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In this paper the inverse Watson wavelet transform is investigated, the Calderon reproducing
formula of Watson convolution is obtained by generalizing the results of [6]. Some applications
associated with Calderon’s reproducing formula of Watson convolution are given.
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1. INTRODUCTION

Calderon’s reproducing formula [6] played an important role to find the inversion formula of wavelet
transform using Fourier convolution transform. This formula can also be used to obtain several ap-
proximation results related to aforesaid transform.

Motivated from the results of [6], Calderon’s reproducing formula associated with Hankel convo-
lution was defined by Pathak and Pandey [8] and studied many properties using the theory of Hankel
transform. By exploiting above formula we can find the inversion formula of Bessel wavelet trans-

form.

Watson convolution and Watson transform are generalizations of many integral transforms. Re-
cently continuous Watson wavelet transform is defined in [13] and found several properties. Using
the results of [13], our main aim of this paper is to investigate the Calderon’s reproducing formula
associated with Watson convolution, Watson transform and Watson wavelet transform.

Now, we restate the theorem of [6] which is useful for present investigation.
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Theoreml.1— Lety € LY(R), . (t) = L4 (L) fora > 0 and f € L*(R) then

da
f@) = [ arax @) @
and the above expression can be converted into the following form
dyda
o= [ [ wpmae(TT) @

where (Wy f)(y, a) = [Z3 ta(z —y) f(t)dt  and  o(z —y) = (2).

Now, we restate the definitions of Mellin transform and inverse Mellin transform and following
theorem, which is given in [12, pp. 232-233] and [10, pp. 57-58]

Definition 1.1 — Let f(¢) be a function defined on the positive real aflis<c ¢t < co. The
Mellin transformation) is the operation mapping of the functighinto the functionF’ defined on
the complex plane by the relation:

MIf :s] = F(s) = /OOO 57 f(¢) dt. (3)

The functionF'(s) is called the Mellin transform of (¢). In general, the integral exists only for
complex values of = a + ib such thats < a; < ag, wherea; anday depend on the functiofi(t).
This introduces the strip of definition of Mellin transform that will be denotedtry; , a2).

Definition1.2 — The inversion formula for Mellin transform is given by

a+100
ft) = 1/ t~°F(s)ds, 4)

27T,7 —100
where the integration is along a vertical line througd(s) = a.

Theorem1.2— Let (Mk)(s) which is defined in (3) be regular in a strip; < o < o2, where
o1 < 0,02 > 1 except perhaps for a finite number of simple poles on the imaginary axis; and let
(MFk)(s) be of the forms:

koo {ad +0 (1) | oo {5 +0 (1)}

for large positive and negative s = o + it, respectively, wheréMko)(s) = I'(s)coszsm is the
Mellin transform ofcos x.

Let (ME)(s) satisfy the condition

(ME) (s) (M) (1 - 5) = 1
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and from (4) letc(z) be the inverse Mellin transform ¢f\/ k) (s).

Letx > 0, and letf(¢) be inL'(0, o) and be of bounded variation nefae z.

Then - - .
/ k(:):u)du/ B(ut) f(1) dt = 5 [f (2 +0) + f (x — 0)]. (5)
0 0
Equivalent relations are
Fla) = (V1) (@) = | Tkt f (1) d, (6)
() = (WF) (1) = /0 T k() F (x) da, 7)

wherek(z) is called symmetrical Fourier kernel and (6) is often called Watson transforjittof
(7) is the corresponding inversion formula.

From [9, pp. 1224], we define the basic function
w(z,y,z) = / k(xt) k(yt) k(=t) dt. (8)
0

The above integral is convergent under the assumgtion.! (0, oo) () L°°(0, o).

The inversion of (8) is formally given by

k(xt) k(yt) = /000 w(z,y, z) k(zt) dz. 9)

Now, we assume that(0) # 0, w(z,y, z) = wf(’g)’z) andw(z,y,z) > 0Vx,y,z € (0,00).

Then, setting = 0 in (9), we have
/000 w(z,y,z)dz = 1. (10)
Lety € L(0,00) N L%(0, 00), then the Watson translation is defined by
P(z,y) = Typ(z) = TY(y / Y(2)w(z,y,2)dz, 0 < 2,y < 0. (11)
From [10, pp. 70] the Watson convolutionofandy € L'(0, 00) N L?(0, o) is defined by

(p#1)(x / / o(y (r,y,2)dydz, 0 < x < 0. (12)

Then, in view of (11), (12) becomes

($#0)(a / W,y) (13)
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Letp, v € LY(0, oo)and let(¢#1)(x) be defined by (12). Then

W (o) = (W) (Wy). (14)
Now, from [13], we define the Watson wavelet as follows:

Lety € LP(0, oo) be given, forb > 0anda > 0, we have

Ppal) = ¢( ) wito) =2 [T o w<z>dz. (15)

From [13], we define the Watson wavelet transform

W(b,a) = (Wyo)(b,a)

= / ¢(z) Yp.a(x)
_ //¢ 1Z;<Zz>dzdx (16)

provided the integral is convergent.

Now, we restate Lemma 2.3 from [13].

Let g,y € L(0,00) and (W) (b, a) be the continuous Watson wavelet transform. Then

(Wye)(b,a) = (¢ # ) (D). 7)
Examplel.1 : We give an example of the kerriglr), which possesses the aforesaid properties.
In[7, p. 19], we takey = 3, then

m, ap,b,
( ) Gp—&—]; m—+n ($|C:%;n> ) (18)

p q m n
wheren —p=m—qg>0and)  a;+ > bj=> c¢j+ > d;.

J=1 Jj=1 Jj=1 j=1

Puttingm = 1,p =0,n =1,¢ = 0in (18), then from [3, p. 216], we get
k(x) = Gl o 5 (zla,b) = 23, b (23;%) .
Now,
fy,z(t) = k(yt)k(Zt)
= ) T (200)7) (20F Juy (2(:007) € £1(0,0)

1 1
f b< —=,a>—=,
or a-+ 5 a 5
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and

f;r(t) = k(.ib't)

a 1
= (l't)%b a—b(2(xt )%)GLOO(O o0) for a+b<§ and a > 0.

Thus, the sufficient condition for the existenceudfr, y, 2) in the present case, viz,c L'(0, )
N L*>(0, 00) holds fora > 0,a + b < —3.

2. CALDERON’S FORMULA

In this section we obtain Calderon’s reproducing identity using the properties of Watson transform
and Watson convolution.

Theorem2.1— If f € L'(0,00) N L?(0,00) thenf can be reconstructed by the formula

o= [ [ (4.2) 2 @

whereAd, = [J° W dw < oo and (Wy, f)(y, a) is Watson wavelet transform of the function
f with respect to Watson wavelget

PROOF: Letg € L'(0,00)NL?(0,00), then by the Parseval formula [13] for the Watson wavelet
transfrom, we have

oC [0 761 da

J
_ /OOO OOO Wuf)(y,a (i/ooog(x)w (L.2) dx) e
O [ o (45) %) it

st = ([ [T anman (2) 2w ). (20)

dyd
at@ = [ [T e (L1) L (21)
If we put f = ¢ in (20), then

Al = [ 71w ) @ 2.

Thus,

Therefore
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Lemma2.1 — Lety € L?(0, c0) be a basic Watson wavelet which satisfies the following admis-
sibility condition

ao= [T gy 22
0
Then

L[ ovenwaw (L5 25 = [ (23)

for f € L1(0,00) N L*(0, 00).

PrROOF: From (17) we have

[ [ovnwas (L2252 = [7 [Cusmwe (L)% e

Using the symmetry ofo(z, y, z) in (24), we get

L[ ovenweaw (L2) 250 = [ [ a#00) v ) 2

for 4 (%, %) = q (z,7).

Hence from (13), we obtain

[ [ waneas (42) 25 = [“ (@7

a?

Theorem2.2— Let o, € L'(0,00) and (W), (W) € L1(0,00) be such that the following
admissibility condition holds:

| oo =1 (25)

Then the following Calderon’s reproducing identity holds:
o0 — da
f@) = [ )@ v L0 (26)

PROOF: If we put¢ = ¢ in Lemma 2.1, then we can find Theorem 2.2.
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3. APPLICATIONS

In this section we give some applications related to Watson wavelet transform by using the theory of
Watson convolution and Mellin transform.

Theorem3.1— Letwy € L?(0,00) be a basic Watson wavelet afid, f (v, a) be the continuous
Watson wavelet transform, then

/ / (W), ape (2,2) dvdn _ 4, / " k() (W ) () du. 27)

PrRoOOF: From (15), we have

/ / (Wof)(y,a L )dyda

- | | o </ SIS

= [ wenwa e ([R5 k() e ) a5
= [ wmenwa [Tr() () () Mo i) o)
= et {/ (51 () Ovoreraof St

B /ooo/ooo >( [ k(%) vehiwa y) duda

= [ [T RE) o o v (5) 5.

Putting? = u in the above expression we get

/ / (W f)(y,a y m) dyda

() W1V, ) 3 )] (u) (W) (a0

=
/ / (o) (V) () (W ) () (W ) () 2

:/O k(zu) (W f)(u )(/OOO Wl(““)'da> du

= Ay /OOO k(xu)(W f)(u) du

Example3.1 — Assume thak(t) = Jo(2v/t) andf(t) = e~ ¢, then from [4, p. 185] we have

(W)(u) =e™.
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Now, from (27) we get

yw dyda R
Aw//Wwfya ) = e °

Theorem3.2— Let f € L'(0, ) andy € L(0, 00). Then

(4T = M (401 — ). (MR)(5)] (@)
- /0 k()W (F450) () dy,

where(Mk)(s)(ME)(1 — s) = 1.

PrRoOOF: The Watson wavelet transform (16) can be expressed in the following form:

Wyt (v.a) = (F#T0) () = /0 " ko)W (400 (@) dw

Therefore

/0°° v (fH#a) y) dy = /OOO YL </Ooo k(wy)W (f#da) (w) dw) dy.

From (3),we have

M{(f#7) ()] / W (/400 (w < / bwoy)y* 1dy> o

Puttingwy = u, we get
| ([ (5) 7 )

= /0 (@)W 450) (@) ( /0 k(u)u31du) s
= (MR () MW (F402) ()1 — 5).

MI(f#da)(y)](s)

Replacings by 1 — s, we get

MI(f#a)()](1 = ) = (Mk)(1 — ) MW (f#1)a) (w)](s).
Hence
MW (f#1a)(w)](s) = M[(f#1a) )] (1 — 5).(ME)(s),

Taking inverse Mellin transform in both sides of above expression and from [2, pp. 217], we get

W (F400))(w) = / " (P47 W)k (wy) dy.

0
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