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In this paper we construct special types of Fontaine sheaves Amax and A∇max and we

study their properties, most importantly their localizations over small affines. They will

be used in sequel work to prove in a different manner a comparison isomorphism theorem

of Faltings [7]. We conclude with making several conjectures.
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1. Introduction

Let p > 0 be a prime integer, K a finite, unramified extension of Qp with residue field k and

OK the ring of integers of K. Also fix an algebraic closure K of K, and denote by GK the

Galois group of K over K. Let X be a smooth, proper and connected scheme over K (hence

X has good reduction). We denote by XK the geometric generic fiber of X and by X the

special fiber Xk of X. We write Acris and Bcris for the crystalline period rings defined by

Fontaine in [8].

The so called crystalline comparison conjecture was formulated by Fontaine in [8]:

Conjecture 1.1 — In the notations above for every n ≥ 0 there is a canonical and functo-

rial isomorphism commuting with all the additional structures (filtrations, GK-actions and

Frobenii):

Hn
ét(XK ,Qp)⊗Qp Bcris

∼= Hn
cris(X/OK)⊗OK

Bcris.
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The conjecture was fully proved by Faltings in [7] where he even proved more namely that

one can drop the assumption that K is absolutely unramified and allow certain non-trivial

coefficients.

Recently, Andreatta and Iovita gave a new proof of the crystalline comparison isomor-

phism (with non-trivial coefficients) for smooth, proper connected schemes X over K (for K

unramified over Qp) in [1]. They defined sheaves of Acris-algebras A∇cris and Acris on Faltings’

site XK and proved the isomorphisms (compatible with filtrations, GK-actions and Frobenii):

Hn
ét(XK ,Qp)⊗Qp Bcris

∼= Hn(XK,A∇cris)⊗Acris Bcris
∼= Hn

cris(X, K)⊗K Bcris.

By taking GK-invariants one obtains that Dcris(Hn
ét(XK ,Qp)) ∼= Hn

cris(X,K). Andreatta

and Iovita replaced in [1] the computation of Faltings based on hyper-coverings by small affines

with a systematic use of the sheaves A∇cris and Acris. Moreover, in proving the isomorphism

Hn(XK,A∇cris)⊗Acris Bcris
∼= Hn

cris(X,K)⊗K Bcris they provided an explicit acyclic resolution

of A∇cris. This allowed them to prove this isomorphism for X smooth formal p-adic scheme

over OK (see [1, Theorem 3.15] for further details). Their Theorem 3.15 could not have

been proven with the methods used in [7] where the main technical tool to prove comparison

isomorphisms is Poincaré duality.

The ring Acris is both algebraically and topologically complicated and one can use the

simpler ring Amax introduced by Colmez in [6] in order to define the notion of crystalline

representation.

The general aim of this work is to construct the families of sheaves (A∇max,n)n≥1 and

(A′∇max,n)n≥1 in §2 and the family of sheaves (Amax,n)n≥1 in §3 on Faltings’ topology XK on a

smooth proper model of X overOK and to study their properties, especially their localizations

over small affines in order to simplify and may be extend the work of Andreatta-Iovita. The

definition of Faltings’ topos is recalled in §2.2. Our main goal is to construct different types

of Fontaine sheaves, to prove a comparison isomorphism theorem (the ”max” version) and to

generalize their results to the case when the ramification degree of K is larger then 1. For

this we use Faltings’ topology XK associated to X and a smooth, proper model of it and

construct for the moment the specified new Fontaine sheaves of rings on this topology and

study their properties.

Let us briefly recall the definition of the site XK . The objects of the underlying category

are pairs (U ,W) where U → X is an étale morphism and W → UK is a finite étale morphism.
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Let U=Spec(RU ) be a ”small” affine open of the étale site Xet of X (a small affine is

an object such that RU ⊗OK
k is geometrically irreducible over k and there are parameters

T1, T2, ..., Td ∈ R×
U such that the map R0 := OK{T±1

1 , T±1
2 , ..., T±1

d } ⊂ RU is formally étale).

Fix now an algebraic closure Ω of the fraction field of XK . Denote by RU ⊂ Ω the union of

all RU ⊗OK
K-subalgebras S of Ω, such that S is normal and RU ⊗OK

K ⊂ S[1/p] is finite

and étale.

Let A∇max(RU ) be the ring defined by Brinon in [5] (we recall its definition in §2.5).

Let Wn = Wn(OK/pOK) be the ring of length n Witt vectors with values in OK/pOK

(see §2.1 for details) and Wn be a certain sheaf of OK-algebras with ring operations defined

by Witt polynomials (see §2 for details)).

Let A∇max be the sheaf in Sh(XK)N defined by the family {A∇max,n}n with transition maps

induced by {rn+1}n, where A∇max,n is the sheaf Amax,n ⊗Wn Wn on XK and rn+1 : Wn+1 →
Wn are sheaf homomorphisms defined by the natural projection composed with Frobenius.

Similarly, A′∇max is the sheaf defined by the family {A′∇max,n}n with transition maps induced by

{rn+1}n, where A′∇max,n is the sheaf Amax/pnAmax ⊗Wn Wn (see §2.3 for details).

In §2.5 we construct maps g′n : A∇max(RU )/pnA∇max(RU ) → A′∇max,n(RU ) which are essen-

tially the composition of the reduction modulo pn-map and a certain map induced by the

projection on the n + 1th component (see §2.5 for details). In §2.5 we also construct maps

q′
K

:= {q′
n,K

}n : A′∇max → A∇max where q′
n,K

: A′∇max,n → A∇max,n are associated to the map of pre-

sheaves induced by q′n : Amax/pnAmax → Amax,n and by Frobenius Wn(U ,W) → Wn(U ,W)

(q′n being induced by the natural projection Wn+1 → Wn).

The main result of §2 is the following theorem, which is the analogous result for the sheaf

A∇cris of [1, Proposition 2.28].

Theorem 1.2 — a) For every n ∈ N∗ the map

g′n : A∇max(RU )/pnA∇max(RU ) → A′∇max,n(RU ) is injective;

b) The map A′∇max(RU ) → A∇max(RU ) defined by q′
K

is an isomorphism.

Corollary 1.3 — The induced map A∇max(RU ) −→ A∇max(RU ) = lim←−A
∇
max,n(RU ) is an

isomorphism.

Let Amax(RU ) be the algebra defined in [4, Remark 8.3.5] and recalled by us in §3.1.

In §3 we prove the following theorem, which is the analogous result for the sheaf Acris of
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[1, Theorem 2.32] and [1, Proposition 2.35].

Theorem 1.4 — There exists a unique continuous sheaf Amax on XK of A∇max-algebras

such that for every small affine U = Spec(RU ) of Xet we have a canonical isomorphism as

A∇max(RU )-algebras: Amax(RU ) ∼= Amax(RU ).

The properties of the continuous sheaf Amax are summarized in the following theorem,

which is the analogous result for the sheaf Acris of [1, Proposition 2.37] and [1, Proposition

2.38].

Theorem 1.5 — (1) The sheaf Amax has a decreasing filtration by sheaves of ideals

FilrAmax := (Ker(θ))r, for all r ≥ 0.

(2) There is a unique connection ∇ := {∇n}n≥1 : Amax −→ Amax ⊗OX̂
Ω1

X̂/OK
such that

(a) ∇|A∇max
= 0

(b) for every n ≥ 0 and every small affine U of X with parameters T1, T2, ..., Td and

for every pair (V,W) in UK,n, for the elements y1, y2, ..., yd ∈ Amax,n(V,W) constructed in

section 3.1, one has ∇n(yi) = 1⊗ dTi ∈ Amax,n(V,W)⊗RV Ω̂1
RV/OK

.

(3) The connection described at (2) has the property that it is integrable and A∇max

=
(
Amax

)∇=0
.

(4) We have ∇(FilrAmax) ⊂ Filr−1Amax ⊗OX̂
Ω1

X̂/OK
for every r ≥ 1, i.e. ∇ satisfies the

Griffith transversality property.

Our proof of Theorem 1.2 is similar to the proof of [1, Proposition 2.28] but we work with

different families of rings namely {Amax,n}n instead of {Acris,n}n as [1] hence our results can

be viewed as an extension of theirs to the “Amax” case (since Acris ⊂ Amax); we prove a priori

several important results such as the fact that the ring A∇max is p-torsion free (see Proposition

2.10) and the comparison between a certain family of rings {A′max,n}n and {Amax,n}n (see

Proposition 2.4).

We also prove the existence of the sheaf Amax (see the construction of a certain projective

system of torsion sheaves {Amax,U,n}n≥0 in section 3.1). We point out that in [1], Andreatta

and Iovita proved the existence of the OK-DP envelope Acris,n,K of WX,n,K with respect to a

certain sheaf of ideals τX,n,K that we won’t use (for the definition of the sheafWX,n,K we refer

the reader to §3.1). In §4 we also give a method of defining our sheaves for the special case

when K is ramified over Qp and X over OK is a smooth, proper and connected scheme, such
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that there exists a scheme X0 defined over OK0 (K0 being the maximal absolutely unramified

subfield of K and OK0 its ring of integers), such that X ∼= X0 ×OK0
OK .

In §4 we also make several conjectures. As a potential application of our work one may

try to prove the comparison isomorphism

Hn
ét(XK ,Qp)⊗Qp Bmax

∼= Hn(XK,A∇max)⊗Amax Bmax
∼= Hn

cris(X,K0)⊗K0 Bmax.

The ring Bmax = Amax[1/t] has a better topology than Bcris = Acris[1/t], the advantages

of working with it instead of Bcris being clearly emphasized in [6]. We expect that the study

of the comparison isomorphism theorems for the formal schemes X which are defined over

OK (and not only for those which are base change of formal schemes defined over OK0) can

be done with Amax.

We hope that our rings will be used in sequel work to define a Riemann-Hilbert correspon-

dence between p-adic locally constant sheaves on X and F -isocrystals on the special fiber of

the fixed smooth model of X over OK (see §4 for details).

This paper is based on the unpublished part of the author’s PhD thesis [9].

2. The sheaf A∇max

In this section we define a new type of Fontaine sheaf, A∇max, we prove some properties of it and

we study its localization over small affines, the main result being that A∇max(RU ) ∼= A∇max(RU ),

where A∇max is the ring defined by Brinon in [5] and recalled in this section.

Let p > 0 be a prime integer, K a finite, unramified extension of Qp with residue field k

and OK the ring of integers of K.

2.1 Mod pn versions of the ring Amax

The goal of this subsection is to introduce and review the basic properties of the rings Amax,n,

A′max,n and Amax. We point out that in [10] these rings (and only them) were also introduced

along with an algorithm which relates the families of rings Amax,n and A′max,n. However, in

this subsection we prove Proposition 2.4 in a different and easier manner than in [10]. Put

R(OK) = lim←−x7→xp OK/pOK .

We use the notation (xn)n≥0 = (x0, x1, · · · ) ∈ R(OK) where xp
n+1 = xn to denote its

elements. The reduction modulo p induces a bijection
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lim←−x7→xp ÔK ' R(OK) given by x(n) 7→ x(n) (mod p)

where we use the notation (x(n))n≥0 ∈ lim←−x 7→xp ÔK . Note that its inverse map is given by

x(n) = limm→∞ x̂pm

n+m

where x̂i ∈ ÔK is an arbitrary lift of xi ∈ OK/pOK . Then R(OK) is a perfect valuation ring

of characteristic p, its valuation v being given by v(x) = vp(x(0)), x = (xn)n≥0 ∈ R(OK).

We identify R(OK) with lim←−x 7→xp ÔK using the above bijection.

Let A+
inf = W (R(OK)) be the ring of Witt vectors of R(OK). We define the element

ξ := [p̃]− p = (p̃, 0, 0, · · · )− (0, 1, 0, · · · ) ∈ A+
inf = W (R(OK))

where p̃ ∈ R(OK) is such that p̃(0) = p. Let Wn = Wn(OK/pOK) be the length n Witt

vectors of OK/pOK . One defines a ring homomorphism

θn : Wn → OK/pnOK given by (s0, s1, · · · ) 7→
∑n−1

i=0 pis̃pn−1−i

i

where s̃i ∈ OK/pnOK is any lift of si ∈ OK/pOK . We also define the projection of W (R(OK))

on the first n-components

πn : A+
inf = W (R(OK)) → Wn(R(OK)) given by (s0, s1, · · · ) 7→ (s0, s1, · · · , sn−1)

and the projection of R(OK) on the (n + 1)th component OK/pOK

q̄n : R(OK) → OK/pOK given by (xm)m≥0 7→ xn.

Remark that the homomorphism πn induces an isomorphism A+
inf/pnA+

inf ' Wn(R(OK)).

It is clear that πn is surjective. Since pn = (0, 0, · · · , 0︸ ︷︷ ︸
n

, 1, 0, · · · ) ∈ A+
inf we have

ker(πn) = {(s0, s1, · · · ) ∈ A+
inf : s0 = s1 = · · · = sn−1 = 0} = pnA+

inf .

It follows that A+
inf/pnA+

inf ' Wn(R(OK)). This is also clear as R(OK) is perfect.

One also has the following:

Proposition 2.1 [10, Proposition 2] — The kernel of the projection q̄n : R(OK) = lim←−
OK/pOK 7→ OK/pOK is the ideal of R(OK) generated by p̃pn

.

The homomorphism q̄n induces a surjective ring homomorphism:

qn : Wn(R(OK)) → Wn = Wn(OK/pOK) given by (s0, s1, · · · , sn−1) 7→ (s(n)
0 (mod p), s(n)

1

(mod p), · · · , s
(n)
n−1 (mod p)).
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Proposition 2.2 [10, Proposition 3]— The kernel of the ring homomorphism qn ◦ πn is the

ideal in W (R(OK)) generated by {[p̃]p
n
, V ([p̃]p

n
), V 2([p̃]p

n
), ..., V n−1([p̃]p

n
)}.

Definition 2.3 — Let A be a p-adically complete OK-algebra. Then we define

A{T} := lim←−A[T ]/pnA[T ]

where T is a variable.

We define the rings

Amax,n := Wn[δ]/(pδ − ξn), Amax := lim←−
n

Amax,n (1)

where ξn = [p̃1/pn−1
]− p ∈ Wn and the transition maps in the projective system are induced

by F ◦ prn (with F the Frobenius and prn : Wn+1 → Wn the projection to the first n

components) and δ 7→ δ. Note that (F ◦ prn)(ξn+1) = ξn. We then have that

Amax = W (R(OK)){ξ/p} = A+
inf{δ}/(pδ − ξ)

= {
∑

i≥0

ai(ξ/p)i : ai ∈ W (R(OK)), ai → 0 as i →∞} (2)

where we use the p-adic topology on W (R(OK)). We also define

A′max,n := Wn[δ]/(pδ − prn(ξn+1)) (3)

where prn(ξn+1) = prn([p̃1/pn
]− p) ∈ Wn. Then we observe that for i, 0 ≤ i ≤ n− 1,

V i([p̃]p
n
) = pi([p̃]p

n
)p−i

= pi[p̃]p
n−i

= pi(ξ + p)pn−i

= pi(p(δ + 1))pn−i ≡ pi+pn−i
δpn−i ≡ 0 (mod pnAmax),

where for the first equality one uses the Witt coordinate (r0, r1, ...) =
∑

pn[rp−n

n ](or one

computes it directly). Using Proposition 2.2, we obtain that

ker(qn ◦ πn) ·Amax ⊆ pnAmax. (4)

The map qn ◦ πn : W (R(OK)) → Wn define a homomorphism

r′n : Amax = W (R(OK)){δ}/(pδ − ξ) → A′max,n = Wn[δ]/(pδ − prn(ξn+1))
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δ 7→ δ

This map is well-defined since qn ◦ πn : W (R(OK)) → Wn sends ξ to prn(ξn+1).

Proposition 2.4 — For any integer n ≥ 1, the map r′n induces a ring isomorphism

Amax/pnAmax ' A′max,n.

Proof : Note firstly that ker(r′n) = ker(qn ◦ πn) ·Amax. Since (qn ◦ πn)(pn) = 0 and r′n is

a ring homomorphism, we obtain that pnAmax ⊆ ker(qn ◦ πn) ·Amax. Using (4) we get

pnAmax = ker(qn ◦ πn) ·Amax = ker(r′n).

The result follows because r′n is surjective. 2

Note that, via the isomorphism Amax/pnAmax
∼= A′max,n, we have a surjective map of

rings:

q′n : Amax/pnAmax → Amax,n

induced by Frobenius on Wn and sending prn(ξn+1) → ξn, and that we also have a map:

un : Amax,n+1 → Amax/pnAmax

induced by the natural projection Wn+1 → Wn and sending ξn+1 → prn(ξn+1).

2.2 Faltings’ topology

The goal of this section is to review Faltings’ topology for the reader’s convenience, this being

a category of sheaves on a certain site XM , constructed and studied in [1]. Let now X be a

scheme of finite type over OK and also let M be an algebraic extension of K. One denotes by

Xet the small étale site on X and by X fet
M the finite étale site of XM = X×Spec(OK) Spec(M).

Further, one denotes by Sh(Xet) and Sh(X fet
M ) the categories of sheaves of abelian groups of

these two sites, respectively. We refer to [1, Section 2] for the detailed discussion.

Definition 2.5 ([1, Definition 2.1]) — Let EXM
be the category defined as follows:

1) the objects consist of pairs (g : U → X, f : W → UM ) where g is an étale morphism

and f is a finite étale morphism. One further denotes by (U,W ) this object to simplify the

notations;

2) a morphism (U ′,W ′) → (U,W ) in EXM
is a pair (α, β), where α : U ′ → U is a
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morphism over X and β : W ′ → W is a morphism commuting with α⊗OK
IdM .

Definition 2.6 ([1, Definition 2.3]) — Let {(Ui,Wi) → (U,W )}i∈I be a family of morphisms

in EXM
. We say it is of type α respectively β if either:

α){Ui → U}i∈I is a covering in Xet and Wi
∼= W ×U Ui for every i ∈ I, the morphism W → U

used in the fibre product being the composition W → UM → U ,

or

β) Ui
∼= U for all i ∈ I and {Wi → W}i∈I is a covering in X fet

M .

One further endows EXM
with the topology generated by the covering families described

in definition 2.6 and one denotes by XM the associated site. One calls XM the locally Galois

site associated to (X, M).

Definition 2.7 ([1, Definition 2.4]) — A family {(Uij ,Wij) → (U,W )}i∈I,j∈J is called a

strict covering family if:

i) For each i ∈ I there exists an étale morphism Ui → X such that one has Ui
∼= Uij over

X for all j ∈ J ;

ii) {Ui → U}i∈I is a covering in Xet;

iii) For each i ∈ I the family {Wij → W ×U Ui}j∈J is a covering in X fet
M .

Each strict covering family is a covering family (see [1, Remark 2.5]).

Let now (U,W ) be an object of EXM
. Andreatta and Iovita defined in [1, Definition 2.10]

the presheaf OXM
on EXM

, by requiring that OXM
(U,W ) consists of the normalization of

Γ(U,OU ) in Γ(W,OW ). They also proved [1, Proposition 2.11] that the presheaf OXM
is a

sheaf.

2.3 The construction of A∇max

Let ŌXK
be the sheaf of rings on XK defined by requiring that for every object (U,W ) in

XK , the ring ŌXK
(U,W ) is the normalization of Γ(U,OU ) in Γ(W,OW ). Note that ŌXK

is a

sheaf of OK-algebras.

Let ˆ̄OXK
:= lim←−n

ŌXK
/pnŌXK

∈ Sh(XK)N. Also, let R(ŌXK
) be the sheaf of rings in

Sh(XK)N defined by the inverse system {ŌXK
/pŌXK

}, the transition maps being given by

Frobenius.

For every s ∈ N we define now the sheaf of rings A+
inf,s,K

:= lim←−Ws,K where Ws,K :=
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Ws(ŌXK
/pŌXK

) is the sheaf (ŌXK
/pŌXK

)s with ring operations defined by Witt polynomials

and the transition maps in the projective limit are defined by Frobenius.

We further define the sheaf of rings A+
inf,K

:= lim←−Wn,K in Sh(XK)N, where the transition

maps in the projective limit are defined as the composite of the projection Wn+1,K →Wn,K

and the Frobenius on Wn,K .

We also have a morphism θK : A+
inf,K

→ ˆ̄OXK
of objects of Sh(XK)N; we construct it at

the beginning of section 3.

A+
inf,K

and A+
inf,s,K

are endowed with an operator, ϕ, which is the canonical Frobenius

associated to the Witt vector construction and are sheaves of OK-algebras.

We are able now to construct the sheaves A∇
max,K

and A′∇max,K .

Firstly, let A∇
max,n,K

:= Amax,n ⊗Wn Wn,K = Wn[δ]/(pδ − ξn) ⊗Wn Wn,K i.e. A∇
max,n,K

is

the sheaf on XK associated to the pre-sheaf given by

(U ,W) 7→ Amax,n ⊗Wn Wn,K(U ,W) for (U ,W) ∈ XK .

Consider the map rn+1 :Wn+1,K →Wn,K given by the natural projection composed with

Frobenius. This induces a natural map rn+1,K : A∇
max,n+1,K

→ A∇
max,n,K

.

Let A∇
max,K

be the sheaf in Sh(XK)N defined by the family {A∇
max,n,K

}n with transition

maps {rn+1,K}n. Secondly, let A′∇
max,n,K

be the sheaf on XK associated to the pre-sheaf given

by (U ,W) 7→ Amax/pnAmax ⊗Wn Wn,K(U ,W) for (U ,W) ∈ XK .

As for A∇
max,n,K

, rn+1 induces a natural map r′
n+1,K

: A′∇
max,n+1,K

7→ A′∇
max,n,K

.

Similarly, let A′∇
max,K

be the sheaf in Sh(XK)N defined by the family {A′∇
max,n,K

}n with

transition maps {r′
n+1,K

}n. Also, note that ŌXK
/pŌXK

is the sheaf associated to the pre-

sheaf (U ,W) 7→ ŌXK
(U ,W)/pŌXK

(U ,W).

In order to simplify the notations denote by A∇max := A∇
max,K

, A∇max,n := A∇
max,n,K

, A′∇max :=

A′∇
max,K

, A′∇max,n := A′∇
max,n,K

, ŌX := ŌXK
, Wn :=Wn,K and A+

inf := A+
inf,K

.

Let r′′n+1 : Amax,n+1 → Amax,n be the map of rings defined by the natural projection

composed with Frobenius, where Amax,n is defined in (2.1). We denote by δ the variable in

the definition of Amax,n+1 and by α the one in Amax,n, and let r′′n+1(α) = δ. Let also

p̃n := [p̃1/pn−1
] ∈ Wn.



ON SOME SPECIAL TYPES OF FONTAINE SHEAVES 595

To check that the map is well defined, we have

r′′n+1

(
ξn+1

p

)
=

r′′n+1(ξn+1)
p

=
r′′n+1(p̃n+1 − p)

p
=

p̃n − p

p
=

ξn

p
.

Let us remark now that, since A′max,1 = (OK/pOK)[δ]/(pr1(ξ2)), we have a nice descrip-

tion of A′∇max,1, namely

A′∇max,1 = A′max,1 ⊗W1 W1 = (OK/pOK)[δ]/(pr1(ξ2))⊗OK/pOK
(ŌX/pŌX)

= (ŌX/pŌX)[δ]/(pr1(ξ2)) = (ŌX/pŌX)[δ]/(p1/p).

We use this fact in the proof of the following lemma:

2.4 A short exact sequence

Lemma 2.8 — For every n we have an exact sequence of sheaves:

0 //A′∇max,n
f //A′∇max,n+1

g //A′∇max,1
//0

where f is the map of sheaves associated to the Verschiebung V : Wn 7→ Wn+1 and g =

r′
2,K

◦ r′
3,K

◦ ... ◦ r′
n+1,K

.

Proof : Firstly, let us fix an object (U ,W) of X and denote by S = ŌX(U ,W).

For (s0, s1, ..., sn−1) ∈ Wn(S/pS), since (r2 ◦ r3 ◦ ...rn+1)(0, s0, ..., sn−1) = (r2 ◦ r3 ◦
...rn)(0, sp

0, ..., s
p
n−2) = ... = (r2 ◦ r3)(0, spn−2

0 , spn−2

1 ) = r2(0, s
pn−1

0 ) = 0, one obtains that

g ◦ f = 0.

In order to check the exactness in the middle it remains to show that ker(g) ⊆ Im(f):

For this we consider the exact sequence of sheaves:

0 → Wn → Wn+1 → W1 → 0 where the first map is the map of sheaves associated

to the Verschiebung and the second one is the natural projection. By tensoring it with

Amax/pn+1Amax over Wn+1, we obtain the exact sequence:

Amax/pn+1Amax⊗Wn+1Wn → Amax/pn+1Amax⊗Wn+1Wn+1 → Amax/pn+1Amax⊗Wn+1W1 → 0

One further identifies Amax/pn+1Amax ⊗Wn+1 W1 with the appropriate cokernel and also

proves the exactness on the left. Since tensoring is right exact, the exactness in the middle

for the sequence displayed in the statement of the lemma follows.



596 RADU GABA

Let us prove the surjectivity of g. Denote by h :Wn+1 7→W1 = ŌX/pŌX the natural pro-

jection and by h′ the induced map of sets Wn+1(S/pS) h′ //W1(S/pS) sending (s0, s1, ..., sn)

to s0. Since ker(h′) = {(s0, s1, ..., sn) ∈ (S/pS)n+1/s0 = 0} ∼= Wn(S/pS) = (S/pS)n, it is

clear that ker(h) is identified with Wn via Verschiebung. Note that ker(h) is a Wn+1-module

via the projection map Wn+1 7→ Wn composed with Frobenius on Wn and since Wn is a

Wn-module. We obtain that

Amax/pn+1Amax ⊗Wn+1 ker(h) ∼= Amax/pn+1Amax ⊗Wn+1 Wn.

Since h′(ξn+2) = h′(p̃n+2 − p) ≡ p1/pn+1
(mod p), it follows that

Amax/pn+1Amax ⊗Wn+1 W1
∼= ŌX/p1/pn+1ŌX[δ] (5)

Now, since S = ŌX(U ,W) is a normal ring, Frobenius to the n-th power ϕn : S/p1/pn
S →

S/pS is injective. On the other hand, by [2, Lemma 4.4.1 (v)], Frobenius on ŌX/pŌX is

surjective with kernel p1/pŌX/pŌX hence we have an isomorphism ŌX/p1/pŌX
∼= ŌX/pŌX.

Consequently, Frobenius to the nth power on ŌX/pŌX is surjective with kernel p1/pnŌX/pŌX

hence we have an isomorphism

ŌX/p1/pnŌX
∼= ŌX/pŌX. (6)

From (5) and (6), one obtains that

Amax/pn+1Amax ⊗Wn+1 W1
∼= ŌX/pŌX[δ].

Since ϕn ◦ h = r2 ◦ r3 ◦ ... ◦ rn+1 : Wn+1 7→ W1 = ŌX/pŌX is surjective, after tensoring

with Amax/pn+1Amax over Wn+1, and since tensoring is right exact, we obtain a surjective

map A′∇max,n+1
g //(ŌX/pŌX)[δ] ∼= (ŌX/p1/pŌX)[δ] where the last isomorphism follows from

(6).

Also by (6) it follows that (ŌX/pŌX)[δ]/(p1/p) ∼= (ŌX/p1/pŌX)[δ], in other words A′∇max,1
∼=

(ŌX/p1/pŌX)[δ] and so the right exactness of the displayed sequence is proved.

Now we need to prove the left exactness of our sequence. We will show that it is left

exact on stalks. For this, let x be a point of X. Recall that A′max,n = Wn[δ]/(pδ−prn(ξn+1)).

Since ξn+1

p = p̃n+1

p − 1, we have that A′max,n
∼= Wn[δ]/(pδ − prn(p̃n+1)) where for the latest
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isomorphism we use the ring isomorphism: Wn[δ] ∼= Wn[δ + 1] induced by δ 7→ δ + 1.

Define B := Wn(ŌXx/pŌXx)[δ], and similarly, denote by C := Wn+1(ŌXx/pŌXx)[δ] and

by D := (ŌXx/pŌXx)[δ].

Let us remark that B/(pδ−p̃n+1)B is the stalk A′∇max,n,x of A′∇max,n at x, that C/(pδ−p̃n+2)C

is the stalk A′∇max,n+1,x of A′∇max,n+1 at x and that D/p̃n+2D is the stalk A′∇max,1,x of A′∇max,1 at

x (A′∇max,1,x = D/p1/pD ∼= D/p̃n+2D by using the isomorphism from (6)) and note that for

the easiness of reading by the end of the section we don’t carry further the projection maps

prn(p̃n+1), prn+1(p̃n+2) and pr1(p̃n+2) respectively.

The following diagram is commutative:

0 // B

pδ−p̃n+1

²²

fx // C

pδ−p̃n+2

²²

sx // D

−p̃n+2

²²

// 0

0 // B
fx // C

sx // D // 0

where fx is the map sending δ 7→ δ and inducing the Verschiebung Wn(ŌXx/pŌXx) 7→
Wn+1(ŌXx/pŌXx) and sx is the natural projection.

Since the Verschiebung is injective and since B (respectively C) is a free Wn(ŌXx/pŌXx)-

module (respectively Wn+1(ŌXx/pŌXx)-module), one obtains that the map fx is injective.

Also D is a free ŌXx/pŌXx-module and the rows in the above diagram are exact.

Let us check now the commutativity of the two squares.

For the first square diagram, since δ 7→ δ it is enough to verify the commutativity

on coefficients. Let s ∈ Wn(ŌXx/pŌXx), s = (s0, s1, ..., sn−1). We have that p̃n+1 · s =

(p1/pn
s0, p

1/pn−1
s1, ..., p

1/psn−1) and since p̃n+2 · V (s) = (0, p1/pn
s0, ..., p

1/psn−1), one obtains

that V (p̃n+1 · s) = p̃n+2 ·V (s). The composition of the maps on the left lower side of the first

square diagram will then be V (pδs−p̃n+1s) = pδV (s)−p̃n+2 ·V (s) = (pδ−p̃n+2)V (s), which is

exactly what the composition of the maps on the right upper side gives us. We obtain that the

first square diagram is commutative. Similarly, for the second one, if t ∈ Wn+1(ŌXx/pŌXx),

t = (t0, t1, ..., tn), then:

(t0, t1, ..., tn)

≡
_

pδ−p̃n+2

²²

Â sx // t0_

−p̃n+2

²²
(pδ − p̃n+2) · t Â sx// −p̃n+2t0 = −p1/pn+1

t0
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With the same type of argument as for the first square diagram we conclude that the

second one is commutative.

Note that the sequence of cokernels B/(pδ − p̃n+1)B 7→ C/(pδ − p̃n+2)C is the map on

stalks associated to f . We want to prove its injectivity. By the Snake Lemma in the main

diagram this is equivalent to showing that the kernel of the multiplication by pδ − p̃n+2

on C surjects onto the kernel of the multiplication by −p̃n+2 on D. Let’s remark that

p̃n+2 = p1/pn+1
in OK/pOK and that, since ·p itself kills D, the kernel of the multiplication

by p1/pn+1
on D is p · p−1/pn+1

D = p
pn+1−1

pn+1 D = p̃pn+1−1
n+2 D. Take now v ∈ D (so in particular

p
pn+1−1

pn+1 · v ∈ ker(·p1/pn+1
)) and let x ∈ C be the lift of v under sx defined by taking the

Teichmueller lifts of the coefficients of x with respect to a ŌXx/pŌXx-basis of D. Define

u :=
∑pn+1−1

i=0 piδip̃pn+1−i−1
n+2 v. We have that:

(pδ − p̃n+2)u =
∑pn+1−1

i=0 pi+1δi+1p̃pn+1−i−1
n+2 v −∑pn+1−1

i=0 piδip̃pn+1−i
n+2 v

= δpn+1
ppn+1

v − p̃pn+1

n+2 v = 0

since δpn+1
ppn+1

v ≡ 0 (mod p) and p̃pn+1

n+2 v = p · v = 0 on D.

On the other hand, sx(u) = p0δ0p̃pn+1−1
n+2 · v = p̃pn+1−1

n+2 · v = p
pn+1−1

pn+1 · v hence the kernel of

the multiplication by pδ− p̃n+2 on C surjects onto the kernel of the multiplication by −p̃n+2

on D which is what we wanted. One uses further Snake Lemma in the main diagram. 2

Consider now the map of sheaves un,K : A∇max,n+1 → A′∇max,n associated to the map of

pre-sheaves induced by un : Amax,n+1 → Amax/pnAmax (defined in §2.1) and by the natural

projection Wn+1(U ,W) →Wn(U ,W).

Also consider the map of sheaves

q′
n,K

: A′∇max,n → A∇max,n

associated to the map of pre-sheaves induced by q′n : Amax/pnAmax → Amax,n (defined as well

in §2.1) and by Frobenius Wn(U ,W) →Wn(U ,W).

Write q′
K

:= {q′
n,K

}n : A′∇max → A∇max and uK := {un,K}n : A∇max → A′∇max.

In order to conclude the comparison between A′∇max,n and A∇max,n let us prove the following:

Lemma 2.9 — For any positive integers m ≥ n + 2 we have an isomorphism of rings

Amax/pnAmax
∼= Amax,m/pnAmax,m and the map un,K ◦ rn+2,K ◦ ... ◦ rm,K : A∇max,m → A′∇max,n

induces an isomorphism A∇max,m/pnA∇max,m
∼= A′∇max,n.
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Proof : We defined at the beginning of the chapter the surjective maps qm and the

reduction πm. Their composition is the surjective map

qm ◦ πm :W(R(OK)) ³Wm(R(OK)) ³ Wm(OK/pOK)

sending (s0, s1, ...) to (s(m−1)
0 (mod p), ..., s(m−1)

m−1 (mod p)), which induces the surjection:

W(R(OK)){δ} ³Wm(OK/pOK)[δ] = Wm[δ]

defined by
∑

i≥0 aiδ
i → ∑

i≥0 āiδ
i, where āi = (qm ◦ πm)(ai) = qm(ai mod pm). Further we

get a surjective map ψm : Amax → Amax,m and for any integers m ≥ n + 2, ψm(pnAmax) =

pnAmax,m since ψm(pn
∑

i≥0 aiδ
i) = p̄n

∑′
i≥0 āiδ

i = pn
∑′

i≥0 āiδ
i the last sum being finite

since the sequence (ai)i converges to 0 for the p-adic topology (for the last equality remark

that qm(pn mod pm) = (0, ..., 0, 1, 0, ..., 0) ∈ Wm for m ≥ n + 2). The second isomorphism

theorem for rings gives us now:

Amax/pnAmax
∼= Amax,m/pnAmax,m.

Remark that the finiteness of the sum appears since ai → 0 in the strong topology of

W(R(OK)) (the p-adic topology).

One can write ·p onWm as V◦ϕ where V is the Verschiebung and ϕ Frobenius. Recall that

ϕ is surjective on ŌX/pŌX by [2, Lemma 4.4.1(v)]. As in Lemma 2.8 we get an isomorphism

Wm/pnWm
∼=Wn induced by the natural projection on the first n components. One obtains

that, via this identification, the map un ◦ rn+2 ◦ ... ◦ rm : Wm → Wn is ϕm−n−1 and that at

the level of rings sends ξm ∈ Wm to prn(ξn+1) ∈ Wn.

We have that (V s(p̃m))pn
= pspn · p̃pn−s

m = pspn+pn−s p̃pn−s

m

ppn−s = 0 in Amax,m/pnAmax,m since

spn + pn−s ≥ n.

Now, p̃pn

m (mod p) generates the kernel of ϕm−n−1 on ŌX/pŌX. On one hand, ϕm−n−1(p̃pn

m

(mod p)) = (p) = 0 on S/pS (recall that S = ŌX(U ,W)). For the other inclusion let

x ∈ ker(ϕm−n−1) so xpm−n−1
= p · y for some y ∈ S. Since S is normal it follows that

x = p1/pm−n−1 · y′, y′ ∈ S, hence x ∈ (p̃pn

m ). We obtain that {Vs(p̃pn

m )}0≤s≤n generates the

kernel of ϕm−n−1 on Wn.

Similarly it follows that Wm/pnWm
∼= Wn and that {V s(p̃pn

m )}0≤s≤n generates the kernel

of ϕm−n−1 on Wn.
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Let us prove now that pnA∇max,m = ker(un,K ◦ rn+2,K ◦ ... ◦ rm,K).

Firstly, let x ⊗Wm y ∈ Amax,m ⊗Wm Wm(U ,W). Since pn ∈ Wm we have pn(x ⊗Wm y) =

pnx⊗Wm y = x⊗Wm pny ∈ ker(un,K ◦ rn+2,K ◦ ... ◦ rm,K) clearly.

Secondly, let
∑

i xi ⊗Wm yi ∈ ker(un,K ◦ rn+2,K ◦ ... ◦ rm,K). The element
∑

i xi ⊗Wm

yi is mapped to
∑

i x̄i ⊗Wn prn(yi) = 0 ∈ Amax,m/pnAmax,m ⊗Wn Wn(U ,W) (here we use

the isomorphism Amax/pnAmax
∼= Amax,m/pnAmax,m). We conclude that

∑
i xi ⊗Wm yi ∈

pn(Amax,m ⊗Wm Wm(U ,W)) and so the second inclusion also holds. The second claim of the

Lemma follows.

2.5 Localization over small affines

We study now the localization of A∇max over small affines.

Let U=Spf(RU ) be a small affine open of the étale site Xet on X. This is an object such

that RU⊗OK
k is geometrically irreducible over k and there are parameters T1, T2, ..., Td ∈ R×

U
such that the map R0 := OK{T±1

1 , T±1
2 , ..., T±1

d } ⊂ RU is formally étale. Fix now an algebraic

closure Ω of the fraction field of XK and denote by RU the union of all RU⊗OK
K-subalgebras

S of Ω, such that S is normal and RU ⊗OK
K ⊂ S[1/p] is finite and étale.

Let R(RU ) := lim←−RU/pRU where the transition maps are given by Frobenius.

We define A∇max(RU ) to be the p-adic completion of the sub-W(R(RU ))-algebra of

W(R(RU ))[1p ] generated by p−1ker(ϑ) where the map ϑ is defined as follows:

For every n, let ϑn be the composition of the projection (reduction modulo pn map):

W(R(RU )) →Wn(R(RU )), of the map Wn(R(RU )) →Wn(RU/pRU ) induced by the projec-

tion R(RU ) = lim←−RU/pRU → RU/pRU on the nth component (see Proposition 2.1) and of

θn :Wn(RU/pRU ) → RU/pnRU (defined at the beginning of §2.1).

Then define ϑ :W(R(RU )) → R̂U = lim←−RU/pnRU to be the map x → lim←−ϑn(x).

In [4, §6] it is proved that ker(ϑ) is the principal ideal generated by ξ. We also have

a Frobenius ϕ on A∇max(RU ) induced by the Frobenius on W(R(RU )). Remark that if x ∈
W(R(RU )) belongs to ker(ϑ) and if n ∈ N>0, one can write x[n] = p[n](x/p)n ∈ A∇max(RU )

(where x[n] is the n-th divided power of x i.e. xn/n!) and hence there exists a natural

homomorphism A∇cris(RU ) → A∇max(RU ) (which is injective according to [5, Proposition 2.3.2]).

A∇cris(RU ) is the p-adic completion of the W(k)-DP envelope of W(R(RU )) with respect to

the kernel of the map ϑ defined above (see [1, §2.3] or [4, §6] for details).
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Note that ϑ makes sense since the following diagram is commutative:

W(R(RU ))
ϑn+1 //

ϑn ''OOOOOOOOOOO
RU/pn+1RU

( mod pn)
²²

RU/pnRU .

Let gn be the composite of the projection (reduction modulo pn map) W(R(RU )) →
Wn(R(RU )) and of the map vn : Wn(R(RU )) → Wn(RU/pRU ) induced by the projection

R(RU ) = lim←−RU/pRU → RU/pRU on the n + 1th component (similar to qn). Denote by

R := R(RU ). Since A∇max(RU ) =W(R(RU ))[δ]/(pδ − ξ) we have that:

A∇max(RU )/pnA∇max(RU ) ∼= W(R)[δ]/(pδ − ξ)
(pn, pδ − ξ)W(R)[δ]/(pδ − ξ)

∼= W(R)[δ]/pnW(R)[δ]
(pn, pδ − ξ)W(R)[δ]/pnW(R)[δ]

∼= Wn(R)[δ]/(pδ − ξ (mod pn)) (7)

so A∇max(RU )/pnA∇max(RU ) ∼= Wn(R(RU ))[δ]/(pδ − ξ (mod pn)) and since gn(ξ) = ξn+1, we

get a map g′n : A∇max(RU )/pnA∇max(RU ) → A′∇max,n(RU ) = Amax/pnAmax ⊗Wn (Wn(RU )) and

recall that Wn := Wn(ŌXK
/pŌXK

) is the sheaf (ŌXK
/pŌXK

)n.

We have the following important result:

Proposition 2.10 — The ring A∇max(RU ) is p-torsion free.

Proof : We observe that Wn(R(RU ))[ξ/p] has no p-torsion being a subring of

Wn(R(RU ))[p−1]. Consequently, its p-adic completion namely A∇max(RU ) is p-torsion free. 2

We will use this result in the proof of Theorem 1.2:

Proof : a) We have that RU is a normal ring and that Frobenius is surjective on RU/pRU
by [4, Proposition. 2.0.1] and as in the proof of Proposition 2.1 we get that the kernel of the

projection R(RU ) = lim←−RU/pRU → RU/pRU on the n+1-th component is generated by p̃pn
.

As in the proof of Lemma 2.9 we have that (V s([p̃]))pn
= (pspn

[p̃])pn−s
= p(1+spn)pn−s [p̃]p

n−s

ppn−s

= 0 in A∇max(RU )/pnA∇max(RU ), 0 ≤ s ≤ n. Now, via Proposition 2.2, we obtain that

{Vs([p̃])}pn

0≤s≤n generate the kernel of vn. Via Proposition 2.4, it follows that:

A∇max(RU )/pnA∇max(RU ) ∼=Wn(RU/pRU )[δ]/(pδ − prn(ξn+1)) (8)

where the isomorphism is induced by the map gn :W(R(RU )) →Wn(R(RU )).
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We prove a) by induction on n. For n = 1 the map

A∇max(RU )/pA∇max(RU ) → A′∇max,1(RU ) becomes

(RU/pRU )[δ]/(pδ − pr1(ξ2)) → ((ŌX/pŌX)(RU ))[δ]/(pr1(ξ2))

via the above isomorphism and the remark before Lemma 2.8. By using now [1, Proposition

2.13] and [1, Proposition 2.14] we have an injective map

RU/pRU = ŌX(RU )/pŌX(RU ) → (ŌX/pŌX)(RU ) hence

(RU/pRU )[δ]/(p1/p) → ((ŌX/pŌX)(RU ))[δ]/(p1/p) is injective and so the case

n = 1 is proved.

By Proposition 2.10, A∇max(RU ) has no p-torsion hence we have the exact sequence:

0 // A∇max(RU )

pnA∇max(RU )

·p // A∇max(RU )

pn+1A∇max(RU )
// A∇max(RU )

pA∇max(RU )
// 0

This is compatible with the exact sequence obtained by taking the localizations in the

exact sequence of Lemma 2.8 i.e. we have the commutative diagram:

0 // A∇max(RU )

pnA∇max(RU )

g′n
²²

·p // A∇max(RU )

pn+1A∇max(RU )

g′n+1

²²

// A∇max(RU )

pA∇max(RU )

g′1
²²

// 0

0 // A′∇max,n(RU )
f ′ // A′∇max,n+1(RU )

g′ // A′∇max,1(RU ) // 0

(9)

where the maps f ′ = fRU and g′ = gRU are induced by f and g respectively (see Lemma 2.8).

The second square diagram of the main one is commutative since:

∑
bi( ξ

p)i (mod pn+1)

≡
_

g′n+1

²²

Â //
∑

bi( ξ
p)i (mod p)

_

g′1
²²∑

bi(
prn+1(ξn+2)

p )i (mod pn+1)⊗ 1 Â // ∑ bi(
pr1(ξ2)

p )i (mod p)⊗ 1

where the bottom map is induced by Frobenius to the n-th power ϕn composed with the

projection and we have that (proj ◦ϕn)(prn+1(ξn+2)) = pr1(ξ2) and for the vertical maps we

use the fact that g′n(ξ (mod pn)) = prn(ξn+1).

The first square diagram of the main one is also commutative since:



ON SOME SPECIAL TYPES OF FONTAINE SHEAVES 603

∑
bi( ξ

p)i (mod pn)

≡
_

g′n
²²

Â ·p //
∑

p · bi( ξ
p)i (mod pn+1)

_

g′n+1

²²∑
bi(

prn(ξn+1)
p )i (mod pn) Â f ′ // ∑ p · bi(

prn+1(ξn+2)

p )i (mod pn+1).

For the commutativity of the above diagram one uses the fact that f ′ induces the Ver-

schiebung at the level of the Witt vectors.

Now we apply the inductive hypothesis (g′n injective) and use the Snake Lemma in the

main diagram, (9), so at the level of kernels we get:

0 −→ ker(g′n+1) −→ 0 hence g′n+1 is injective (one can also see this directly by diagram

chase). Claim a) follows.

b) We prove that for every n ∈ N∗ we have q′
n,K

◦un,K = rn+1,K and un,K◦q′n+1,K
= r′

n+1,K
.

For the first relation, let’s remark that the following diagram is commutative:

Amax,n+1 ⊗Wn+1 Wn+1(RU )
un,K //

rn+1,K ++WWWWWWWWWWWWWWWWWWW
Amax,n ⊗Wn Wn(RU )

q′
n,K

²²
Amax/pnAmax ⊗Wn Wn(RU )

since ξn+1 ⊗Wn+1 1
un,K//

rn+1,K ))RRRRRRRRRRRRR
prn(ξn+1)⊗Wn 1

q′
n,K

²²
ξn ⊗Wn 1

and also (s0, s1, ..., sn)
un //

rn+1 ((QQQQQQQQQQQQQ
(s0, s1, ..., sn−1)

q′n
²²

(sp
0, s

p
1, ..., s

p
n−1)

For the second relation, we obtain similarly that the following diagram is commutative:

Amax/pn+1Amax ⊗Wn+1 Wn+1(RU )
q′
n+1,K //

r′
n+1,K ++WWWWWWWWWWWWWWWWWWWWW

Amax,n+1 ⊗Wn+1 Wn+1(RU )

un,K

²²
Amax/pnAmax ⊗Wn Wn(RU ).

By taking now lim←−, the two above mentioned relations give us: q′
K
◦uK = id and uK ◦q′K =

id respectively. Claim b) follows; uK defines the inverse of q′
K

. 2

Corollary 2.11 — The induced map A∇max(RU ) −→ A∇max(RU ) = lim←−A
∇
max,n(RU ) is an

isomorphism.
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Proof : From [1, Lemma 2.17] the image of the map (ŌX/pn+1ŌX)(RU ) → (ŌX/pnŌX)(RU )

factors via RU/pnRU ⊂ (ŌX/pnŌX)(RU ). By using now the description we provided in

(8) and since the transition maps A′∇max,n+1(RU ) → A′∇max,n(RU ) are induced by the map

Wn+1(RU ) → Wn(RU ) given by the the natural projection composed with Frobenius, we

obtain that the maps A′∇max,n+1(RU ) → A′∇max,n(RU ) factor via A∇max(RU )/pnA∇max(RU ) for

all n ≥ 1. By taking projective limit and further using the fact that A∇max(RU ) is com-

plete, one obtains that A∇max(RU ) ∼= A′∇max(RU ). By Theorem 1.2b) we have the isomorphism

A′∇max(RU ) ∼= A∇max(RU ) and consequently we obtain that A∇max(RU ) ∼= A∇max(RU ). 2

3. The sheaf Amax

Let p > 0 be a prime integer, K a finite, unramified extension of Qp with residue field k, OK

the ring of integers of K and denote by Kunr the maximal unramified subfield of K and by

OKunr its ring of integers.

We have a morphism θK : A+
inf,K

→ ˆ̄OXK
of objects of Sh(XK)N constructed as follows:

let (U ,W) be an object of XK . Denote by S = ŌXK
(U ,W) and for fixed n ∈ N, consider the

diagram of sets:

(S/pnS)n

bn

&&MMMMMMMMMM
an // S/pnS

(S/pS)n

∃!cn

OO

where bn is the natural projection and an(s0, s1, ..., sn−1) :=
∑n−1

i=0 pispn−1−i

i .

There exists a unique map of sets, call it cn : (S/pS)n → S/pnS making the diagram

commutative i.e. cn ◦ bn = an.

We have that cn(s0, s1, ..., sn−1) :=
∑n−1

i=0 pis̃i
pn−1−i

, where s̃i ∈ S/pnS is a lift of

si ∈ S/pS for all 0 ≤ i ≤ n− 1 and let us remark that cn is well defined:

For this, let (c0, c1, ..., cn) ∈ (S/pS)n such that ci ≡ si (mod p) for all 0 ≤ i ≤ n − 1.

Then cpn−1−i

i ≡ spn−1−i

i (mod pn−i) and by multiplying the latest relation by pi we obtain

that picpn−1−i

i ≡ pispn−1−i

i (mod pn) for all 0 ≤ i ≤ n − 1. It follows that
∑n−1

i=0 pic̃i
pn−1−i

≡ ∑n−1
i=0 pis̃i

pn−1−i
(mod pn), in other words cn is well defined.

The map cn induces a ring homomorphism cn,(U ,W) : Wn(S/pS) → S/pnS, which is

functorial in (U ,W), in other words a morphism of presheaves Wn,K
cn // ŌXK

/pnŌXK
.

One denotes by θn,K the induced morphism on the associated sheaves and let:
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θK := {θn,K} : A+
inf,K

= lim←−Wn,K → ˆ̄OXK
= lim←−(ŌXK

/pnŌXK
)

Assume that X is a smooth scheme over OK .

Let OX be the sheaf on the site XK defined by OX(U ,W) := OX(U).

For every n ≥ 1 one defines the sheaf WX,n,K := Wn(ŌXK
/pŌXK

) ⊗OK
OX of OKunr-

algebras and also the morphism of sheaves of OKunr ⊗OK
OX -algebras θX,n,K : WX,n,K →

ŌXK
/pnŌXK

associated to the following map of presheaves: firstly take an object (U ,W) of

XK such that U=Spf(RU ) is affine (i.e. RU = OX(U ,W)). Clearly S = ŌXK
(U ,W) has a

natural RU -algebra structure. Define now:

θn,(U ,W) :Wn(S/pS)⊗OK
RU → S/pnS by (x⊗ r) → cn(x)r.

Let now U=Spf(RU ) be a small affine open of the étale site Xet of X, with parameters

T1, T2, ..., Td ∈ R×
U (recall the definition of small affines from the previous chapter). Further,

for n ≥ 0, let RU ,n := RU [ζn, T
1/pn

1 , ..., T
1/pn

d ], where RU ,0 = RU , ζn is a primitive pnth

root of unity with ζp
n+1 = ζn and such that T

1/pn

i is a fixed pnth root of Ti in RU with

(T 1/pn+1

i )p = T
1/pn

i for any 1 ≤ i ≤ d. Moreover, consider the category Un,K consisting of

morphisms (V,W) → (U , Spf(RU ,n) ⊗OK [ζn] K) in XK . The morphisms of this category are

the morphisms as objects over (U , Spf(RU ,n)⊗OK [ζn]K) and the covering families of an object

(V,W) are the covering families of (V,W) regarded as object of XK . Given a sheaf F on XK ,

one writes F|Un,K
for u∗(F) where u : Un,K → XK is the forgetful functor.

Let now (V,W) ∈ Un,K with V = Spf(RV) affine and let S := ŌXK
(V,W). Remark

that T
1/pn

i ∈ RU ,n ⊂ S for all 1 ≤ i ≤ d since S is the normalization of Γ(V,OV) = RV in

Γ(W,OW). Also denote by:

T̃i := ([Ti], [T
1/p
i ], ..., [T 1/pn

i ], ...) ∈ lim←−Wn(RU ,n/pRU ,n)

the inverse limit being taken with respect to the mapWn+1(RU ,n+1/pRU ,n+1) →Wn(RU ,n/pRU ,n)

defined as the composition between the natural projection

Wn+1(RU ,n+1/pRU ,n+1) → Wn(RU ,n+1/pRU ,n+1) and the map induced by the Frobe-

nius: RU ,n+1/pRU ,n+1 → RU ,n/pRU ,n. Note that the image of T̃i in Wn(RU ,n/pRU ,n) is

(T 1/pn

i , 0, ..., 0) i.e. the Teichmueller lift of T
1/pn

i . For all 1 ≤ i ≤ d, define now:

Xi := 1⊗ Ti − T̃i ⊗ 1 ∈Wn(RU ,n/pRU ,n)⊗OK
RU
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and remark that these elements also live in Wn(S/pS)⊗OK
RV .

Recall now that ξn = p̃n − p = [p1/pn−1
]− p. We will need the following:

Lemma 3.1 ([1, Lemma 2.28]) — The kernel of the map θn,(V,W) : Wn(S/pS)⊗OK
RV →

S/pnS is the ideal generated by (ξn, X1, ..., Xd).

3.1 The existence of Amax and its localization over small affines

We are ready now to prove the main theorem of this section, Theorem 1.4, restated below:

Theorem 1.4 There exists a unique continuous sheaf Amax on XK of A∇max-algebras

such that for every small affine U = Spec(RU ) of Xet we have a canonical isomorphism as

A∇max(RU )-algebras: Amax(RU ) ∼= Amax(RU ). Here the algebra Amax(RU ) is the one defined in

[4, Remark 8.3.5]: the separated completion for the p-adic topology of W(R(RU ))⊗W (R) RU -

subalgebra of W(R(RU ))⊗W (R) RU [p−1] generated by p−1 · ker(θRU ).

Proof Let us fix a small affine U = Spec(RU ) and a choice of RU . Let us now fix n ≥ 0

and let us recall that we defined at the beginning of this section a certain category UK,n.

Fix T1, T2, ..., Td parameters of RU let us recall that we have chosen for every 1 ≤ i ≤ d

a compatible family of p-power roots (T 1/pn

i )∞n=0 and also a compatible family of p-power

roots on 1, ε := (ζn)∞n=0. With these choices let us recall that we have defined the elements

Xi := 1⊗ Ti − T̃i ⊗ 1 ∈WX,n,K(V,W) for any (V,W) in UK,n. We define the presheaf AU ,n

on UK,n by

(V,W) −→ AU ,n(V,W) :=WX,n,K(V,W)[Y0, Y1, Y2, ..., Yd]/(pY0 − ξn, pYi −Xi)1≤i≤d,

for (V,W) in UK,n. If we denote by y
(n)
1 , y

(n)
2 , ..., y

(n)
d the images of Y1, Y2, ..., Yd inAU ,n(V,W),

let us remark that A∇max,n(V,W) ⊂ AU ,n(V,W) and moreover we have that AU ,n(V,W) =

A∇max,n(V,W)[y(n)
1 , ..., y

(n)
d ]. In fact AU ,n(V,W) is a free A∇max,n(V,W)-module with basis the

monomials in y
(n)
1 , y

(n)
2 , ..., y

(n)
d , therefore the presheaf AU ,n is in fact a sheaf on UK,n.

Let us first remark that we have a natural morphism of OK-algebras:

R0 := OK [T±1
1 , T±1

2 , ..., T±1
d ] −→ AU ,n(V,W) given by Ti 7→ T̃i ⊗ 1 + Xi, for 1 ≤ i ≤ d.

We remark that as T̃i is a unit in Wn(OX/pOX)(V,W) and as Xi = pyi in AU ,n(V,W) and

therefore nilpotent in that ring, it follows that T̃i⊗1+Xi ∈ AU ,n(V,W)× and so the definition

makes sense.

We extend the morphism θn : A∇max,n|UK,n
−→ (OX/pnOX)|UK,n

to a morphism
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θU ,n : AU ,n −→ (OX/pnOX)|UK,n
by sending y

(n)
i to 0, for all 1 ≤ i ≤ d.

For each (V,W) in UK,n we have a diagram of rings and ring homomorphisms

AU ,n(V,W)
fn,1−→ AU ,1(V,W)

↑ ↑
R0 −→ RV

Let us recall thatAU ,1(V,W) = A∇max,1(V,W)[y(1)
1 , ..., y

(1)
d ] = (OXK

/pOXK
)(V,W)[y(1)

1 , ..., y
(1)
d ]

and so the morphism RV −→ AU ,1 in the diagram is the natural one. With this definition

the diagram is commutative and moreover Ker(fn,1) is a nilpotent ideal of AU ,n(V,W). As

RV is étale over R0, there is a unique R0-morphism

RV −→ AU ,n(V,W),

making the two triangles commute and so we obtain a morphism of sheaves on UK,n, hU ,n :

WX,n,K |UK,n
−→ AU ,n.

Now let us denote by UK the full subcategory of XK consisting of pairs (V,W) such that

the map V −→ X factors through U . We endow UK with the topology induced from X and

consider UK,n as a sub-topology of it. Our construction proceeds in several steps, as follows:

Step 1 : The sheaf AU ,n on UK,n extends uniquely to a sheaf which we denote Amax,U,n on

the whole of UK .

For this let us fix an étale open V of Xet such that the structure map V −→ X factors

through U and let V fet (respectively V fet
n ) denote the sub-site of UK consisting of pairs (V,W)

(respectively consisting of pairs (V,W) such that the structure map W −→ V factors through

Spf(RV,n)⊗OK [ζn] K. We recall that RV,n = RV [ζn, T
1/pn

1 , ..., T
1/pn

d ]).

To prove the claim it is enough to prove that the restriction of AU ,n to V fet
n extends

uniquely to V fet, for all V as above. Let ∆V := πalg
1 (VK , η), and by ∆n its open subgroup of

elements which fix RV,n.

We have the following natural diagram of categories and functors:

Sh(V fet) Res−→ Sh(V fet
n )

↓ L ↓ Ln

Rep(∆V) Res−→ Rep(∆n)
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where L and Ln are the localization functors: if F is a sheaf on V fet, respectively on V fet
n , then

L(F) := F(RV), respectively Ln(F) := F(RV). Therefore we have Ln(Res(F)) ∼= Res(L(F))

and so the diagram is commutative. Both L and Ln are equivalences of categories, therefore

in order to prove that AU ,n (seen as sheaf on V fet
n ) extends uniquely to a sheaf on V fet it is

enough to show that the ∆n-action on AV,n := Ln(AU ,n) extends uniquely to a ∆V -action.

Let us remark that A∇max,n(RV)[y1, ..., yd] = A∇max,n(RV)[y1, ..., yd], where until the end of

this section we put yi := y
(n)
i , 1 ≤ i ≤ d. As A∇max,n(RV) has a canonical action of ∆V , we

only need to define the action on yi, 1 ≤ i ≤ d. For this let us denote by ci : ∆V −→ Zp the

cocycle defined by: if σ ∈ ∆V

σ
(
(T 1/pm

i )∞m=0

)
= (T 1/pm

i )∞m=0ε
ci(σ).

Let us remark that after we fixed the choices of p-power roots of Ti and of 1, the cocycles

ci are uniquely determined for every 1 ≤ i ≤ d. Let us denote for every such i and every

σ ∈ ∆V by ei(σ) ∈ Amax,n the image under the natural map Amax −→ Amax,n of the element

(1− [ε]ci(σ))/p ∈ Amax.

Then, for every σ ∈ ∆V , we define

σ(yi) := yi + ei(σ)T̃i ⊗ 1 ∈ AV,n.

By the definition above, AV,n is now a representation of ∆V and so let us denote by

Amax,U,n the unique sheaf on UK such that for every V as above we have natural isomorphisms

as ∆V -representations Amax,U,n(RV) ∼= AV,n. It follows that Amax,U,n|UK,n
= AU ,n.

Step 2: extension of the morphisms hU ,n and θU ,n

We show that hU ,n :Wn(OXK
/pOXK

)|UK,n
−→ AU ,n and θU ,n : AU ,n −→ (OXK

/pnOXK
)|UK,n

extend uniquely to morphisms of sheaves hU : Wn(OXK
/pOXK

)|UK
−→ Amax,U,n and θU ,n :

Amax,U,n −→ (OXK
/pnOXK

)|UK
respectively.

a) The extension of hU ,n. As the natural inclusion Wn(OXK
/pOXK

) −→ A∇max,n is in

fact defined over all XK , it is enough to show that the natural morphism induced by hU ,n,

OX |UK,n
−→ AU ,n extends to the whole of UK . Let us fix V as above, then it is enough to

show that the map induced by hU ,n, RV −→ AV,n is ∆V -invariant. But this map is completely

determined by the map R0 −→ AV,n. In the end we have to prove that the images of Ti,
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1 ≤ i ≤ d, are ∆V -invariant. Let us recall, hU ,n(Ti) = T̃i ⊗ 1 + Xi = T̃i ⊗ 1 + pyi. Therefore,

σ(hU ,n(Ti)) = σ(T̃i)⊗ 1 + pσ(yi) = [ε]ci(σ)T̃i ⊗ 1 + p(ei(σ)T̃i ⊗ 1 + yi)

= [ε]ci(σ)T̃i ⊗ 1 + (1− [ε]ci(σ))T̃i ⊗ 1 + Xi = hU ,n(Ti).

b)The extension of θU ,n.

Following the same line of arguments as above, after fixing a small affine V, we need to

prove that the map induced by θU ,n, AV,n −→ (OXK
/pnOXK

)(RV) is ∆V -equivariant. It is

then enough to look at the images of yi, 1 ≤ i ≤ d. Let us choose such an i and let σ ∈ ∆V .

We have

θU ,n(σ(yi)) = θU ,n(yi + ei(σ)T̃i ⊗ 1) = θU ,n(yi) + θU ,n(ei(σ))θU ,n(T̃i ⊗ 1) = Tiθn(ei(σ)).

Now ei(σ) ∈ Amax,n and we have (1− [ε]ci(σ))/p = ai(σ)(ξ/p) in Amax, with ai(σ) ∈ A+
inf ,

we have that ei(σ) = bi(σ)δn, where bi(σ) ∈ Wn is the image of ai(σ) and δn ∈ Amax,n is the

image of Y0. Therefore θn(ei(σ)) = θn(bi(σ))θn(δn) = 0 and so θU ,n(σ(yi)) = 0 = σ(θU ,n(yi)).

Now let us remark that for every n ≥ 0, we have natural morphisms of sheavesAmax,U,n+1 −→
Amax,U,n induced by the natural morphism A∇max,n+1|U −→ A∇max,n|U, which make the fam-

ily Amax,U := {Amax,U,n}n≥0 into a projective system of torsion sheaves, i.e. a continuous

sheaf. Moreover, the family of maps {hU ,n}n≥0 induces a morphism of continuous sheaves

hU : OÛ −→ Amax,U and the family {θU ,n}n≥0 induces a morphism of continuous sheaves

θU : Amax,U −→ ÔUK
. Here we have denoted by OÛ the continuous sheaf {OU/pnOU}n≥0 and

ÔUK
is the continuous sheaf {(OXK

/pnOXK

)|UK
}n≥0.

Step 3: Gluing of Amax,UK ,n.

We choose a covering {Uj}j of X by small affines. For each j, we have defined unique con-

tinuous sheaves Amax,Uj
on Uj,K . By uniqueness, these sheaves glue to give a unique continu-

ous sheaf Amax on XK , together with morphisms of sheaves h : A+
inf −→ Amax, A∇max −→ Amax

and θ : Amax −→ ÔXK
, such that for every j, their restrictions to Ui,K are the ones defined

above. 2

3.2 Further properties

The continuous sheaf Amax constructed above has nice properties summarized in Theorem

1.5, which we restate and prove below:
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Theorem 1.5 — Let us fix n ≥ 1.

1) The sheaf Amax has a decreasing filtration by sheaves of ideals FilrAmax := (Ker(θ))r,

for all r ≥ 0.

2) There is a unique connection ∇ := {∇n}n≥1 : Amax −→ Amax ⊗OX̂
Ω1

X̂/OK
such that

(a) ∇|A∇max
= 0

(b) for every n ≥ 0 and every small affine U of X with parameters T1, T2, ..., Td and for

every pair (V,W) in UK,n, if we denote as before the elements y1, y2, ..., yd ∈ Amax,n(V,W),

then ∇n(yi) = 1⊗ dTi ∈ Amax,n(V,W)⊗RV Ω̂1
RV/OK

.

3) The connection described at 2) has the property that it is integrable and A∇max =(
Amax

)∇=0
.

4) We have ∇(FilrAmax) ⊂ Filr−1Amax ⊗OX̂
Ω1

X̂/OK
for every r ≥ 1, i.e. ∇ satisfies the

Griffith transversality property.

Proof : Let us first remark that the properties 2) a) and b) define a unique connection

on the restrictions of the sheaf Amax,n to UK,n. We show that it extends uniquely to a

connection on the whole of UK . For this it is enough to show that if we fix an affine open V of

Xet such that the structure map V −→ X factors through U , the connection ∇n : AU ,n −→
AU ,n ⊗RV Ω̂1

RV/OK
induced by ∇n is ∆V -equivariant. It is enough to check on the elements

yi, 1 ≤ i ≤ d. Let σ ∈ ∆V . Then on one hand we have σ(∇n(yi)) = σ(1⊗ dTi) = 1⊗ dTi. On

the other hand ∇n(σ(yi)) = ∇(
yi + ei(σ)T̃i ⊗ 1

)
= ∇(yi) = 1⊗ dTi, which shows that indeed

∇n is ∆V -equivariant.

Properties 3), 4) are local therefore it is enough to verify them on the restriction AU ,n of

Amax,n to UK,n, and in that case AU ,n is a free A∇max|UK,n
-module with basis the monomials

in y1, y2, ..., yd. Therefore everything follows from the local definition of ∇n.

4. Open Questions

Let X be a smooth proper scheme over OK with geometrically connected fibers. We would

like to construct a functor which makes a (Riemann-Hilbert) correspondence between the

category of locally constant sheaves on Xet
K and the category of sheaves of OXK

-modules

endowed with an integrable connection, a filtration and a Frobenius endomorphism on X̂,

where by X̂ we mean the completion of X along the special fiber Xk.
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Let u : X → Xet
K

and v : Xet → X be the functors defined by: u(U ,W) = W and

v(U) = (U ,UK) respectively.

One further defines the morphisms u∗ : Sh(Xet
K

) → Sh(X) and v∗ : Sh(X) → Sh(Xet)

analogous to the push-forward in the following way: u∗(L)(U ,W) = L(W) and v∗(F)(U) =

F(U ,UK) respectively, where L is a sheaf on Xet
K

and F a sheaf on X.

Denote now by L a locally constant Qp-sheaf on Xet
K which we view via base change as a

sheaf on Xet
K

and then applying u∗ as a sheaf on X. Put:

Dar
max(L) = v∗(L⊗ Amax)GK .

We then make the following:

Conjecture 4.1 — We have an isomorphism Dar
max(L) ∼= Dar

cris(L) as sheaves ofOXK
-modules

on Xet
K .

The sheaf Dar
cris(L) was defined by Andreatta and Iovita in [1] by setting Dar

cris(L)

= v∗(L⊗ Acris)GK and Acris is a sheaf on X also constructed in [1].

This conjecture is supported by the fact that if V is a p-adic representation of GK then

(V ⊗Qp Bmax)GK ∼= (V ⊗Qp Bcris)GK = Dcris(V )

(cf [6, Theorem 2.3.13]).

Moreover, we believe that the sheaves Amax and A∇max can be defined even when K is

ramified over Qp, our theory from the previous sections can be extended and one can prove

”localization over small affines”-equivalent theorems for this general case. Concretely, we

expect that the localizations A∇max(RU ) and Amax(RU ) are respectively isomorphic to the

rings A∇max(RU ) and Amax(RU ) for a ”small” affine U = Spec(RU ). If X over OK is a smooth,

proper and connected scheme, such that there exists a scheme X0 defined over OK0 (K0

being the maximal absolutely unramified subfield of K and OK0 its ring of integers), such

that X ∼= X0 ×OK0
OK then one can define A∇max and Amax by extending scalars to K. We

leave open the problem of constructing A∇max and Amax for the case when X is not obtained

by base change from a scheme defined over OK0 .

Finally, we make the following:

Conjecture 4.2 — There are isomorphisms (compatible with filtrations, GK-actions and
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Frobenii):

Hn
ét(XK ,Qp)⊗Qp Bmax

∼= Hn(X,A∇max)⊗Amax Bmax
∼= Hn

cris(X, K0)⊗K0 Bmax.

One obtains in this way a new proof of Faltings’ theorem (see [7]). By taking GK-

invariants, one has:

Corollary 4.3 — Dcris(Hn
ét(XK ,Qp)) ∼= Hn

cris(X, K0).
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