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Here it is proved that itQ(x1,...,z,) is a positive definite quadratic form which is reduced

in the sense of Korkine and Zolotareff and has outer coeffici®ats. ., B,, satisfyingB; >

1, B, <landB; --- B, = 1, then its inhomogeneous minimum is at magt for n < 7. This

result implies a positive answer to a question of Shapira and Weiss for stable lattices and thereby
provides another proof of Minkowski’s Conjecture on the product @éal non-homogeneous
linear forms inn variables form < 7. Our result is an analogue of Woods’ Conjecture which has
been proved for < 9. The analogous problem whéey < 1 is also investigated.
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1. INTRODUCTION

Let

Q(w1,...,2,) = Bi(z1 +borxo + -+ + bp1xn)? + Ba(xa + bsaxs + - -+ + bpoxy)?

' (1.1)

be a positive definite quadratic form with real coefficients. The homogeneous minim@misof

defined as

AO) = inf ).
(Q) (uh_’ug;ezn\{o}Q(ul Un)

The inhomogeneous minimum ¢f is defined as

M(Q) = sup inf Q($1 —Uly.e., Ty — Un)
(21,..,2n)ERT (U1, Un)EZ™
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The form( is said to be reduced in the sense of Korkine and Zolotaroff (or K-Z reduced) if for each
1, 1 <i < n, B; is the homogeneous minimum for the form

Bi(xi + big1,iTig1 + - 4 bpiwn)® + Biga (i1 + biyo,i1Ziga + )2 + -+ + Bpzl.
Equivalently, a latticd. in R" is called K-Z reduced iL. has a basis of the form
(AbO?Oa LR 0)7 (a2,17A27 07 cee 70)7 ey (an,ly an,2,--- 7an,n—17An)a

where A1, Ao, ..., A, are all positive, and further for each= 1,2,...,n any two points of the
lattice inR™~**+! with basis

(Aiv 0,0,..., 0)7 (ai+1,i7 Ai+1a 0,... 70)7 ) (an,i7 Ani+ly---5Ann—1, An)

are at a distance at leadt apart.
(A positive definite quadratic forn) can be written a§)(z1,...,z,) = Q(X) = X'B'BX,
whereB is a non singular matrix and the lattice corresponding tolit is BZ".)

Conjecture (Woods) [13}- For a K-Z reduced forn®), if B1By--- B, = 1 andB; < Bj for
eachi thenu(Q) < 7.

Equivalently, if a K-Z reduced lattick hasA;A4s--- A, = 1 andA; < A; for eachi, then any
closed sphere iR" of radius,/n/2 contains a point of..

This conjecture has been proved for< 9. (See Woods [12, 13, 14], Hans-Gét al. [6,7]
and Kathuria and Raka [8] ). It is known that for any givena proof of well known conjecture
on the product of, non-homogeneous linear formsinvariables, usually attributed to Minkowski
follows from a proof of Woods’ Conjecture for ath < n. The proof uses the results of Birch and
Swinnerton-Dyer [1] and of McMullen [10]. For a history of Minkowski’s conjecture see Gruber [5].

A lattice A (not necessarily K-Z reduced) is said to be a covering lattice for & setR™ C

U (S + A); equivalently if every translate of contains a point of\. The covering radius of a

AeA
lattice A is defined as the smallest real numbesuch thatA is a covering lattice fonS,,, whereS,,

is the closed unit spheteX |< 1.
In geometric language one can state Minkowski’s conjecture as

Conjecture (Minkowski) Any lattice A of determinantl in R"™ is a covering lattice for the set

1
S|ryze x| < o
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In an effort to prove Minkowski's Conjecture, Shapira and Weiss [11] have proposed another
approach by which it is enough to prove Minkowski's Conjecture for stable lattices. A lattafe
determinant is calledstableif any subgroup of\ is of covolume at least.

Shapira and Weiss [11] showed that if all stable latticéR'trhave covering radius at mogt: /2,
then Minkowski’s Conjecture is true in dimensiar(see Corollary 5.1 of [11]).

Shapira and Weiss [11] further proved that foK 7 covering radius of any stable lattice RY’
is at most@, using the results of locally extremal lattices due to Dutour-Sikiric [3] and Dutour-
Sikiric et al. [4]. It is clear that a stable K-Z reduced lattice satistles > 1, A14, > 1,...,
A1As---A,_1 > 1. In a lecture delivered in our department, Barak Weiss asked the following
question:

If a K-Z reduced latticdl. hasA1 A ---A; > 1fori =1,2,...,nand A4, --- A, = 1, then
does any closed spherel#¥ of radius,/n/2 contain a point ofL.?

In Section 3, we show that for < 7, this question has a positive answer and thereby provide
another proof of Minkowski’'s Conjecture for < 7. In fact we prove the result under a weaker
hypothesis.

Theoreml — For n < 7, if a K-Z reduced latticd. hasA; > 1, 4, <landA;A4,---A4, =1,
then any closed sphere Rf* of radius/n/2 contains a point ofLL.

In Section 4, we investigate the upper bounds on covering radii of K-Z reduced lattices under the
conditionA; < 1. We prove

Theorem2 — For eachn > 2, there exist K-Z reduced latticésof determinant havingA; < 1
and A,, > 1 whose covering radius is /n/2.

Theorem3 — For n = 3,4 the covering radius of. is < /n/2, whereL is any K-Z reduced
lattice of determinant with A; < 1 and A4,, < 1. Forn > 8, there exist K-Z reduced latticds of
determinantl havingA; < 1 and 4,, < 1 whose covering radius is /n/2.

Under the hypothesis of Theorem 3 one can easily get some partial resuits=fdr, 6, 7. For
example, one can show that for= 5 if A; < 1 andAs; < 1 and if any one ofds, A3, A4 is < 1,
then the covering radius of the Iattice<_'(s\/5/2.



290 LEETIKA KATHURIA et al.

2. PRELIMINARY LEMMAS
For a unit spheré,, with centerO in R”, let A(S,,) be the critical determinant of,,, defined as
A(Sy,) = inf{d(A) : A has no point other thaf in the interior ofS,, }.

Let v, be the Hermite's constant i.g, is the smallest real number such that for any positive definite
gquadratic form@ in n variables of determinanb, there exist integers,, us, ..., u, not all zero
satisfying
Qui,ug,y ... up) < ’ynDl/".

It is well known thatA?(S,,) = ;..

Let L be a lattice inR™ reduced in the sense of Korkine and Zolotareff. Ugt A5, ..., A, be
defined as in Section 1. We state below some preliminary lemmas. Lemmas 1 and 2 are due to Woods
[12] and Lemma 3 is due to Korkine and Zolotareff [9]. In Lemma 4, the ease3 is a classical

result of Gaussp = 4 and5 are due to Korkine and Zolotareff [9] while = 6 and7 are due to
Blichfeldt [2].

Lemmal — If 2A(S,,+1)A} > d(L), then any closed sphere of radius
R = Ai{l — (APA(Su11)/d(L))*}/?
in R™ contains a point of..

Lemma2 — For a fixed integei with 1 < i < n — 1, denote byL; the lattice inR? with reduced
basis
(Ab 07 07 o 70)7 (a2,17A2707 cee 70>7 DRI (ai,la ai,27 o 7ai,i—17 Az)

and denote b¥L, the lattice inR”~* with the reduced basis
(Ai+1, 0, 0, N ,0), (ai+27i+1, Ai+2, O, ceey O), ey (amﬂ, an’i+2, N ,anm,l, An)

If any sphere ifR? of radiusr; contains a point of.; and if any sphere iiR"~* of radiusr, contains
a point ofLy then any sphere iR” of radius(r? + r3)'/2 contains a point of..

Lemma3 — For all relevant, A? | > 3A? andA?,, > 2A?.

Lemmad — A(S,) = 1/V2, 1/2, 1/2v/2, V/3/8and1/8i.e.~, = 21/3, 41/4 81/5 (&1)1/6
and64!/7 forn = 3, 4, 5,6 and 7 respectively.

For positive real numberX, ..., X; we observe that

X1+ +Xp<(k—1)+ X -+ X} if either all X; < 1lorall X; > 1. (2.1)
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Lemmab — Let X1, ..., X, be positive real numbers, satisfyid X» --- X,, = 1. Let

xi:|Xi—1|,a: E ;.
3<i<n
X;<1

Then the following hold

(i) IfX;>1fori=1,3,4,...,n then

S, =4x, — 2

b X3t X, <

(i) If X; > 1and a <z; < 0.45, then again &; < n.

(i) IfX;>1fori=1,3,5,6,...,n, and X; <4 fori > 5, then we have

2 2
Gy =4X1 — 5L +4Xs - 50 + X5+ + X, <.

2

(iv) If X; > 1fori=1,3,5,7,8,...,n, and X; < 2%/2 for i > 7, then we have

2X2

2X2 2X2
63 =4X, — < 3 5

2

PROOF: Using X; X5 --- X,, = 1 and (2.1) we find tha®; = 4X; — 2X3X5--- X,, + X3 +
-+ X,.WhenX; > 1fori =1,3,4,...,n, S, is adecreasing function of each &f, so replacing
each of these by we getS; < n. This proves (i).

Letf = Z z;. Then&; < 4X; —2X3(1 — a)(1+ B) +n — 2 — a + (. As the coefficient

3<i<n

X;>1
of 5 namelyl — 2X3(1 — «) is negative fol0 < a < 0.5 and3 > 0, we can replace by 0 to get
61 <4X; —2X3}(1—a)+n—2— . Further the coefficient af namely2X; — 1 is positive, so we
can replacey by x; to get&; < 3x; —2(1+21)3(1 — x1) + n+ 2 which is at most for 21 < 0.45.

This proves (ii).

Applying A.M-G.M inequality and using{; Xs --- X,, = 1 we get&, < 4X; +4X3+ X5 +
o Xy — AXXE X -Xn)%. Right side is a decreasing function of eachXy, ..., X,,, so
replacing each of these bywe get&, < 4X; +4X3+n —4 — 4(X§X§)% which is at most for
X1 > 1, X3 > 1. This proves (iii); the proof of (iv) is similar.

Lemmab — Let X; be positive real numbers far< ; < m satisfying
X1>1, X4 Xs--- X, = 1. Let

=l X;—1], v= sz and § = sz

4<i<m 4<i<m
X;<1 X;>1
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Suppose that either

(i) X;>1foreachi,4<i<m or
(i) y<x; <05 or
(iii) > 2vyand vy < 2z with 21 < 0.226

then
AX) = X{ Xy X+ Xy 4 4 Xy < m,

The simple proof similar to that given in Lemmas 8 and 10 of [6] is omitted.
3. PROOF OFTHEOREM 1

Let L be a lattice satisfying the hypothesis of Theorem 1. Suppose that there exists a closed sphere
of radius,/n/2 in R™ that contains no point dt. We shall get a contradiction. Writé = A2, B =

A3, C = A3,.... Sowe haveABCD--- = 1. Also we shall writea = |A — 1|,b = |B — 1|,
c=|C—-1],...

We give some examples of inequalities that arise. /et 7 andL; , 1 < ¢ < 4, be lattices
in R! with basis (4;) andL; be a lattice inR? with basis(45,0,0), (as 5, 4s,0), (ar5, a7, A7).
Applying Lemma 2 repeatedly and using Lemma 1, we see tieah{{S,) A3 > A5 Ag A7 then any
closed 7-sphere of radius

A§A<s4>2>”2

1 1 1 1
CAZ AR AR AL AR
<4 4 4 4 AZA2A2

contains a point of.. By our supposition this radius excee@sf?. Since A(S;) = 1/2 and
Aj1As--- A7 = 1, this results in the conditional inequality:

if B2 > FGthenA+ B+ C+ D +4FE — E*ABCD > 7. (3.1)

We call this inequality ( 1, 1, 1, 1, 3), since it corresponds to the ordered partition ( 1, 1, 1,
1, 3) of 7 for the purpose of applying Lemma 2. Similarly the conditional inequélity, 1, 1, 2)
corresponding to the ordered partition 1,1,1,2) of n = 6 is
2

2F
if 2E > F then A+B+C+D+4E—7>6. (3.2)

SincedE — 2E?%/F < 2F, the second inequality in (3.2) gives

A+ B+C+D+2F > 6. (3.3)
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One may remark here that the conditidfA > F' is necessary only if we want to use inequality
(3.2), but it is not necessary if we want to use the weaker inequality (3.3). This is so because if
2F < F, using the partitiori1, 1) in place of(2) for the relevant part, we get the upper bound- '
which is clearly less thafF'. We shall call inequalities of type (3.3) as weak inequalities and indicate
it by the subscript, for example the inequality (3.3) is denoted iy 1, 1, 1, 2),,. More examples of
weak inequalities are (3.4)-(3.13).

In general, if(\1, A2, ..., As) is an ordered partition of, then the conditional inequality aris-
ing from it, by using Lemmas 1 and 2, is also denoted by, A2, ..., \s). If the conditions in an
inequality(\q, Ao, . .., \s) are satisfied then we say that, Ao, ..., \s) holds.

For eachn,n < 7, we discus®" 2 cases that arise depending upon whetligr- 1 or 4; < 1
for2 < i < n — 1. We list the cases and the inequalities used in the tables. If the case does not
follow immediately from the inequalities, we also list relevant lemma from which it follows or the
proposition where it is discussed. In three cases, where the list of inequalities is long, we list only the
proposition in which the proof is given (Propositions 1, 4, 5). Sometimes, in these propositions, we
have used the software Mathematica (7.0) to show flaty) < 0 where f(z,y) is some function
by plotting its graph in given ranges of the variables.

Lemma7 — LetY; = A?H for some fixedj, 0 < j < n — 3 and forl < i < n, the subscript

j + i being taken modula. Let

vi=|Yi—11, n=">_ v
4<i<n
V<1

Then all the cases in whichy, > 1, Y5 > 1, Y3 < 1andn < y; do not arise.

PROOF: Here we have, by Lemma 8; < £ andy, < 1.
If Y1 > Y5, then the inequalityl,...,1,3,1,...,1) holds i.e.
W—/
J
4Y7 — Y14Y4 Y, 4+ Yy +---4+Y, > n, which is not true by Lemma 6(ii) witlX; = Y; for all
1,1 <i<nandy=n.

If Y1 < Ys, we use the inequalitfd, ..., 1,1,2,1,...,1) which givesY; +4Ys —2Y3}Yy - - - Y, +
——

J
Y, + .-+ Y, > nwhich is not true by Lemma 5@ii) wittky; = Y5, X; =Y, 1 for1 <i<n —1,
X, =Y anda = 1.
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3.2n=6

The proof of Theorem 1 for = 6 follows from the inequalities listed in Table 5 and Proposition 1.

Table 5
Case A B C D E F Inequalities Lemma/Proposition
1 > > > > > < (1,1,1,1,2) Lemma 5(i)
2 > > > > < < (1,1,1,3) Lemma 6(i)
3 > > > < > < (1,1,2,2) Lemma 5(iii)
4 > > > < < < Proposition 1
5 > > < > > < (1,2,1,2) Lemma 5(iii)
6 > > < > < < (1,2,2,1)y Lemma 7 withY; = A
(3,1,1,1),(1,2,1,1,1)
7 > > < < > < (1,2,1,2)y Lemma 7 withY; = A
(3,1,1,1),(1,2,1,1,1)
8 > > < < < < (1,2,1,1,1)y Lemma 7 withY; = A
(3,1,1,1),(1,2,1,1,1)
9 > < > > > < (2,1,1,2) Lemma 5(iii)
10 > < > < < (2,1,2,1) Lemma 7 withY; = C
(1,1,3,1),(1,1,1,2,1)
11 > < > < > < (2,2,2)
12 > < > < < < (2,2,L,1),
13 > < < > > < (2,1,1,2) Lemma 7 withY; = D
(1,1,1,3),(1,1,1,1,2),
14 > < < > < < (2,1,2,1)
15 > < < < > < (2,1,1,2),
16 > < < < < < (2,1,1,1,1),

Propositionl — Case (4)i.eA>1,B>1,C>1,D <1, E <1,F < 1does not arise.

PrROOF: Recall thats = |[A —1|,..., f = |F — 1|. Here by Lemma 3z < 1, b < 0.5, ¢ < &
andF > %. Using weak inequalitie§l, 1, 2, 2),,, (2,2,2), (1,1,2,1,1),, and(2, 2,1, 1),, we get

a+b—2d—2f >0, (3.4)

2b — 2d — 2f > 0, (3.5)
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at+b—2d—e— f >0, (3.6)
2% —2d—e— f>0. (3.7)

Thereforef < b, f<be+ f<a-+bande+ f < 2b.
Claim (i) B > C

SupposeB < C. Thereforef < b < c. Apply the inequality(1,1,3,1) to getA + B + 4C —
CAFAB + F > 6, which is not true by Lemma 6(ii) foy = f < ¢ = x; ande < %

Claim (i): e + f > b,d < 4, d <

(SIS

Suppose + f < b. As B > C by claim (i), thereforé1,3,1,1) holdsi. e. A+ 4B — B'EF A+
E + F > 6, which is not true by Lemma 6(ii) with = e+ f < b= z; < 0.5. Now (3.6) and (3.7)
gived < 4, d< b

Claim (iii): b < 0.226

Supposé > 0.226. We first prove thaB*FA > 2. If A > B, BA\FA > B5F > (1+b)°(1—-b) > 2

forb > 0.226. If A < B, B'FA > (1+b)*(1 + a)(1 — %) = ¢(a), say. The second derivative

of ¢(a) is negative, its minimum occurs at end pointegfhencep(a) > min{¢(0), ¢(b)} > 2 for

0.226 < b < 0.5. Now apply(1,4,1) to getA+4B— I BFA+F > 6. AsB°A > B> > (1.226)5 >
40B

2, the left side is a decreasing functionf so we replacé” by 48 to get4 + 498 — 14564 > ¢,

which is not true for.226 < B < 1.5 and1 < A < 2. This gives a contradiction.
Final contradiction

Apply (1,2,2,1) with A.M.-G.M. inequality to getd + 4B + 4D + F — 4V B3D3AF > 6, i.e.

44+ a+4b—4d— f— 4/ (1 +b)3(1 - d)3(1+a)(1— f) > 0.

Left side is an increasing function ¢t

If « > b, replacef by b — d from (3.5) to gety)(d) = 4+ a + 3b — 3d — 4
V431 —-dP(l+a)(l1-b+d) > 0. As(d) > 0, and0 < d < 5, we havey(d) <
max{w(()),q/;(g)} which is less tha) for 0 < ¢ < 1 and0 < b < min{0.226,a}. This gives a
contradiction.

If a < b, replacef by “T’Lb — d from (3.4) and proceed as above using d < 3,0 < a < b and
0 < b <0.226 to arrive at a contradiction.
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The proof of Theorem 1 forn = 7 follows from the inequalities listed in Table 6 and Propositions

2-5.

Case A B C D E F G

N o o~ 0N B

10

11
12

13

14

15

16

17

VvV IV IV IV IV IV IV

AV VARV

(AVARAVS

Y Vv A\ Y

Y

vV V. IV V V V V

V

IN

ININ V vV V. IV V V V V

IN IN IN IN A

IN

INININ V V V V

VoV IA

V

IN IN IN

IN

IV IANIN VOV

IA A AVARRVARRVAN IN V

V

IN

IN

IN V IN VA V IAN IV IAN VANV

IN

IN

(AN VAN VAN VAN VAR VAR VAN

ININIA

[VARVAN

IA IN IN IN

IN

Table 6

Inequalities

(LL,1,1,1,2)
(1,1,1,1,3)
(1,1,1,2,2)

(1,1,2,1,2)
(2,2,3),(1,1,2,3),(1,3,3)
(2,3,2),(1,1,3,2)
(1,2,2,2)w, (1,3,1,1,1)
(1,2,1,1,2)
(1,2,1,3),(3,1,...,1)
(2,1,2,1,1) (1,1,3,1,1)
(1,2,2,2)

(1,2,2,1,1),,
(3,1,1,1,1),(1,2,1,...,1)
(1,3,1,2),(3,1,...,1)
(2,1,1,2, 1)w,(1,1,1,1,3)
(1,2,1,2,1),,
(3,1,1,1,1),(1,2,1,...,1)
(1,2,1,1,2)
( )
(
(
(

) ) ) ) w

3,1,1,1,1),(1,2,1,...,1)
1,2,1,...,1)w
3,1,1,1,1),(1,2,1,...,1)
2,1,1,1,2)

Lemma/Proposition

Lemma 5(i)
Lemma 6(i)
Lemma 5(iii)
Proposition 4
Lemma 5(iii)
Proposition 2
Proposition 2

Proposition 5
Lemma 5(iii)

Proposition 3

Lemma 5(iv)
Lemma7Yy; = A

Proposition 3

Lemma7y; =A

Lemma7Yy; = A

Lemma7Yy; = A

Lemma 5(iii)
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Case A B C D E F G

18

19
20
21
22
23
24
25
26

27
28
29

30
31
32

IV IV IV IV IV IV IV IV |

AV ALY,

(A\VARAVARLY,

AN VAN VAN VAN VARSI VANRN VANRN VAN

INIA A

INIA A

ININV V. V. V V V

INIA A

INIA A

INV V VoV IANINININ V

IN AN IA

ININ V VOIA A

VoV

AV VAN VAN

IN NV

IN

IN V

IN IN V IN 'V IN V IN V

IN V

LEETIKA KATHURIA et al.

AN VAN VAN VAN VARSI VANR VARRN VAN |

INIA A

INIA A

Inequalities

(2,2,3),(2,1,1,3)
(2,2,1,2)w, (1,1,1,3,1)
(2,1,2,2)
(2,2,1,2)w, (1,1,1,3,1)
(2,2,1,2)
(2,2,2, 1)y

(2,2,1,2)w

QZL,)

(3,2,2),(3,1,1,2),(3,1,3)
@112n

(1,1,1,3,1), (1,
(2,1,2,2)w
(2,1,2,1,1
(
(
(
(
(

., 1,2,0)

Y Y ) ) w

)
2,1,1,1,2),
1,1,1,1,3),(1,...,1,2)
2,1,1,2,1),
2,1,1,1,2),

2,1,1,1,1,1),

Proposition2 — Cases 6, 7, 18 and 25 do not arise.

Lemma/Proposition

Proposition 2

Lemma 6(ii)
Lemma 5(iv)

Proposition 2
Lemma?7Y; =D

Lemma7Y; = F

PrROOF : We illustrate the proof of Case 6 where > 1,B > 1,C > 1,D < 1,E > 1,
F<1,G<1.

Subcase (i) A > B. Here(2,2,3) holds i.e.2B + 4C —

20° L 4E — E*ABCD > 7. Applying

A.M.-G.M. inequality to %2 + E*ABCD and noting that% > C, we get2B + 3C + 4F —
2(E*C3AB)2 > 7. As A > B, we can replacel by B to get2B + 3C + 4E — 2(E4C3B%)z > 7.
Left side of this inequality is a decreasing function@f therefore we can replacg by 1 to get
2B + 4F — 2E?B > 4 which is clearly not true foB > 1, £ > 1.

Subcase (iy A < B,B < E*C3. The inequality(1,1,2,3) with A.M.-G.M gives A + B +
3C +4F — 2(E4ABC3)% > 7. Left side is a decreasing function dfas1 < A < B, so we can
replaceA by 1 to getB + 3C + 4F — 2(E4BC3)% > 6. Further left side is a decreasing function
of B for B < E*C3, therefore we can repladé by 1 to get3C + 4E — 2(E4C3)2 > 5 which is
clearly not true forE > 1 andC' > 1.
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Subcase (iiy A < B,B > E*C3. This givesB > C. Therefore(1, 3, 3) holds, which using
A.M.-G.M. inequality givesA + 4B + 4E — 2B?E?\/A > 7. Left side is a decreasing function of
Afor1 < A < B, so replacingd by 1 we get2B + 2E — B2E? > 3 which is clearly not true for
B >1landE > 1.

In Case 25, we distinguish the subcages> F; D < E,E < A*F3andD < E,E > A‘F?
and proceed as in Case 6.

In Case 7, we distinguish the subcases> B; A < B,B < C*F3andA < B,B > C*F?
and proceed as in Case 6 except in Subcase (iii) where we use the weak ingdqu2lizy2),, to get
etg<g+c< g + g < b. Thenusg1,3,1,1,1) and apply Lemma 6(ii) withy = e + g < 21 =
b < 0.5 to get a contradiction.

In Case 18, we distinguish the subcaées D; C < D,D < E*B?andC < D,D > E*B?
and proceed as in Case 6 except in Subcase (iii) where we use the weak inggquality2),, to get
b+g<t+e<d+d<d Thenusdl,1,1,3,1) and apply Lemma 6(ii) withy = b + g < 21 =
d < 0.5 to get a contradiction.

Proposition3 — Cases 10 and 13 do not arise.

PrRooOF: We illustrate the proof of Case 10 whede> 1, B > 1,C < 1,D > 1,F > 1,F <
1,G < 1.

Subcase (i) max(A, D) < E*B3. Here we apply(1,2,1,3) and getA + 3B + D + 4F —
2(E4ADB3)% > 7. Left side is a symmetric function of and D. Suppose, therefore without loss
of generality thatd < D. Now left side is a decreasing function df so we can replacd by 1 to
get3B+ D +4FE —2(E*DB3)z > 6. Further left side is a decreasing functionfofor D < E*B3,
so we can replac® by 1 to get3B + 4F — 2(E4B3)% > 5 which is clearly not true foB > 1 and
E>1.

Subcase (iiy max(A, D) > E*B3. If max(A,D) = A, we geta > 4e + 3b > b, therefore
(3,1,1,1,1) holds which givestA — A*DEFG + D + E + F + G > 7. Also the weak inequality
(2,1,2,1,1) gives2b—c+2e— f—g > 0 which further givesf +¢g < 2b+2e < a. Apply Lemma 6(ii)
with v = f+ ¢ < 1 = a < 0.5 to get a contradiction. lfihax(A, D) = D, we getd > 4e+ 3b > e,
therefore(1, 1, 3,1, 1) holds which givesA + B + C + 4D — D*GABC + G > 7. Also the weak
inequality(2,1,2,1,1) gives2b — ¢ + 2e — f — g > 0 which further gives: + g < 2b + 2e < d.
Apply Lemma 6(ii) withy = ¢+ g < 1 = d < 0.5 to get a contradiction.

In Case 13, we distinguish the subcasesx(A, £) < B*F3 and max(A, E) > B*F? and
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proceed as in Case 10.

Proposition4 — Case 4 wherel > 1,B > 1,C > 1,D > 1,E < 1,F < 1,G < 1 does not
arise.

PROOF: As v; = 64% by Lemma 4, we ged < 64% < 1.82. Also, we have, by Lemma
3,6<1,¢<05 d< % Using weak inequalitie$l, 1,1,2,2),, (2,2,1,2)y, (1,2,2,2),,
(1,1,2,2,1), (2,2,2,1),, and(1, 1,2, 1, 2),, we get

a+b+c—2e—2g>0, (3.8)
2b+2d —e—2g >0, (3.9)
a+2c—2e—2g >0, (3.10)

a+b+2d—-2f—g>0, (3.11)
%+ 2d—2f —g >0, (3.12)

a+b+2d—e—2g>0. (3.13)

Claim (i) : D*ABC < 2 and henceD! < 2, EFG > 3.

SupposeD*ABC > 2. Then the inequalityl1, 1, 1, 4) holds which gives
#(A,B,C,D)=A+ B+ C +4D — %DMBC > 7. (3.14)

The coefficient of”' in ¢ namelyl — %DE’AB may be positive or negative, therefore the maximum
can occur at the end points 6f. Henceg(A, B,C, D) < max{¢(A4, B,1,D), ¢(A, B,1.5,D)}.
Similarly the maximum can occur at end pointsdand B. Thereforep(A, B,C, D) <
max{¢(1,1,1,D), ¢(1,1,1.5, D), $(1,2,1,D), ¢(1,2,1.5, D), $(1.82,1,1, D),

»(1.82,1,1.5, D), »(1.82,2,1, D), ¢(1.82,2,1.5, D)}. This can be easily seen to be less tfdar
1 < D < %. This gives a contradiction to (3.14), therefdd ABC < 2.

AsABC >1andEFG = 4507 > %3, we get the other results in the claim.
Claim (i) : A < V2.

Supposed? > 2, thenA*EFG > 4 x 0.5 = 2. Then the inequality4, 1, 1, 1) holds which gives
¢(A,y) =4A — A% +2+y > 7, wherey = EFG > 0.5. This is not true ford > 1.

Claim (iii) : g > 2d.
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Supposeg < 2d. The inequality(1,1,1,3,1) holdsi. e A+ B+C+4D — D*GABC +G > T.
This is not true by Lemma 6(iii) ag = g < ¢+ = £ from (3.8) andry = d < 21 — 1 < 0.226.
Henceg > 2d.

Claim (iv): d < 0.1.

Supposel > 0.1. Then from (3.8) and Claim (iii)D*ABC > (1 + d)*(1 +a+b+c) >
(14 d)*(1 +2¢g) > (1 + d)*(1 + 4d) > 2 for d > 0.1. This contradicts Claim (i).

Claim (v): b > 0.145.

Suppose < 0.145. Apply (1,2,2,2) with A.M.-G.M. inequality to getA + 4B + 4D + 4F —
6BDFV/A>17,i.e.

6+a+4b+4d —4f —6(1+b)(1+d)(1— f)(1+a)s > 0. (3.15)

Left side is an increasing function ¢t

If a > b, we get from (3.12) and Claim (iii) that < b. Therefore we can replacéby b in
equation (3.15) to gepi(d) = 6 +a +4d —6(1 +b)(1 + d)(1 — b)(1 + a)% > 0. As1(d) is a
decreasing function of we can replacé by 0 to get6 + a — 6(1 +b)(1 —b)(1 + a)% > 0. which is
not true fora > b and0 < b < 0.145. This gives a contradiction.

If a < b, we get from (3.11) and Claim (jii) that < “t. Therefore we can replageby 2+ in
equation (3.15) to gaty(d) = 6 —a+2b+4d — 6(1+b)(1+d)(1 — “E2)(1+ a)% > 0. Asa(d) is
a decreasing function afwe can replacel by 0 to get6 —a+2b—6(1+b)(1— ‘%“”)(1 +a)% > 0,
which is not true fof) < b < 0.145 and0 < a < b. This gives a contradiction.

Claim (vi): B < v/2, infactB < 1.3196 if A > B.

B%/2>2 if B> 1.3196and A > B
B*/2>2 if B>+/2and A< B.
(1,4,1,1) holds which givesA + 4B — 1B°Az + 1+ z > 7 wherez = FG > 1. As the coefficient
of z is negative, we can replaceby ; to getp(A4, B) = A+ 4B — 1B5A+ 1+ ] > 7. Thisis not
true in both the cased > B > 1.3196 as well as inB > /2, A < B. Hence the claim.

We haveB‘FGA > B*.1- A > { Then the inequality

Claim (vii) : ¢ < 0.203.
Suppose: > 0.203.
Case (i) a > b.

We have from (3.9) and Claim (iv) thgt< b+ d < b+ 0.1. Als00.145 < b < 0.3196 here.
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ThereforeCAGAB > C*(1 —b—0.1)(1 +b)? > 2,as(1 — b — 0.1)(1 + b)? attains its minimum at
the end points 0b. Then the inequality2, 4, 1) holds which give@B + 4C — %C5GAB +G>T.
We can replacel by B andG by 1 —b—0.1to getdc+b—0.1—3(1+¢)>(1—b—0.1)(1+b)> > 0
which is not true fo.145 < b < 0.3196 andc > 0.203.

Case (ii): a < b.

From (3.13) and Claim (jii), we haved < g < %% + d which givesd < “t2. Alsod < 0.1.

Here we use
atb yatb if q+5<0.2
g <
b 101 if a+b>02
If a+b<0.2,CGAB > (1.203)4(1 — a — b)(1 + a + b) > 2 for ¢ > 0.203.
If a+b>0.2,i. e.a > max{0,0.2— b}, one finds thaC*GAB > (1.203)*(1 — %t —0.1)(1+
a)(1 4 b) = ¢ (a), say. The second derivativé’(a) is negative, sa)(a) > min{y(max(0,0.2 —

b)),y(b)} > 2 for0.145 < b < /2 — 1. HenceC*GAB > 2 in both the cases. Therefore the
inequality(1,1,4, 1) holds i.e.

1
?(9) :a+b+4c—g—§(1+c)5(l—g)(l+a)(1+b) > 0.
¢(g) is an increasing function af. If a + b < 0.2, ¢(9) <4dc— (1 +c)’(1 —a—b)(1+a+b) <
de— £(1+¢)°(1—0.2)(1+0.2) <0, for ¢ > 0.203.

Ifa+b>0.2¢(g) < L —0.14+4c—1(1+c)5(1— 22 —0.1)(1+a)(1+b) = ¢¥(c), say. One
finds thaty(c) is a decreasing function ef thereforey(c) < 1(0.203) = %2 — 0.1 + 4(0.203) —
£(1.203)%(1 — =2 — 0.1)(1 + a)(1 + b) which is atmosD for 0.145 < b < v/2 — 1 and0 < a < b.

This gives a contradiction in both the cases. Heneg0.203.
Claim (viii): A > B.
Supposed < B. The inequality(1, 2,2, 1, 1) with AM.-G.M. givesA +4B +4D + F + G —

4VB3D3AFG > 7. Left side is a decreasing function #f asvG > G > % ReplacingF' by
1— ot —q+ g from (3.11), we get

plg)=4+a+4b+4d— L2 —d+ 4 —g—4/(1+b3/(1+d)3

x I+ a)(T—g)y/1- %4t —d+§ >0,

The second derivative”(g) is positive and) < g < § + ¢ < § 4 0.203 from (3.10) and Claim
(vii). Thereforeg(g) < max{¢(0), (5 + 0.203)}. Letp(0) = v1(d) andg(§ + 0.203) = o(d).

(3.16)
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One finds that){ (d) > 0 andy¥/(d) > 0 and0 < d < 0.1. Thereforey;(d) < max{v;(0),;(0.1)}
fori = 1,2. Now one finds that); (0) = 4 + a + 4b — %2 — 4/(1 +b)3\/(1 + a)y/1 — “+* <0,
P1(0.1) =4+a+4b+4(0.1) — = —0.1 - 4/(1 +0)3/(1.13 /(1 +a) /1 - =L —0.1 <0,
2(0) = dat b2 4028y /TP /(T +a) /T~ § — 0208)y/1 — %42 + 4 4 028 <
0,92(0.1) = 4+a-+4b+4(0.1)— %2 —0.1-2 028 _4, /(1 +)3,/(1.1)3,/(1 + a)(1 — § — 0.203) x
\/1 — ot 0142+ 2208 < ofor0 < a < band0.145 < b < v/2—1. This gives a contradiction.

Claim (ix): A > 1.32.

Supposed < 1.32. Working as in Claim (viii) and replacing’ by 1 — b — d + 4, from (3.12),
we get instead of (3.16)

Plg)=4+a+4b+4d—b—d+3%—g—4/(1+b)3/(1+d)3/(1+a) 317
x VI=gy/l1—b—d+%>0. (3.47)

The second derivative”(g) is positive and) < g < § + ¢ < § + 0.203 from (3.10) and
Claim (vii). Thereforep(g) < max{4(0), (5 + 0.203)}. Let¢(0) = v1(d) and¢(§ + 0.203) =
12(d). One finds thay)}(d) > 0 andy4(d) > 0 and0 < d < 0.1. Now one finds thaty;(d) <
max{?;(0),;(0.1)} < 0fori = 1,2and0.145 < b < a < 0.32. This gives a contradiction.

Final Contradiction

We are left withA > 1.32, B < 1.3196 andC < 1.203. ThereforeA? > BC, so the inequality
(3,3,1) holds. After applying A.M.-G.M. inequality we getd + 4D + G — 242D%\/G — 7 > 0.
Left side of this inequality is a quadratic iiG. SinceA*D* — 44 — 4D + 7 > 0, we have

VG < A2D? — (A*D* —4A — 4D + 7)2 = a (say). (3.18)

Using AM-GM inequality in(1,2,2,2), we getA + 4B + 4D + 4F — 6BDF A3 > 7 which gives
F < (A+4B+4D — 7)(6’BDA% — 4)~!. Substituting this upper bound @t in the inequality
(2,2,2,1), we get

A+4B+4D —7)

G>7—2B—2D—2F>7—2B—2D—2( -
6BDAs —4

= [ (say). (3.19)
From (3.18) and (3.19) we haye< o2. On simplifying we get

G(B) = AD* ~ 24+ B~ D + ALDHUD=T _ 2D2AIDY —4A— 4D +T)2 > 0. (3.20)
6BDAT —



304 LEETIKA KATHURIA et al.

One can see that(B) is an increasing function aB. From Claim (vi), we haveB < 1.3196.

Thereforep(B) < AD*—2A+1.3196— D+ AF2USOTADT_ g220 A4D4_ 4 A—4D+T}2 < 0
6(1.3196)DA3 —4

for1.32 < A < v/2andl < D < 1.1. This contradicts (3.20). Hence the result.

Proposition5 — Case 8 wherel > 1,B > 1,C > 1,D < 1,E < 1,F < 1,G < 1 does not
arise.

PROOF : As in Proposition 4,A < 1.82. Also, we have, by Lemma 3 < 0.5, ¢ < %

Using weak inequalitie$1, 1,2,2, 1), (2,2,2,1), (1,1,2,1,2)4, (2,2,1,2)4, (1,1,2,1,1,1),
and(2,2,1,1,1),, we get

a+b—2d—2f—g>0, (3.22)
2b—2d—2f —g >0, (3.22)
a+b—2d—e—2g>0, (3.23)
2b—2d—e—2g >0, (3.24)
a+b—2d—e—f—g>0, (3.25)
2b—2d—e— f—g>0. (3.26)

Claim(i): B> C

SupposeB < C < 3. The inequality(1, 1,3, 1, 1) holds which gives
l4+a+b+dc—1+e)*A =1 -g)(1+a)l+b)—f—g>0. (3.27)

Left side of (3.27) is an increasing function ff

If A> B, we use (3.22) to gef < b— 9. Replacef byb— § togetgi(g9) =14+a+4c— (1 +
o)*(1-b+4)(1—g)(1+a)(14b)— % > 0. The second derivative of; (g) is positive and) < g < b
from (3.24). Therefore; (g) < max{¢1(0), #1(b)}. Now sincec > b, we getp;(0) < 1+ a +4b—
(1+4b0)*(1—b)(1+a)(1+b) < 0andey (b) < 14+a+4b—(1+b)*(1-5)(1—b)(1+a)(1+b)—% <0
for0 < b < 1 andb < a < 0.82. This gives a contradiction.

If A < B, replacef by “T“’ — 2 (from (3.21)) in (3.27) to getpa(g) = 1 + “T“’ + 4e —
I+l -9+ D1 -g)(L+a)(l+b)—% > 0. From (3.23),0 < g < 2. Therefore
62(9) < max{$(0), 62(%52)}. Nowd(0) = 1+ %5 +dc — (1+¢)(1 = S2)(1 + a)(1+ ) <
1+ 250 44— (14+)4(1— %) (1 +a)(1+b) < 0andpe(4f?) = 1+ +4e— (1+e) (1— 42+
by (1— 2 (14 a)(1+b) — 2 < 14+ 4 4p— (1+5)(1 - 222 (1 — <) (1 +a)(1+b) <O
for0 <b<lando<a<b.
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Claim (i) : B < 1.25
Supposeé > 0.25.

Case(i): A > B We use her¢ < b—%, g < band find thatB*FGA > (1+b)*(1-5)(1-b)(1+
a) > 2fora >b>0.25. Then(1,4,1, 1) holds which givesA + 4B + F + G — 0.5B°FGA > 7.
Left side is a decreasing function 6%, so we replacé” by 1 — b + 4 to getiy1(g) = a +3b— § —
LA+ 0)>(1—b+2)(1 — g)(1 +a) > 0. As¢(g) > 0 we getshy (g) < max{e(0),91(b)} < 0
for0.25 < b < a < 0.82.

Case(ii): A < B We use heref < “T“’ -4, 9< “T“’ and find that thatB*FGA > (1 +
b1 — “—“’)(1 - “—er)(l +a) > 2forb > 0.25 and0 < a < b. Working as in case (i), we find that
Pa(g) = a+3.5b—0.5a— % —L(1+0)°((1— 2L+ £)(1—g)(1+a) > 0. Asy(g) > 0, one gets
¥2(g) < max{12(0), ¥o(%2)} < 0for 0.25 < b < 0.5 and0 < a < b. This gives a contradiction.

Claim (iii) : e + f + g > band hencel < ,d < &

Supposee + f +¢g < b. As B > C, we haveB? > CD. therefore(1,3,1,1,1) holds i. e
A+ 4B — B*EFGA+E+ F + G > 7. Apply Lemma 6(ii) withy = e + f + g < 2; =b < 0.5
to get a contradiction. Now (3.25) and (3.26) gives § andd < g

Final Contradiction
Case(i). A< B

From (3.21) and (3.23) we ha®f + g < a+b—2d, g < “T*b — d. Adding these two we get
ftg <3t 34 Apply(1,2,2,1,1) with A.M.-G.M. inequality to getd + 4B + 4D + F + G —
4\/B3D3AFG > 7which givesi+a+4b—4d—(f+g)—4/ (1 +b)3(1 —d)3/(1 +a)(1 - f — g) >

0 which further implie®, (d) = 4+a+4b_4d_w+372d_4\/(1 T3 - d)3\/(1 +a)(l— w N 372d>
> 0. Asf{(d) > 0,and0 < d < § we haved;(d) < max{60:(0),6:1(5)}. Now 6,(0) =
d+a+4b— 3(a+b 4m\/1+a 3(a+b))<0and01(2)—4—a+4b (“+b)+

S04 TP = 27/ (1 +a)(1 — 28 4 30y < 0for0 < a < b < 0.25.

Case(iiy A > B

From (3.22) and (3.24) we ha2¢ +¢g < 2b—2d, g < b—d. Adding these two we geft+g < %b—%—d.
Applying (1,2, 2,1, 1) with A.M.-G.M. inequality and working as in Case (i) we dgtd) = 4+a+
4b—4d— 3 +30 4, /(1+b)3(1 - d)? \/(1+a)(1— 3430 > 0. As0y(d) > 0,and0 < d < g
we haveds (d) < max{62(0), 62(2)}. Now6s(0) = d+a+4b—32—4, /(1 +b)3/(

Oandfa(§) =4+a+2b— %+ 3% —4/(1+0)3(1 -3/ +a)(1 - 2+ Z) <0for0<b<
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min{a,0.25} andb < a < 0.82. This gives a contradiction.

Remark The proof of Case 8 fod > B is much simpler than our earlier proof of the same, see
Proposition 15 of [6].

4. INVESTIGATIONS UNDER THE CONDITIONS 4; < 1

PROOF OFTHEOREM?Z2 : Letk > 1 be any real number. Consider the reduced lafticeorrespond-
ing to the K-Z reduced form

1
E.’L'l‘{‘lfg‘i‘ n 1+ijn'

It is clear that the square of the covering radiud.gfis

1.1 n
—+n—2+ —.
(k: n k)>4

A~ |

PROOF OFTHEOREM 3 : Forn = 3, the only case igl; < 1, A5 > 1, A3 < 1 and the result follows
from the weak inequality1, 2),,.

Forn = 4, the cases and the inequalities used to get the result are listed below :

Case A B C D Inequalities Lemma
1 < > > < (1,3),(1,1,2) Lemma7withY; =B
3 < < > < (1,1,2)4
Letn > 8.

Let & be any real number satisfyir(é)ﬁ <k< % LetL, be the K-Z reduced lattice corre-
sponding to the quadratic form

4 1 3
Py 1901+k{w§+x§+---+x%_2+(:vn_1+zxn) + 4xn}.

Considering the covering of the po@, TR %, 0, %) we see that square of the covering radius
of Ly is
1 4 1 3
> g tE{n-3+5+3}}
:4{3k"1+kn_ } f ,Say.

Sincef(%) > % whenn > 8, it follows that fork near%, Ly has the covering radius /n/2.
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