explicit factorsL, (s, E) for p € S, simpler than those for primes of good reduction.
It follows from Hasse’s estimate thdt(s, ) converges absolutely fdke(s) > 3. Now one
can attach a very similar Dirichlet series to a holomorphic modular (cusp) fasfhweight2.
This is a holomorphic function on the upper half plgne+ iy € C | y > 0} that satisfies the
following functional equation:

az+b
cz+d

I ) = (cz +d)*f(2)

b
for all z and all “ p belonging to an appropriate subgrolipC SL(2,7Z) of finite
C

index. Such a modular cusp form is also assumed to satisfy an appropriate growth condition
that implies that it admits a Fourier expansion

F(2) = an(f)g", q ="
n=1
whose corresponding Dirichlet series is defined by

L(s, f) = i bpn”%.
n=1
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Itis known thatL(s, f) extends to an entire analytic function that satisfies a functional equation
relating L(s, f) to L(2 — s, f), and such thaL(s, f) # 0 for Re(s) > 3. The most striking
development of number theory in recent years was Wiles’ discovery of a technique for proving
that anyL(s, E) is also anL(s, f), specifically
(1.3) L(s,E) = L(s, fg), fe=q+ Y an(E)"

n>2
where whem = p is a prime not inS, the coefficient,,(E) is thea,(E) defined above.
With help from Taylor, Wiles applied this technique to a sufficiently large famil{z @b prove
Fermat’s Last Theorem. A few years later, Taylor, together with Breuil, Conrad, and Diamond,
proved that every.(s, E) isanL(s, f). In particular,

Theorem [BCDT]. L(s,E) extends to an entire analytic function with no zeroes on the half-
planeRe(s) > 3.

From the information contained in th&/,(£) one can construct an infinite family af-
functions. For each > 0, define

n

Ly(s,E,Sym™") = [H(l — aéﬂgijpis)]il
=0

if p ¢ S; 1 again omit the definition fop € S. We define
L(s, E,Sym") = HLP(S,E, Sym™).
p
Thus forn = 0 we find the Riemann zeta function and for= 1 we haveL(s, E). Hasse’s
estimates imply thaL(s, £/, Sym™) converges absolutely fate(s) > 1 + 3.

Theorem 1.4 (Serre, [S1])Suppose is an elliptic curve and, for alh > 0, L(s, E, Sym™)
extends to a meromorphic function that is holomorphic and non-vanishingder) > 1 + 3.
Thenthe Sato-Tate Conjecture holds bt

The results of the three papers [CHT], [HST], and [T] together imply this sufficient condition:

Theorem 1.5 (Clozel, Harris, Shepherd-Barron, Taylor).Supposé is an elliptic curve over

Q with non-integralj-invariant. Then for alln > 0, L(s, E/, Sym') extends to a meromorphic
function that is holomorphic and non-vanishing f@e(s) > 1 + 3.

The next section reviews the proof of Theorem 1.4 in the language of Galois representations,
the perspective emphasized in [S1].
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2. EQUIDISTRIBUTION

2.1. Galois representations and associatedfunctions. Let F* be a totally real field. Those
who prefer can assumet = Q.

Let £ be an elliptic curve oveF+. To E we associate 2-dimensional-adic representation for
any primel: let pg ¢ : Gal(Q/F*) — GL(2,Q,) denotethe representation o' (Eg, Qe),
i.e. the dual of the/-adic Tate module. AssumE* = Q for the time being. Then this
representation encodes all information abidutF),)| for almost allp, in the following sense.
Remember that in the previous section we mentioned primes of good reduction. Spyppose
a prime of good reduction faE, and suppose algo # ¢. Then we can recover,(E) from
pEe. Let Frob, € Gal(Q/Q) bea Frobenius element for. This is defined at the beginning
of a course in algebraic number theory. We know tHat(F, /F,) is generated by an element
¢, With the property that,

Va € Fp, ¢p(z) = 2P.

For technical reasons, we prefer to work withob, = ¢, *. Thisis an element afal(F, /F,),
but if we extend they-adic valuation orf) to a valuationv on Q, the decomposition subgroup
I, C Gal(Q/Q) fixing v is isomorphic toGal(Q,/Q,). SinceE has good reduction atand

p # ¢, the representatiopg , is unramifiedat p, which means in particular that it is trivial
on the inertia subgroup, C T, hence factors through, /I, ~ Gal(F,/F,). Thus we can
definepg o(Froby,). This depends on the choice of extensionf the p-adic valuation, but
any two extensions are conjugate by an elemexit@{Q/Q). In particular, the characteristic

polynomial
(2.1.1) Pp7E(T) = det([ — pEj(F?“Obp)T) S Qg[T]

depends only omp. Moreover, it is well known that’, (T") has coefficients ifQ and is
independent of # p. Thus the complex functio®, (p~*) is well defined for all primes of
good reduction. In fact, we know that

Pyp(p™®) =1—ay(E)p~* +p' 2.

Let

Ly(E,s) = Pp7E(p7%*S)’1 =1— GZOTW(E)pfs +p72s.
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The complexi-function of E is

(2.1.2) L(s,E) = [ [ Lp(E, s),
p

where for primes of bad reduction one has another definitioh,9f, s). With our chosen
normalization, this function converges absolutely Ra(s) > 1.
A general conjecture is thdl(s, E') extends to an entire function and satisfies a functional
equation. This is known faF+ = Q (Wiles, [BCDT]) and meromorphic continuation is known
for general totally real’* [TFM]. One proves thaL (s, E) is an entire function, foF'™ = Q,
by proving that it is the_-function of the modular fornfz defined in (1.3) . For more general
FT, one wants to prove that it is the-function of acuspidal automorphic representatiar
GL(2, FT) (cf. the Appendix for more details). In that case one says Ehit automorphic
over F't,
Suppose it is known thdf is automorphic: that there exists a cuspidal automorphic representa-
tion Il of GL(2, F*) such that (up to normalizatiord)(s, I1g) = L(s, E) as Euler products.
Forn > 1 let

P =Sym" ' ppy: Gal(Q/F) — GL(n, Q).

With p = pl; ,, we define
(2.1.3) L(s,p) = [[ Lu(s, p)

wherev runs over finite places of the field* and with the local factors defined for almost alll
v by analogy with (2.1.1):

(2.1.4) Ly(s, p) = det(I — p(Frob,)Nv=*)~1.

Here Nv is the number of elements in the residue field of the pta¢so Nv = p if v is the
rational primep) andp can be taken to be any representation for which the coefficients of the
characteristic polynomials of Frobenius elements can be identified with complex numbers.
For almost allp, the elliptic curveE’ has good reduction at which means that the local factor

Il ), is unramified. This representation is determined bySiégake parameters,, 5,, an
unordered pair of complex numbers that can be expressed explicitly in terms of the number of
points modula:

ap(E) = p2 (ap + By), ap- By = 1.



714 MICHAEL HARRIS

Hasse’s theorem mentioned above has a meaning in terbbg.of
Hasse, Eichler-Shimura (“Ramanujan conjecture”).

‘ap’ = Wp‘ =1

Up to permutation we have, = ¢ 3, = ¢~¥, say, with0 < 6, < 7. | restate the
Sato-Tate Conjecture:

Sato-Tate Conjecture. AssumeE has no complex multiplication. Then thg are equidis-
tributed in [0, 7] with respect to the measudsT'(9) := 2sin?6 do.

The Sato-Tate measure is the push-forward of the Haar measut€ @) to a measure on the
set of conjugacy classes B/ (2), which can be identified witfD, 7]. The conjecture makes
sense for the automorphic representatibs, without reference to elliptic curves, and also
makes sense for modular forms of higher weight.

Let X = [0, 7]. Foranyf € C(X) andz > 0 define

S(f,x) =) f(By).
p<x
The Sato-Tate conjecture asserts the following: for any continuous fungtienC'(X), we
have

O S(fom) L 2p<a f(0)
(%) Ill)ngo S(L) —xlirgoiz:pgxl —/Xf(Q)dST(Q).

Now the diagonal matrixiiag(c,, 5p) belongs toSU(2). There is an obvious map :
SU(2) — X identifying X with the space of conjugacy classesStV(2), anddST(0) is
the image with respect to of the Haar measure ofiU (2) with total massl. It suffices to
prove (*) for f in an orthogonal basis afy(X). Such an orthogonal basis is given by the
charactersy,, of the irreducible representatiossm™ of SU(2). For f = xo, which is the
trivial representation, (*) is obvious. Fgr= x,, with n > 0, we have

/ Xn(0)dST(0) = / Xn(0) - 1dST(0) =< xn, X0 >=0

X X

because the characters form an orthogonal basis.
In general

xn(0p) = o3y,
=0
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This is why it is convenient to use the Satake parametelk0f. So we need to show

(2.2) Tim Y xa(6p) = o(m(x)).

p<z

Now we use a standard argument from analytic number theory. Mfite pg , (any?), let
L*(s, B, Sym") = L*(s. pis*") = L(s + 5. p*")
normalized to be absolutely convergent fo¢(s) > 1. In other words,

L*(s, E, Sym") HL* s p%“

where forp ¢ S,
8 p%+l H 1 _ aiﬁ;_jp_s)_l.
7=0
Comparing this with (1.1), we find

d . Xn (0 logp
ﬁlog(L (s, E, Sym") ZZ

an logp o(s)

whereyp(s) is holomorphic forRe(s) > % andthe first equality is only up to a finite set of bad
factors which are irrelevant for the second equality.

Let L*(s) be a Dirichlet series absolutely convergentRer(s) > 1. We sayL*(s) isinvertible

if it extends to a meromorphic function dhand if L*(s) has no zeroes faRe(s) > 1 and no
poles forRe(s) > 1 except for a possible pole at= 1.

Supposer is an elliptic curve ovef) with non-integralj-invariant. Then Theorem 1.5 [CHT,
T, HST] implies that, for all > 0, the functionL*(s, E, Sym™) is invertible and has no pole
ats = 1 unlessn = 0. Thus for each > 0,

Llog(L* (s, B, Sym™) = L™ (s, B, Sym")/L* (s, B, Sym")

is a quotient of meromorphic functions that are holomorphic and non-vanishidg:fey > 1.

Corollary. Under the hypotheses of Theorem .5, Xn(0p)logp l"gp hasno pole forRe(s) > 1.
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The Wiener-lkehara tauberian theorem states thax(#) = 5. % is a Dirichlet series con-
vergent forRe(s) > 1 and non-singular except for a possible first-order pole at 1, with
residueq, then

Zbi:a-x—&—o(w).

For the prime number theorem, this is applied with= p - log p if i = p is prime,b; = 0
otherwise, to yield a form of the prime number theorem:
Zlogp =z + o(x).
p<z
Forn > 0, Theorem 2.3 implies
an(Gp)log p = o(x).
p<z
Applying Abel summation to get rid of the logs, we find
S(xn: ) =Y _ Xn(0) = o(x/logz)

p<z
and since
S(1,z) = S(xo,z) = Z 1 = z/logx + o(z/logx)

p<z
by the prime number theorem we have

. S(Xnax)
lim 2
A S ()

for all n > 1. This yields the estimate (2.1), and hence equidistribution.

Two elliptic curves

One can define two elliptic curvds and E’ to beisogenousf they are related by a non-trivial
group homomorphism; thes,(E) = a,(E’) for almost allp, and this can be taken to be the
definition of isogeny by a very deep theorem of Faltings (another conjecture of Tate). Now
supposer andE’ are two elliptic curves ove®. One can consider the pair

(ap”"™(E),ay”™(E")) C [-1,1] x [-1,1].

If £ andE’ are isogenous, this point always lies on the diagonal. If not, the conjecture is the

following, a special case of a completely general Sato-Tate conjecture for motives, formulated
by Serre in [S2]:
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Conjecture 2.3. Let F'* be a totally real field, let£ and E’ be elliptic curves ovef'", and
assume? and £’ do not become isogenous over an abelian extensidtrofFor any primev
of F* whereE and E’ both have good reduction, we let

1. 1 .
[B(k)| = (L= g ) (1 = gf %)

1. 1 .
B/ (k)] = (1= gfe)(1 = gie)

whee ¢,, 9, € [0, ].
Then the pairg¢,, 1,,) € [0, 7] x [0, 7] are uniformly distributed with respect to the measure

4 .9 . 9
ﬁsm ¢ sin“Y dodi.
Now if we have two non-isogenous elliptic curvBsand £’ as above, we can form

L*(s,pp @ pi) = [ [ Ly (s, 0 © 0B
p
where forp ¢ S
n m
Li(s, o @ o) = [T TT (0 — o83~ (o) ()™ Fp~*) 1,

j=0k=0
an expression easier to understand as the determinant of a certain tensor product matrix. The
above conjecture follows from

(Conditional) Theorem 2.4. Assume the expected results of the “book project” ([Book1] and
subsequent books). For dlin,n) # (0,0) L*(s, pj ® pl,) is invertible and has no pole at
s=1.

A proof of this theorem is given in [H] but it is conditional on work in progress, including
notably the results of [L], [CHL1], [CHLZ2], [CH], and [Shin]. It is a consequence of the
following result, also proved conditionally in [H]:

(Conditional) Theorem 2.5. Assume the expected results of the “book project”. For every
m,n > 1, there is a totally real Galois extensidt, ,,/Q such that the_-function Ofp%men =

Ph \Gal@/pm,n) (resp. p’g,ijyn) is the L-function of a cuspidal automorphic representation
g, of GL(n, Fp ) (resp.Ilg ,, of GL(M, Fi ).

Unconditionally, it is proved in [CHT], [HST], [T] that this is true whem andn are botheven

(or when eitherm = 1 orn = 1). If we admit Theorem 2.5, then Theorem 2.4 follows from
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properties of Rankin-Selberf-functions and an argument using Brauer's theorem on finite
group characters first applied by Taylor. See the discussigd.in
Three or more elliptic curves? For three elliptic curves we would need something like

L*(S, pTEL X p%l/ X p%//).

Unfortunately, at present there is no analytic theory of siidtinctions. This is a major barrier
to the further development of automorphic forms. The case of triples is in some sense the
crucial case.

The error in the error. Barry Mazur has been interested in the question of the discrepancy
between the Sato-Tate distribution and the actual distributions af i{f€). The rate of con-
vergence to the Sato-Tate distribution of the pointwise distributiong; forX is a statistical
problem whose optimal solution is intimately related to the Generalized Riemann Hypothesis
for the L-functionsL* (s, p},), cf. [M2].

Brief synopsis. The Langlands conjectures predict tiids, £, Sym™~!) can be associated to

a cuspidal automorphic representation®k (n)q. This would imply thatZL(s, E, Sym" 1)

is entire (Godement-Jacquet) and is nhon-vanishing on the indicated domain. We do not prove
this. Instead, we prove that fareven,L(s, E, Sym™ 1) is potentially automorphicthat is, it

is associated to a cuspidal automorphic representaticiV.gf.) over some totally real Galois
extension of). This argument involves two parts. The first is an extension of Wiles’ technique
for identifying L-functions of elliptic curves with.-functions of modular forms, and is based
essentially on Galois cohomology and an analysis of automorphic representations of different
sorts of groups, especially unitary groups. This is begun in [CHT] and completed in [T], and is
described irg3 andg4, below. The second is an extension of an idea used by Taylor to prove
meromorphic continuation df-functions attached to two-dimensional Galois representations,
using weak approximation on moduli spaces. In [HST], we found a moduli space that could be
used to study:-dimensional Galois representations for any exeit is a twisted form of the
moduli space of certain Calabi-Yau varieties originally studied by Dwork in certain cases, and
more generally by physicists interested in mirror symmetry. These results and their applications
to potential automorphy are explainedsb

It is explained in§6 how potential automorphy af(s, E, Sym™ 1) for all evenn implies
Theorem 2.3 for allh. As we have already seen, this analytic property of thinctions
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implies the Sato-Tate conjecture for the elliptic cufve

3. DEFORMATION RINGS OF GALOIS REPRESENTATIONS

For the next few sections we will forget about everything connected with elliptic curves and
retain only the Galois representatipf}, which we denote simply. For the momenp is

a representation df» = Gal(Q/F) for an arbitrary number field". In fact, we will only
retain a few of its properties. Representations Jikgiven by the action of'r on the/-adic
cohomology of a (smooth, proper) algebraic varigtynay be callednotivic The general
machinery off-adic cohomology implies the following important properties:

1. There is a finite sef of primes of F' such that, for all primes ¢ S, the restriction op
to the local Galois group, = Gal(F,/F,) is unramified;

2. For all primes of F dividing ¢, the restriction of to the local Galois grou@al(F,/F,)
is de Rhanin the sense of Fontaine.

One often comparesadic representations of Galois groups of number fields to finite-dimensional
representations of fundamental groups of Riemann surfaces. In the geometric setting, condition
(1) corresponds to the condition that the Riemann surface is algebraic, that is it is the comple-
ment in a projective algebraic curve of a finite set of points, which correspond to the points of
ramification of the representation of the fundamental group of the closed curve. | know of no
geometric analogue of condition (2), whose proof is one of the main theoreprsdit Hodge

theory (herep = ¥).

Fontaine and Mazur call afvadic Galois representatignof ' geometricif it satisfies (1)

and (2). Therontaine-Mazur conjecturegre an adaptation of the Langlands prograré-&alic
representations of Galois groups of number fields. One of the conjectures states that any geo-
metric /-adic representatiop is necessarily motivic. More relevant to our present discussion

is another conjecture of Fontaine-Mazur that states (or would state, if it were written down
for generaln) that any geometria-dimensionall-adic representatiop of I'r is necessarily
associated to auspidal automorphic representatidf(p) of GL(n, F'); the conjecture even

3Therepresentatiop?, is not actually realized on the cohomology of the smooth proper vaF&tput rather
on the part of the cohomology invariant under the permutations of the factors. This difference is immaterial for the
purposes of the present paper.
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gives an explicit recipe foFl(p) as abstract representation. Tlerimutative) casen = 1

is an interpretation of class field theory combined with the Shimura-Taniyama-Weil theory of
complex multiplication and Hecke characters. The set of cuspidal automorphic representations,
whatever they are, have strong finiteness properties and together the Fontaine-Mazur conjec-
tures therefore imply that the set of motives with given Hodge numbers unramified ofitside

is finite. In this way the Langlands program has very stringent consequences for diophantine
geometry.

The program initiated by Wiles reduces certain cases of the Fontaine-Mazur to a counting prob-
lem. The present section explains how to count geoméisidic Galois representations in the
case of interest. The next section explains how to count those georfieilic representa-

tions that do come from automorphic representations, together with the generalization of the
Taylor-Wiles theorem that establishes a sufficiently strong version of equality.

Henceforwardl is an odd prime. The first step is to identifyas a point on an appropriate
moduli space, or parametrized family of geometriadic representations. L& be a finitely
generated local noetherigh-algebra with maximal ideah and residue field. For the time

being we assumé@ to be the integers in a finite extension@f. Letp : 'y — GL(n,O) be a
continuous representation and fet I'r — GL(n, k) be its reduction moduler. Fix a finite

set of primesS including all primes dividing and all primes at whiclp is ramified, and let

I'r s denote the Galois group of the maximal extensio’afnramified outside.

Definition 3.1. Let A be a noetherian locat-algebra with maximal ideam 4 and residue
field k. Alifting of p to A (understood to be unramified outsidg@ is a homomorphisn :
I'rs — GL(n, A) together with an isomorphism

p (mod my) —p

compatible with the natural mafy/m = A/m4 = k. Adeformation of p to A is an equiva-
lence class of liftings, where two liftings are equivalent if one can be obtained from the other
by conjugation by an element 6 + m oM (n, A) C GL(n, A).

Let Def;,s be the functor on the category of Artinian loadtalgebras that tod associates

the set of equivalence classes of deformationg tf A (unramified outsides). This can be
extended to a (pro)-functor on the category of noetherian I6zalgebras, and the starting
point of the theory is Mazur’s theorem
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Theorem 3.2 (Mazur). Suppose is absolutely irreducible (or more generalljnd(p ® k) =

k). ThenDef; s is (pro)representable by a noetherian locatalgebraR?; s.

We writemp, for the maximal ideal of?; s when this does not cause confusion. The Zariski
tangent spacélom(mpg/(mpg)?, k) = Def;s(k[e]), with €2 = 0, has a natural interpretation
in terms of Galois cohomology.

Proposition 3.3. There is a natural isomorphism
Hom(mp/(mp)?, k) — H'(Cps,ad(p)),

wheread(p) is then?-dimensional Galois modulB om(p, p).
The isomorphism is obtained as follows. There is a short exact sequence

1 —eM(n,k) — GL(n,k[e]) — GL(n, k) — 1.

Thus any two liftingsr and ry of p to GL(n, kle]) differ by a map[r — o] : I'pg —
M(n,k) — eM(n, k), where[r — r0](g) = r(g9)ro(g)~! — I. Sincer andr, are homomor-
phisms, one calculates easily tlat- ] is a cocycle with values ind(p) that is a coboundary

if and only if r andry are equivalent as deformations @f In what follows, we will consider

ro to be a base point and write] instead offr — 7).

The vector spacél ! (I'ps, ad(p)) is finite-dimensional, and this is used to prove tRats is
noetherian, but does not correspond in general to a counting problem that can be solved. Im-
posing supplementary restriction on deformationg define alternative moduli problems. In
many cases these can be proved to be representable and related to vafig(tsof, ad(p))

with better properties. We sketch the calculation of the dimension of the tangent spaces to the
deformation rings used in the Taylor-Wiles method. The reader willing to take these on faith is
invited to skip ahead to the result of the calculation, given in (3.7).

It seems the Taylor-Wiles method only works for Galois representations equipped with some
sort of polarization. In particular, we need to assume from now onZAhiateither a totally

real field or a CM field — a totally imaginary quadratic extension of a totally real field, so
that in particular there is a well-defined complex conjugatioa Aut(F) of order1 or 2,

whose fixed field is a totally real field denotétt, as above. The representatigh admits a
non-degenerate bilinear form

P ® pE — Qi1 —n),
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whereQ,(m) is the one-dimensional vector spa@e on whichT'r acts by thenth power of
the cyclotomic character. The pairing is alternating ifs even and symmetric it is odd.
More generally, we consideradmitting non-degenerate pairings

pRpoc— O®QIl—n),

with ¢ as above. Such will be calledof unitary typeand will be related to automorphic forms
on unitary groups.

Of coursep admits a similar polarization with valuesitil —n), defined analogously. One can
consider deformations ¢f together with its polarization. This defines a representable moduli
problem whose tangent space is isomorphic thﬂc{FF+7S, ad(p)), where the extension of
ad(p) toT'r+ g D I'pg is defined in terms of the pairing.

The next step is to impose local conditions at primes'jrwhich is now considered a set of
primes of F* all of which split in the quadratic extensidry F'*; in particular this is true of all
primes dividing¢. A deformation problens then a collectiors = {D,,v € S} of conditions

on the restriction of a deformatignto I, for v € S that

(i) define a representable moduli problem (so it can be studied abstractly) and
(i) can be expressed in terms of the natural restriction map
(3.4) locy : H' (Tp+ 5,ad(p)) — H'(Ty,ad(p)), vE S
(so that its numerical invariants can be calculated)
In the setting of [CHT], the most important local conditions are of two types.

(v 1 £) Inthis case, we war, to beminimal which roughly means thatis no more ramified
thanp. More precisely, we define/asubspacd., ¢ H'(T',, ad(p)) so that thes of type
D, are precisely those such that the corresponding cohomology lelas$s]) € L,
under the restriction map (3.4). Thé®, is minimal if and only ifdim L, = hY :=
dim H°(T,, ad(p)) (cf. [CHT, 2.4.21)).

(v | £) Whenp = p} and/ is a prime of good reduction faF, thenp |, is not only de

v

Rham, in Fontaine’s sense, but is crystalline and has Hodge-Tate weights correspond-
ing to the classical Hodge decomposition of the subspadé™of' (E™, C) fixed under

4In [CHT] we instead consider homomorphisms frémp+ ¢ with values in a certain algebraic group with two
connected components, but there is no need to go into that level of detail here.
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permutation of the factors. Under the standard convention, the Hodge-Tate weights are

thus0, —1, ..., 1 — n, each with multiplicity one. The local condition we impose is thus
thatp be crystalline at all primes dividing ¢ with the same Hodge-Tate weights &s.
More generally, it suffices to assume theis crystalline at each suahwith n distinct
Hodge-Tate weights; suchgis calledHT regular. In order to make sense of this we
need to assumé> n and/ unramified inF'. Thenp and its liftings can be analyzed in
terms of Fontaine-Laffaille modules [FL]. All that is needed in what follows is that, if
L, C HY(T,,ad(p)) is the subspace corresponding to this deformation condition, then
n(n —1)

dim L, — hY = 5

The Selmergroup H3(T' -+ 5, ad(p)) C HY(T'p+ g,ad(p)) is defined to ben,csloc, ' (Ly).
Now Tate’s local dualitydefines a perfect pairing for everye S

H'(Ty, ad(p)) @ H' (T, ad(p)(1)) — k,

wheread(p)(1) is ad(p) tensored with the cyclotomic character. Lt denote the annihilator
of L, with respect to this pairing and define

HE. (T s 5, 0d(p)) = Nyesloc, (LE) € H' (s 5, ad(p)).
Abbreviateh(ad(p)) = dim Hi(I'p+ g, ad(p)) and so on, and write
Xo(S) = dim L, — Y.
For v real, we sety,(S) = —dim H(T,,ad(p)). Forwv finite not in .S, we sety,(S) = 0.

This allows us to sum over all primes.

3.5. Sample calculation An unramified representation ©f, is just a representation of the
Frobenius elemenit'rob,. Consider the exact sequence:

0 — ker(F'rob,) — ad(p) Frope ad(p) — cokel F'rob,) — 0.

Thenh? = dim ker(Frob,), whereas we havéim(L,) = dim cokel Frob,) whenD, is the
condition that deformations are unramifiedvatSince this is our assumption for¢ S, our
notation is consistent.

One tries to reduce all calculations pf(S) to considerations as simple as (3.5).
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Combining Tate’s global Euler characteristic formula for Galois cohomology with Poitou-Tate
global duality, we obtain the following important identity:

(36)  hs(ad(p) — hs-(ad(p)(1)) = h®(ad(p)) — h®(ad(p)(1)) + Y xu(S)

The sum is over all placesof F*. The Taylor-Wiles method introduces a new collection of
primes@, split in F//F* and not overlapping, and additional deformation conditions with
the property that, foo € @, dim L, — h% = 1. The corresponding deformation problem
is denotedS((?), and the corresponding deformation ring is dendi®d; o). Formula (3.6)
remains valid in this generality, with every replaced byS(Q). This allowshy(ad(p)) to
grow while simultaneously shrinkint}. (ad(p)(1)). In fact, in the applications we have the
following simplifications:

(@) h°(ad(p)) = h°(ad(p)(1)) = 0.
(b) Forv reaf, dim H(T',, ad(p)) = dim ad(p)*=* = 21
(c) Thereis a collection) of (Taylor-Wiles) primes such thézt}g(Q)* (ad(p)(1)) = 0.

The existence of collections of Taylor-Wiles primes, which need to satisfy several other prop-
erties in addition to (c), is guaranteed provided the imagg isfnot degenerately small. We

will soon need many such collectiofs For each sucly, we obtain the following very simple
formula:

(3.7) dimmp, oo /M3 o = b (ad(p) = Q-

P

In the next section we will see that this expression yields a natural upper bound for deformations
of p attached to automorphic forms. The Taylor-Wiles method shows this is also a lower bound.

Remark. Formula (3.7) says that an important property of the residual represeniatiche

Galois group of the number fiel# can be expressed in terms of its restrictions to carefully
chosen local Galois groups. This is very roughly analogous to the (obvious) fact that the space
of sections of a vector bundle on a compact manifold can be embedded in the sum of the fibers

5In [CHT] the equality (b) is only deduced at the end, but there is an independent proof due ticleiiad
Chenevier.
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at carefully chosen finite sets of points. This corresponds in both cases to adding certain kinds
of singularities at the chosen points. What is remarkable in the Taylor-Wiles method is that the
singularities at sets of Taylor-Wiles primes can be made to approximate arbitrarily closely the
full structure of the original deformation ring; s()-

4, AUTOMORPHICGALOIS REPRESENTATIONS ANDHECKE ALGEBRAS

Let F' be a number field. A version of the global Langlands correspondence of particular
interest to number theorists, is the conjectural dictionary:

Compatible systems
(Certain) cuspidal
p,¢ of irreducible/-adic
automorphic
(4.1) < < representations of

representations _
I'r =Gal(Q/F)
II of GL(TL, AF)

of dimensiomn

\
To say that thep, = prr, form acompatible systeris to say that all they yield the same
(Artin, Hasse, Weil)L-function L(s, p), defined as in (2.1.3, 2.1.4). This is a strong version of
the assertion that(s, p) has an analytic continuation and functional equation.rLet dim p,

so the general Euler factor @f(s, p) is of degreen. The form of the general Euler factor of
L(s,II) at unramified places is recalled§8, below.

The word “certain” in the above dictionary is crucial. Not all cuspidal automorphic repre-
sentations of7L(n) are conjecturally associated to Galois representations. Maass forms for
GL(2,Q) are the most obvious example. They include, for example, cuspidal functions on
SL(2,7Z)\$ that are eigenfunctions for all Hecke operators and for the hyperbolic Laplacian.
Thanks to Selberg one knows the collection of such forms is large but, even allowing the level
to increase, practically none of them are supposed to be of Galois typdl ®h&alois type

were identified by Clozel in his article [C]; he called them “algebraic” and characterized them
as those for which the archimedean comporiént has infinitesimal character (character of

the center of the enveloping algebra) corresponding to an element of the weight lattice of the
Lie algebraGL(n, Fx,). Call this thearchimedean weighdf I1; it is well-defined modulo a
twisted action of the Weyl group which, fé¥L(n), is just the product of permutation groups

for the different archimedean placesof This is an integrality condition and can naturally be
interpreted in terms gf-adic Hodge theory. In the setting of the Fontaine-Mazur conjectures
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[FM], one expects eachy in a compatible system to kgeometricin the sense of Fontaine-
Mazur, as defined i§3. In particular, they arélodge-Tateat each prime dividindg, and the
dictionary predicts the Hodge-Tate weights in terms of the infinitesimal charadteg, of

All known methods only apply whel , is not only algebraic butohomological This means
that the archimedean weight f,, is adominantweight, hence is the highest weight of the
dual of an irreducible finite-dimensional representafiiill.,) of GL(n, F). The precise
condition is expressed in terms of relative Lie algebra cohomology:

H*(gl(n, Fro), Koo; oo @ W (Ila)Y) # 0.

Here K, is a chosen maximal compact subgrougdf(n, F.,) (in practice it is multiplied by

the center of7L(n, Fx)); one has to make such a choice in order to define automorphic forms
in the first place.

Given additional restrictions oR', one can construct Galois representations. L dte either
totally real or a CM field, and in either case Iét C F be its maximal totally real subfield, so
that[F' : F'T] < 2. Letc € Gal(F/F*) be complex conjugation; by transport of structure it
acts on automorphic representationg:di(n, F'). | want to talk particularly about the follow-

ing theorem whose proof is (at the time of writing) in the course of being written down [CHL2,
Shin, CH]:

Theorem 4.2 (Many people). There is an arrow from left to rightl — {p»}, as A runs
through non-archimedean completions of a certain number fi%ld) whenF is totally real
or a CM field, under the following hypotheses:

(1) The factodI (@) p = pr,» geometric,
is cohomological; = HT regular
(2Moc=11" (b)p@poc — Qul —n)

This correspondence has the following properties:

(i) For any finite placev prime to the residue characteristioof A,

1—n

(P la,)” = LI, @ | e ],% ).

Here GG, is a decomposition group atand £ is thenormalized local Langlands corre-
spondence. The superscriptrefers to semisimplification, but
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(i) If n is odd or if the highest weight df(I1.,) is weakly regular, then one can replace
“semisimplification” above by “Frobenius semi-simplification”, which is the only sense
in which £ is defined; in particular, the local monodromy operator on the left-hand side
is as predicted by the right-hand side.

(i) (At least) under the same regularity hypothesis, one can showlihads (essentially)
tempered at alb;

(iv) The representatiopy |, is de Rham for any dividingZ and the Hodge-Tate numbers
at v are explicitly determined by the archimedean weight @il ). If I1, is unramified
thenpr y |, is crystalline.

An automorphic representation 6fL(n, F'), with F' a totally real or CM field, satisfying
(1) and (2), or ar/-adic Galois representation satisfying (a) and (b), is said to beéMftype.

Remark.It is expected that they , are absolutely irreducible, but unfortunately this cannot

be shown in general; this is the main open question concerning these representations. For the
IT considered in [HT], and again in [CHT,T], one can prove by local argumentsthatis
necessarily absolutely irreducible.

Corollary 4.3. Under the hypotheses of Theorem 4.2, we have the following equality of

functions.
n—1

2
Here the right hand side is the Euler product attached by the formula of Artin and Serre

L(s+ ,prx) = L(s,1II).

to the compatible family of Galois representatigns,. The left-hand side is the standard
(Godement-Jacquel)-function of the automorphic representatitin
The first results of this kind, foF" = Q andn = 2, were proved by Eichler and Shimura
in the 1950s. They worked with elliptic modular Hecke eigenforms of welgtather than
automorphic representations Gf..(2, Q). WhenF = Q, the L-functions are Euler products
whose factors are indexed by prime numbers. For all but finitely many pprtieslocal factor
atp of L(s, pri\) is

det(I — pra(Froby)p=*)~!

where Frob, € Gal(Q/Q) is the Frobenius element we already encounteregilin This
is (the inverse of) the value at™* of the polynomial of degree P, ,(T) = det(l —
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pra(Froby)T'). The typical Euler factod,(s,II) of L(s,II) is likewise (the inverse of) the
value atp—* of a degree: polynomial, which we write (cf. Appendix, A.3)

(44)  Ly(s,10) = (1 = arp(INp~° + azp(Ip~™ — - + (=1)"an o (Mp~") .

Thea; ,(IT) are integers in the number field(IT) and generalize the eigenvalues of the classi-
cal Hecke operatoracting on elliptic modular forms. We return to these operators below.
The highest weight of.(I1,) can be expressed as a map from complex embeddings@f.-
tuples of integersy — (a1 (v),az2(v),...,a,(v)), where we may assume thgs are ordered

so that

a;(v) > a;41(v) for all v.

The weak regularity condition, originally observed by Blasius and Rogawski in their wak on
dimensional automorphic Galois representations, is that, for scane at least oneddindex

i, the above inequality is strict. Under the weak regularity conditigq, can be constructed

as the representation bf- on a direct summand of the cohomology of an appropriate Shimura
variety® The remaining representations are constructed by meahadit congruences, using
results of Chenevier and Beltdne-Chenevier origenvarietieparametrizing/-adic automor-
phic forms on the unitary groupS introduced below. However, one can replace the weak
regularity by the condition thdl be of discrete series type at some finite prime. This was the
approach used in [CHT] and [T], following [HT]; it suffices for the theorems statéd.in

The condition (a), thap be HT-regular, was invoked in the previous section. All the,

of Theorem 4.2 have this property, as do the representa;bfglgsthat are our main object of
interest. However, the Hodge-Tate weightspf, are incompatible with the weak regular-
ity condition. Thus it does not suffice to work in the setting of weakly regular automorphic
representations and the congruence methods mentioned above are crucial in general.

Let p be as ing3, satisfying conditions (a) and (b) of Theorem 4.2; in other wasds,of CM

type. We say is automorphicif it is isomorphic topy; , for somell and A as above. More
generally, we say is automorphic, op is residually automorphicif p = pp; ) for somell
and\. For the remainder of this section, we assuysie be automorphic, and we I&t be the
corresponding automorphic representation.

5This is not strictly true; in general one can only realize the restrictionsnof to certain subgroups of index
2 in this way. A patching argument explained in [HT] and generalized by C. Sorensen reconstructs the entire
representatiopr, » from this information.
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Let De fg}g be the functor on the category of Artinian loc@talgebras that tod associates

the set of equivalence classes of deformationg ¢d A (unramified outsideS) which are
automorphic At least wherI satisfies an additional local hypothesis at some finite prime, itis
known that this subfunctor abe f; s is representable by a quotiefis s of R; s. Whenp =

Pe oo the local hypothesis corresponds to the requirementdhzve multiplicative reduction

at some finite place. This is the setting of [CHT] and [T], where it is assumedlhé a
discrete series representation at some finpeime to¢. *

The interest of this notion is that the quotiéhf s of ;s can be defined purely in terms

of automorphic forms. These forms are not functions on thdesdofG L(n) but are rather
automorphic forms on a unitary group. Before introducing this group, | return briefly to
the case originally considered by Wiles. Recall that the ultimate result of the techniques he
introduced was the existence of a modular fofm = > a,(E)q™ attached to the elliptic
curve E (cf. Theorem 1.3). The¢z belong to a spacs, (N, C) of modular forms of weight

2 and some levelV, an integer divisible only by the primes in the seif bad reduction.
More precisely,S>(N, C) is the space spanned bpwformsof level N, including fg. The
newformsf = )" a,(f)q™ have the property that tH&-algebral'y generated by operatofs,

one for each prime not dividing NV, acting on the newfornf by a,( f), diagonalize the space
S2(N,C). Of course the operatofB, have an independent group-theoretic definition, from
which one can prove that tf#& submodule5z (N, C) of S2(N, C) consisting of serie§ a,,¢"

with all a,, € Z is stable undefly. In particular, the eigenvalues,(f) are allalgebraic
integers for each newforny, an obvious consequence of the definition for fg.

More importantly, the algebr@y, although it is semisimple, does not in general diagonalize
S2(N,Z). In other words, some elements$f( NV, Z) cannot be written as integral linear com-
binations ofT'y-eigenvectors, though they can be written as linear combinations with denomi-
nators. Itis easy to see thatfif, f» € S»(IV, Z) have the property that (f1 — f2) € S2(N, Z)

for some integern, then the Fourier coefficients gf and f, are congruent modulo:. But

if f; and f, are also (normalized) newforms, then among their Fourier coefficients are the
tracesa,,( f;) of a set of Frobenius operataFs-ob,, p { N that suffice to determine the Galois
representationsy, attached tqf;,7 = 1, 2. In other words,

pp = pg,  (mod m),

"It is likely that work in progress of L. Guerberoff will permit the removal of this hypothesis.
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or again, for any primé dividing m, py, is a deformation of the reduction mddp, of py,.
It is in this way that congruences among automorphic forms translate into deformations of
residual Galois representations.

Early work on congruences of modular forms, for example [M1] and [Hida], found it useful
to view newforms agunctionson the Hecke algebr@y and to use geometric properties of
modular forms to derive algebraic propertieslyf, and thus of the corresponding Galois rep-
resentations. This was also the viewpoint of [W] and [TW]. For other kinds of automorphic
forms there is no convenient theory of newforms, and thus no convenient way basis for func-
tions on the relevant Hecke algebras. Diamond and Fujiwara [D,F] independently realized that,
with the help of some basic constructions in commutative algebra, the module structures of
automorphic forms over varying Hecke algebras could serve as a substitute for the theory of
newforms.

To simplify the exposition, | will assume for the remainder of this section fi{él., ) is the
trivial representatiorf and F is a field of the formQ(yv/—d) for some positive integed.
The groupG is easiest to understand as the unitary group of a positive-defidtmensional
hermitian vector space ovér.” The automorphic forms in question are functions on thisexi
of G that are trivial on the group of real poin€s(R) which, in our situation, is @ompact
group. Being automorphic, they are also trivial on the rational pa#t®), and moreover
right-invariant under an open compact subgrddpof the finite a@lesG(Af) of G. In other
words, the automorphic forms belong to

Sk (G,C) ={f: Shi,(G) = GQ\G(A)/G(R) - Ky — C}.

By reduction theory, the s&thk, (G) is finite. However, the finite-dimensional vector space

Sk, (G, C) is endowed with a rich structure by the action of thecke operatorswhich are
Z-valued functions on the discrete slé;c\G(Af)/Kf with compact (finite) support. These

Hecke operators are attached to the gréugther than ta>L(n), but the theory of stable base
change, due in this setting to Labesse, establishes close relations between the Hecke operators
acting onSg, (G, C) and the coefficients; ,,(II) introduced in (4.4):

8In particular, it is not even weakly regular. Fortunately this condition plays no role in [CHT,T].
the algebraic groug’ used in [CHT] and [T] is a twisted unitary group with a more complex description.
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Theorem 4.5

(1) There is a commuting set of hermitian operat$¥$, ; } on the finite-dimensional space
Sk, (G, C), wherep runs through (half of théy prime numbers and < i < n, whose
simultaneous eigenspaces are in bijection with a subset of the Besatisfying (1) and
(2) of Theorem 4.2; the eigenvectorDf; on the eigenspack (1I) corresponding tdl
is the coefficient; ,,(I1) of (4.4). 1

(2) AsK; varies, every suchl occurs.

(3) TheT),; stabilize theZ-submoduleSk, (G, Z) C Sk, (G, C) of Z-valued functions, and
in particular a; ,(IT) is an algebraic integer for all, p, andII.

Let Ty, be theZ-subalgebra obnd(Sk, (G, Z)) generated by thé,, ;. For anyll as above,
let V*(IT) C Sk, (G, C) be the sum of th& (II') such that

(4.6) aip(Il') = a; (1)  (mod ¢) Vi, p.

(Here we are implicitly assuming all thg ,(II') € Z, as is the case for tHép ,, of Theorem

2.5. In general, (4.6) has to be modified to allow congruences in other coefficient fields.)
Consider thé-adic completiorily x, of the projection ofl i, on End(V*(I1)N Sk, (G, Z)).
Consider the mod representatiom = pr; and the quotient; s of ;s introduced above.
Assumep is absolutely irreducible. The following theorem is an application of a result of
Carayol, together with the theory summarized in Theorem 4.5:

Theorem 4.7.For an appropriate choice oKy = K((S), there is a natural isomorphism
Ton.s — Tk, (s)

We thus obtain surjective maps

(4.8) Rons — T g(s)

The main theorem of [CHT] is roughly

®Namely the prime numbers that split in the imaginary quadratic fiéldDne can include all but finitely many

of the remaining primes but their indexing is more complicated and their presence is superfluous.
At present, this has only been established in this form for the twisted unitary groups used in [CHT] and [T]. A

version of this theorem for a more general fiélds due to Labesse [L].
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Modularity Lifting Theorem 4.8 [CHT]. Assume the deformation conditi¢his minimal, ¢

is split in the imaginary quadratic field, andII is unramified at primes dividing Suppose
further that the image ofy; is not too small. Then (4.8) is an isomorphism.

In other words, every (minimal) deformation of the residually automorphic Galois representa-
tion p; comes from automorphic forms. This theorem is valid when the quadratic imaginary
field F' is replaced by any CM field. For the applications to the Sato-Tate conjecture, minimal
deformation conditions are unfortunately insufficient. Adapting a method of Kisin to handle
non-minimal deformation conditions, Taylor proved

Modularity Lifting Theorem 4.9 [T]. Assume( is unramified inF' and splitinF'/F*, andII
is unramified at primes dividing Suppose further that the imagemf is not too small. Then
— in sufficient generality for the applications — (4.8) induces an isomorphism

red
Rﬁn,s - rJIqr[,Kf (S)

where the superscript? denotes the quotient by the ideal of nilpotent elements.

This theorem implies in particular that any deformatiorpgfof type S with values in a ring
without nilpotents — a representation with values in the integers fhaatic field, for example

—is apmy ¢ for somell’ as in Theorem 4.2. In the following section, we show how these results
are used to prove Theorem 2.5.

The key to the proofs of Theorems 4.8 and 4.9 is the fact that the isomorphism (4.7) is valid
more generally:

(4.10) Rpns@) = Tk (s

whenever) is a set of Taylor-Wiles primes. The estimate (3.7) gives an upper bound on the
size of the left-hand side. On the other hand, purely group-theoretic methods give a lower
bound on the size of the right-hand side. The element3 afe all primes; split in £’ such
that

g=1 (mod /M)

for varying N. Letting () vary appropriately so tha¥ tends to infinity, an argument from
commutative algebra, systematized in [D] and [F], yields the isomorphism in the limit.

In the approach of [T], Taylor follows Kisin [Ki] in replacing the rings in (4.10) by algebras
over the moduli spaces of liftings of the local Galois representations at pldoesvhich the
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deformation conditiorD, is not minimal. Much of [T] is devoted to a careful comparison

of these local moduli spaces with rigidified moduli spaces of nilpotent conjugacy classes in
GL(n) in characteristid and their deformations to quasi-nilpotent classes in characteristic
zero. These structures are carried along, and the deformation kifgs ) are replaced

by rings classifyingramed deformations Kisin’s sense. This considerably complicates the
proof, but the Taylor-Wiles counting argument is still the basis of the method.

5. MODULI SPACES OFCALABI -YAU VARIETIES AND POTENTIAL MODULARITY
Consider the equation
(f) fi(Xo, X1, ., Xp) = (X0 4+ 4+ X2 — (n+ D)t Xp ... X, = 0,

wheret is a free parameter. This equation definesian 1-dimensional hypersurfadg € P"
and, ag varies, a family:

Y c P"xP!
N\ !
P;

Let u,,41 denote the group of + 1'st roots of unity,

H =t/ Apns),

whereA is the diagonal map, and let
Ho = {(¢o,--+¢n) | [] G = 13/ Alpns1) € H.

The groupH, acts on eacl; and defines an action on the fibratigfiP!. We examine thé,-
invariant part of the primitive conomology H"~!(Y;) in the middle dimension. The family

Y was studied extensively by Dwork, who published articles abouptheic variation of its
cohomology whem = 2 (a family of elliptic curves) ana. = 3 (a family of K3 surfaces). In
what follows, we assume even, so thaPH"~(Y;) = H"1(Y;).

Becausef; is of degreen + 1, Y;, provided it is non-singular, is a Calabi-Yau hypersurface,
which means that its canonical bundle is trivi&} (as a nowhere vanishing — 1)-form,
unigue up to scalar multiples). This follows from standard calculations of cohomology of hy-
persurfaces. When = 4, Y is a family of quintic threefolds if?*. The virtual number
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nq Of rational curves (Gromov-Witten invariants) &h is determined by certain solutions of
Picard-Fuchs equations describing monodromyi#oiY; ) 0. This is the phenomenon of mir-

ror symmetry, predicted by the physicists Candelas, de la Ossa, Green, and Parkes, relating
the Gromov-Witten invariants df; with the Picard-Fuchs equation & ((Y;/H)™), where
(Y;/Hp)~ is a desingularization dfY;/Hy), and proved mathematically in a number of situa-
tions, including this one.

Whent = oo Y; is the union of coordinate hyperplanes; this is the totally degenerate case. The
fiberYj is the Fermat hypersurface

Xy + o+ X0 =0

This point is of great importance in the applications. The singular fibease determined by

an elementary calculation. In any characteristic prime to 1, we find the mapf; is smooth
overP*P! \ {oo, unr1™1}. The singularities at € 1,11 are ordinary quadratic singularities

and can be analyzed by Picard-Lefschetz theory. For any infégeime ton + 1, the family

R 'f, .(Z/NZ)Ho is a local systenV/[N] in free rankn Z/NZ-modules ovei*. One
verifies that it descends via the map- t"*! to a local system oveP™ = P!\ {0,1, 00},

with a new singularity a0 of finite order. This is aigid local systemand can be studied by

the methods of [K].

For our purposes, we are interested in the fact, highlighted by the mirror symmetry conjectures,
that "~ 1(Y;)"° has Hodge numbeid?"~!~P all equal to onep = 0, 1,...,n— 1, provided

Y; is nonsingular. This is calculated analytically, o@rusing Griffiths’ theory of variation of
Hodge structure of hypersurfaces, which also determines the Picard-Fuchs equation as an ex-
plicit ordinary differential equation of hypergeometric type. The calculation of the Hodge num-
bers shows that, whene F*, the natural representatipn, of 'r onV; ; := H" (Y, Qg)HO

is Hodge-Tate regular, in the sense of sections 3 and 4 above. In particular, the Fontaine-Mazur
conjectures predict that this representation is obtained by the arrow of Theorem 4.2 from a
cuspidal automorphic representation®f.(n, F*). This is in fact proved in many cases in
[HST], using the results of [CHT,T].

The identification of the Picard-Fuchs equation as a hypergeometric equation allows us to apply
the results of Beukers-Heckman [BH] to determine the Zariski closurg @ (C), t9) (any

base pointy) in Aut(V, ). This is in turn applied by Guralnick and Katz to calculate the
monodromy at finite level:
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Theorem 5.1 [Guralnick-Katz, GHK, §4]. SupposéV is a positive integer prime t®(n + 1).
Then the image af, (P*(C), ty) in Aut(V[N],) equals

Sp(V[N]y,) — Sp(n,Z/NZ).

In other words, the minimal covering spadel y of P* trivializing the local systeni/[N]

together with its natural symplectic (Poin@&duality) pairing is an irreducible Galois covering

with Galois groupSp(n,Z/NZ).

In [HST] a weaker version of this theorem, proved following suggestions of Katz, was used
to extend Taylor'spotential modularitytechnique to even dimensional representations of di-
mension greater thah The idea is the following. Suppose you want to prove that-adic
representation, for examplg,, is automorphic. The Modularity Lifting Theorems §# show

that, provided the image of the residual representatiors sufficiently large and a few other
technical conditions are satisfied, this can be done whenever there is an automorphic represen-
tationII of the type considered in Theorem 4.2 such that

(5.2) P = pe  (mod mp),

where O is the coefficient ring ofor;,. This places the burden of the method on proving
residual modularityof p', in the sense of (5.2).
The main theorem of [HST] is motivated by the following ideal theorem:

Ideal Theorem 5.3.There is a point € P*(Q), a pair of rational prime¥, ¢/, and a cuspidal
automorphic representatioii’ of the type considered in Theorem 4.2, such that

(5.3.1) Vie — pr  (mod ?)

(532) V:t,é’ = pv e (mod m(’)/)
as representations @fg, whereQ’ is the coefficient ring ofr » andme is its maximal ideal.

5.4. The basic strategyAlthough it is unrealistic to expect to be able to prove such a theorem,

it is worth taking a moment to show how it can be used to deduce (5.2). AsBumandp’,

both satisfy the hypotheses of Theorems 4.8 and 4.9; in other words, that they are deformations
of an appropriate typ& Condition (5.3.2) shows thaf, , is residually automorphic. We thus
conclude that/; ,/ is of the formpr, ,» for some automorphic representatitip. Since the
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(-adic Galois representations on the cohomology;oform a compatible system, it follows
thatV, , — pm, ¢ is also automorphic. Now (5.3.1) implies (5.2), with= II;, This allows us
to apply the Modularity Lifting Theorems tgf;, and to conclude thaty is itself automorphic.
Imitating the method of [TFM], the main theorem of [HST] is roughly

Optimal Theorem 5.5. There is a totally real Galois extensidn,/Q, a pointt € P*(F},), a
pair of rational primes/, ¢/ unramified inF,,, and a cuspidal automorphic representatidhof
GL(n)r, of the type considered in Theorem 4.2, such that

(5.4.1) VIlly — pk Irp,  (mod £)

(542) V;ff/ = o (mod m@/)

as representations dfg, where®’ is the coefficient ring o » andme is its maximal ideal.
Arguing as in 5.4, we find the following potential version of (5.2):

(5.2(potential)) P Ire = pre  (mod mp),

and we again conclude tha}, is potentially automorphicin other words it becomes auto-
morphic only after restriction t&',. This is Theorem 2.5 witm = 1, F;, = Fy,. The
(unconditional) proof of this theorem in [CHT, T,HST] under the hypothesisitiay ¢ 7Z, is
essentially what has just been described; | have omitted discussion of an additional intermedi-
ate step, needed to accomodate the possible incompatibility of the restrictibiigcdnd p},

to inertia groups at primes dividing

The proof of a result similar to Optimal Theorem 5.5 is based on a diophantine approximation
argument known in the literature as “Rumely’s local-global principle” that roughly states that,
if an irreducible algebraic variety over a number field has points locally at a finite set of places
S, then it has points over a number field split at all placeS.itn the applications, the number
field isQ, the setS consists of the real prime and the primdemnd?’ (in fact F;, is only assumed
unramified a¥ and?’), in order to apply the modularity lifting theorems 4.7 and 4.9. The crucial
irreducibility condition is guaranteed by Theorem 5.1. As in [TFM], [HST] uses a version of
this principle, due to Moret-Bailly [MB], that is sufficiently flexible for our applications.

5.6. Remark. Theorem 5.1 and the local-global principle can be applied, as in 5.4, to a rather
general class of symplectic representatipras Galois groups of totally real fields with values
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in totally ramified extensions df,. For the moment, the method is limited gofor which

one can find local points over an unramified extensiof@f An analogous argument has
recently been found by T. Barnet-Lamb, using rfdgrinvariant pieces of the cohomology of
the Dwork family, to treat representations of Galois groups of CM fields satisfying condition
(b) of Theorem 4.2 [B-L] but are not necessarily symplectic.

6. APPLICATIONS OFBRAUER'S THEOREM

To explain how Theorem 2.3 can be derived from a result like 5.5, | will step back and recall the
theory of Artin L-functions, which ard.-functions of complex representations®@#!(Q/F),
for any number field'.
Let
p:Gal(Q/F) — GL(V) ~ GL(n,C)

be a continuous representation onsagimensional complex vector spate Thus the image

of p is necessarily finite, hence factors throughl(E/F’) for some finite extensiol’ of F,

in particularp is unramified outside the finite set of primes Bfthat ramify in E. For any
prime idealv of F that is unramified inE, we can define a (geometric) Frobenius element
Frob, € Gal(E/F) as before. AgainF'rob, is only well defined up to conjugacy, but

Ly (s, p) = det(I — p(Frob,)Nv=*)~!

depends only on. If v is ramified, we let/, C I', be the intertia group. Theh, /I, acts on
VI and we define
LU(S7 P) = d€t([ — P(FTObU, VIu)N,l)fs)fl;

L(Sv P) = HLU(Sv p)‘

This product converges absolutely fBe(s) > 1. Perhaps the most important conjecture in
algebraic number theory is

Artin Conjecture. If p is irreducible and non-trivial, therl.(s, p) is entire and satisfies a
certain (explicit) functional equation.
One has known for some time that

Theorem 6.1.The functionL(s, p) is meromorphig¢satisfies the expected functional equation,
and is continous and non-vanishing fBe(s) > 1.
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This is essentially a consequence of Brauer’s theorem on characters. | need to explain a few
6.2. Facts about Galois representations and theif.-functions.

6.2.1. Semisimplification. The representations and o’ have the same Jordanétter con-
stituents if and only if"r(p) = Tr(p’), and the latter is true if and only i&(s, p) = L(s, p’)

as Euler products.

In particular, we can always replapedy its semisimplification (the direct sum of its Jordan-
Holder constituents.

6.2.2. Additivity L(s, p & p') = L(s, p)L(s, p').

6.2.3. Inductivity. Let I’/ F be a finite extensiom/ a continuous representation 6l(Q/ F"),
p = Indppp' the induced representation 6fal(Q/F). Then

L(s, Pl) = L(s, p).

If pis the trivial representation @fal(Q/F), thenL(s, p) = (r(s) is the Dedekind-function
of F'. More generally, ifp is one-dimensional then it factors througll(Q/F)%b.

6.2.4.Abelian L-functions. Supposeéim p = 1 andp is non-trivial. ThenL(s, p) is entire and
satisfies the expected functional equation. Moreadvéy, p) is continuous and non-vanishing
for Re(s) > 1.

This is due to Hecke (Dirichlet wheRl = QQ) and follows from class field theory.

In particular, in the inductivity situation, i is abelian and non-trivial. theh(s, Indp//pp’)
satisfies the Artin conjecture.

Theorem 6.3 (Brauer). Let H be a finite group ang : H — GL(n,C) be any finite-
dimensional representation. Then there are solvable subgréfjps. H, charactersy; :
H; — C*, and integers:; such that

p= @iailndgixi.

The decomposition above is not unique, and the integease certainly not assumed positive.
Appliedtop : H = Gal(E/F) — GL(n,C), this and additivity implies

L(Sv p) = HL(S> IndFl/FXz)alv
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whereF; is the fixed field ofH; andy; is the character ofl; = Gal(E/F;); and again this is
TT L5 o).

Since each of thd.(s, x;) is entire and invertible folRe(s) > 1, the product is meromor-
phic and invertible forRe(s) > 1. The functional equation also follows from this product
expression. We have not yet used that Hjeare solvable.

Now we return to the situation of an elliptic curde/Q without complex multiplication, and
assumer,,/Q is a finite Galois extension. Letr, be thetrivial representation o/ =
Gal(F,/Q). Brauer’s theorem applies fo

1p, = @ailndgi Xi-

Let L; be the fixed field of; in F},, PE I, the restriction op to Gal(Q/L;).
In general, ifp is a representation df, o’ a representation of the subgrofify ¢ H, then

(Ind®, o) @ p = Ind&, (o' @ Resthp),

where RestL, p is the restriction ofp to H. Applying this top = p%, with (H', p') varying
amond the pair§H;, x;), it follows that

pp = ©a;(Indf, xi) ® pf = @a;Indiy x; ® piy)
which implies

(6.4) L(s, pg) = [[ L(s. P 1, © xi)™.

The following fact follows from a strengthened version of Arthur-Clozel base-change for cer-
tain kinds of automorphic representations of totally real fields.

Theorem 6.5. Supposé, is totally real and Galois ove€), and pi; 1. is automorphic (of a
certain type to be made precise below). Then for any solvable subdfpup H with fixed

field L;, and any charactey; of Gal(Q/L;), L(s, Pi.1, ® Xi) is entire, and is invertible for

Re(s) > 1.

The invertibility statement in this theorem is due to Jacquet and Shalika and, in a more general
setting, to Shahidi [JS,Sh].
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Thus Theorems 5.5 and (the much older) 6.5 imply that the right-hand side of (6.4) is an
alternating product of invertible Euler products, hence is itself invertible. This suffices to imply
Theorem 2.3 forevenn. The case of oda is deduced in [HST] by a tensor product trick
and Shahidi's theorem applied to Rankin-Selb&rfunctions. This completes the proof of
Theorem 2.3, which in turn implies the Sato-Tate conjecture for an elliptic curve with non-
integralj-invariant.

7. PROSPECTS

Since the appearance of Serre’s book [S1] it has been understood that the Sato-Tate Conjecture
for the elliptic curveFE follows immediately once one has established certain analytic prop-
erties of L-functions of the/-adic Galois representationd,, summarized in Theorem 1.4.

The techniques reviewed in sections 3-5 of this paper derive the desired analytic properties by
proving the potential automorphy pf.. These techniques can in principle be extended to more
generall-adic Galois representatiopsof CM type, but there are several obstacles. The most
immediate obstacle is the one mentioned in Remark 5.6: one needs to know that the restriction
of the residual representatigrto an/-adic decomposition group becomes isomorphic over an
unramified extension to the local representation attached to sometmwirthe moduli space

P*. In [HST] this is used to prove potential automorphy of certain representations of the form
V4,¢; this argument has been generalized by Barnet-Lamb in [B-L].

The inequality? > n mentioned briefly ir§3 in connection with the Taylor-Wiles method is
specific top},. For generap one obtains formula (3.7) only wheén> n(p), wheren(p) > n

is determined by-adic Hodge theory and is in general much larger thaithis inequality is

only compatible with the requirement of Remark 5.6 if the Hodge-Tate weightaia exactly
0,—1,...,1 — n, each with multiplicity one; in other words, the same as thosgjofor an

elliptic curve E. If such ap is automorphic then the correspondifignust havel (I1,) = C

with the trivial representation. This is a serious restriction. Methods are known for relaxing
this restriction, especially when= 2 (see [TMC]) or wherp is an ordinary representation at

¢, but the application of the potential modularity methods of [HST] to more getiedic rep-
resentations of CM type seems to require substantial progress;irettlie Langlands program

(with p = £), which for the moment is only complete for the grotif.(2, Q).

Automorphy of the Galois representations attached té-duic cohomology of curves of genus

> 1 should in principle provide information on the asymptotics of points of general algebraic
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varieties over number fields, in the style of the Sato-Tate conjecture. Such representations sat-
isfy condition (b) of Theorem 4.2 and are geometric in the sense of Fontaine-Mazur, but they
are never Hodge-Tate regular. One expects these Galois representations to be automorphic, but
they cannot only rarely occur directly in the cohomology of Shimura varieties. Existing meth-
ods in automorphic forms therefore provide no insight whatsoever into such representations,
which is another way of saying that an entirely new approach is needed. For general represen-
tations not of CM type, | know one (extremely modest) positive result, a simple consequence
of the results of [GHK]:

Theorem 7.1 [GHK]. Let '™ be totally real and lefp be a (finite-dimensionalj-adic rep-
resentation ofl' . Then there is arf-adic representation’ such thatp @ p’ is residually
potentially automorphic

Here potential automorphy is intended in the following strong sense: for any finite extension
M/F™, there is a totally real Galois extensidn F'* linearly disjoint fromA/ such thatp @

¢ |r, is residually automorphic ovdr. One even knows that

(7.2) p®p |r,=pre (modmp)

wheremg is as in (5.2)]1 is an automorphic representation of CM type, arid any integer,
thoughZL may depend on. And one has strong control pf.

| want to insist, though, that the gap between this statement and genuine automorphy, or even
potential automorphy, remains inconceivably vast. The automorphic methods outliféd in

are simply not well adapted to the questions that arise naturally in arithmetic geometry. Calabi-
Yau varieties are distinguished by the fact that a certain Hodge component of their middle-
dimensional cohomology is of dimension one. The Hodge-Tate regularity condition imposed
by existing methods in automorphic forms, applied to an algebraic variety, amounts to requiring
that all Hodge components of their middle-dimensional cohomology are of dimension one.
This requirement is relaxed slightly in the case of the Dwork family, where the action of the
symmetric group is used to single out a part of the cohomology that does satisfy the regularity
condition. For most varieties the regularity condition is too stringent to be applied in any way.
The fact that automorphic methods can be applied to elliptic curves, in some cases, has to be
seen as a fortunate accident. No other such accident is apparent on the immediate horizon, but
see [LBE].
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APPENDIX: PROPERTIES OF AUTOMORPHIC REPRESENTATIONS GFL(n)

For the purposes of this article, the formal definition of automorphic representation is not at all
enlightening. What matters for our purposes is that the family of automorphic representations
satisfies a list of axiomatic properties, some of which are recalled below. We start with a
number fieldF'. A cuspidal automorphic representatiirof GL(n, F') can be defined as the
representation of a certain locally compact groupattiede groupG'L(n, A r) on an irreducible
constituent ofL3(GL(n, F) - Z°\GL(n, Ar)), whereZ° C GL(n,F ®q R) is a maximal
subgroup of the center 61L(n, F' ®qR) isomorphic to a product of copies Bf andL) C Lo

is the subspace of cusp forms, whose definition is here omitted. This definition is convenient
for defining theL-function and determining its analytic properties but sheds little light on the
relation to number theory. What we need to know alddug contained in the following list of
properties.

A.1 (Factorization). For each place (prime ideal or archimedean valuatioa) F', IT has a
local factorlL,, which is an irreducible representation of the locally compact gt@iipn, F,,).

A.2 (Strong multiplicity one). Supposdl andII’ are two cuspidal automorphic representa-
tions ands is a finite set of places such thdt, — II/ for all v ¢ S. ThenIl = II’; they are
not only isomorphic but equal as subspaces$iG L(n, F) - ZO\GL(n, Ar)).

A.3 (Hecke eigenvalues).For all but finitely many prime ideals, the local factorll, is
an unramified principal series representation. It is characterized by an (unordetgale
{a1,...,0n,} Of NON-zero complex numbers, tBatake parametersr equivalently by the
Hecke polynomial

P, (T) = [J(1 = ipnT) = 1 = a1, ()T + a2, (INT? — -+ + (—1)"an o (M T™.
=1

The (ordered) set af; ,, (II) are thelocal Hecke eigenvaluesf IT at v.

A.4 (L-function). For eachv there is a local-factor L(s, I1,) — an Euler factor it is a prime
ideal, a normalized product of Gamma-functions i§ archimedean — such that the product

L(s, 1) = [ [ L(s,1L,)
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converges absolutely fdte(s) > 1 and extends to an entire function that satisfies a functional
equation. For unramified places

L(s,1,) = P, (Nv=%)~!
whereNv is the cardinality of the residue field éf atv.

A.5 Eachll, is determined by itéocal Langlands parameteshich is Galois-theoretic it is
a prime ideal.

A.6 (Non-vanishing). The functionL(s, IT) has no zeroes along the lid&(s) = 1.

A.7 (Arthur-Clozel base change).Let F’/ F be a cyclic extension of prime degree. Then there
is an automorphic representation (usually but not always cuspitiay ;- (IT) of GL(n, F”).

If w is a place ofF” over the place of F', the local factorBC,r(I1),, depends only on
IL,. If 1L, is unramified then so i8C,r(I1),, and its Satake parameters are given by an
explicit formula in terms of the Satake parameterslpf The Galois-theoretic local Langlands
parameter oBC - (I1),, is the restriction of that ofl, to the Galois group of the completion
of I at the prime idealv.
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