
Indian J. Pure Appl. Math.,46(5): 695-700, October 2015

c© Indian National Science Academy DOI: 10.1007/s13226-015-0134-7

ON CHEVALLEY’S Z-FORM

M. S. Raghunathan

National Centre for Mathematics, Indian Institute of Technology,

Mumbai400 076,India

e-mail: msr@math.iitb.ac.in

(Received28October2014;accepted18December2014)

We give a new proof of the existence of a Chevalley basis for a semisimple Lie algebra overC.

Key words : Chevalley basis; semisimple Lie algebras.

1. INTRODUCTION

Let g be a complex semisimple Lie algebra. In a path-breaking paper [2], Chevalley exhibitted a basis

B of g (known as Chevalley basis since then) such that the structural constants ofg with respect to the

basisB are integers. The basis moreover consists of a basis of a Cartan subalgebrat (on which the

roots take integral values) together with root vectors ofg with respect tot. The structural constants

were determined explicitly (up to signs) in terms of the structure of the root system ofg. Tits [3]

provided a more elegant approach to obtain Chevalley’s results which essentially exploited geometric

properties of the root system. Casselman [1] used the methods of Tits to extend the Chevalley theorem

to the Kac-Moody case. In this note we prove Chevalley’s theorem through an approach different from

those of Chevalley and Tits.

Let G be the simply connected algebraic group corresponding tog. Let T be a maximal torus

(the Lie subalgebrat corresponding to it is a Cartan subalgebra ofG). Let Φ be the root system

of G with respect toT and∆ a simple root system. Forϕ ∈ Φ, let G(ϕ) be the3-dimensional

subgroup (isomorphic toSL(2)) corresponding toϕ. For an elementv 6= 0 in the root spacegϕ,

there is a unique natural isomorphismfϕ,v of SL(2) onG(ϕ) taking the diagonal group intoT and

the induced Lie algebra map takinge12 to v. Setf(ϕ,v)(e12− e21) = sϕ,v. The key result we prove in

this note is the following.
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For eachα ∈ ∆, let eα be a non-zero element ingα and setsα = sα,eα . Let W̃ be the sugroup

of G generated by{sα|α ∈ ∆}. It is well known thatW̃ ⊂ N(T), the normalizer ofT. Then

W̃ ∩ T = T(2), the group of2-torsion elements inT. Further ifw,w′ ∈ W̃ andα, α′ ∈ ∆ with

w(α) = w(α′), Ad(w)(eα) = ±Ad(w′)(eα′).

One deduces then the existence of a Chevalley basis from the above two assertions. The second

assertion above is in fact equivalent to the existence of the Chevalley basis and the first can be deduced

from the existence. The first assertion seems to be of some interest in itself. It says that while the

sequence

{1} → T → N(T) → N(T)/T → {1}

does not split it comes close to to doing so.

2. REPRESENTATIONS OFSL(2,C)

We recall in this section some basic facts about finite dimensional (holomorphic) representations

of the SL(2,C) (or simply SL(2)), the group of(2 × 2)-matrices overC of determinant 1 (under

multiplication). D will denote the group of diagonal matrices inSL(2). For t ∈ C∗, d(t) denotes

the diagonal matrix withd(t)11 = t andd(t)22 = t−1. We setC2 = V and denote byρ the natural

representation ofSL(2) onV . We denote bysl(2,C) (or simplysl(2)), the Lie algebra{XεM(2,C)|
trace(X) = 0} of SL(2). We let ρ̇ denote the natural representation ofsl(2) on V (induced by

ρ). For 1 ≤ i, j ≤ 2, let eij be the matrix whose(k l)-th entry isδik · δjl. Sets = e12 − e21,

e+ = e12, e− = e21 andh = e11 − e22. Thens ∈ SL(2) is the “Weyl” element; it normalizes

D ands2 = −(identity). Further,{e+, h, e−} is a basis ofsl(2); and we have[h, e+] = 2 · e+,

[h, e−] = −2 · e− and[e+, e−] = h.

For an integerm ≥ 0 we denote byρm (resp. ρ̇m) the representation ofSL(2) (resp. sl(2))

induced byρ on the symmetricm-th powerSm(V ) of V . If {u, v} is the standard basis ofV = C2,

{up · vq| p + q = m} is a basis ofSm(V ). Let tεC∗ andsεSL(2) be the matrixe+ − e−. One then

has, as is easily seen by inspection:

Lemma2.1 —

ρm(d(t))(up · vq) = tp−q · up · vq

ρ̇m(e−)(up · vq) = q · up+1 · vq−1

ρ̇m(e+)(up · vq) = p · up−1 · vq+1

ρ̇m(h)(up · vq) = 2 · (p− q) · up · vq
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ρm(s)(up · vq) = (−1)p · uq · vp = (−1)p · (q!/p!)±1 · ρ̇m(e∓)±(p−q)(up · vq)

according asp ≥ q or q ≥ p.

For any integerm ≥ 0, ρm is an irreducible representation ofSL(2) of dimensionm + 1 and,

up to equivalence, it is the unique irreducible representation of dimensionm + 1. Moreover every

representationτ of SL(2) is a direct sum of irreducible representations; thusτ is a direct sum of

copies of the “ρm”s. One deduces from the lemma above the following:

Corollary 2.2 — Letτ be an irreducible representation ofSL(2) on a vector spaceE of dimension

m + 1. If z is an eigen vector forτ(h) in E with eigen valuek,

τ(s)(z) = (−1)(m+k)/2 · ((m− k)/2)! · τ(e∓)k(z)/((m + k)/2)!

In particular, ifzεE is aD-fixed vector,τ(s)(z) = ±z.

3. SEMISIMPLE L IE GROUPS, MAXIMAL TORI, ROOTS

3.1Maximal torus, roots and root-spaces

Let G be a connected simply connected semisimple algebraic group overC andg its Lie algebra. Let

T be a maximal torus inG andt ⊂ g the Lie subalgebra ofg corresponding tot. A root of G (with

respect toT) is a non-trivial eigen characterϕ : T → C∗ for the adjoint action ofT on the Lie

algebrag. We denote byX(T) the group of characters onT and byΦ ⊂ X(T) the set of roots. For

ϕ ∈ Φ, gϕ = {v ∈ g|Ad(t)(v) = ϕ(t) · v, ∀t ∈ T}, the eigenspace corresponding toϕ, “the root-

space ofϕ” is of dimension 1 andg = t⊕∐
ϕ∈Φ gϕ. The Killing form < ., . > ong, restricted tot is

non-degenerate. Hence it defines an isomorphismA of t on its dualt∗. Forλ ∈ t∗, setA−1(λ) = Hλ.

We have then forH ∈ t andλ ∈ t∗, < Hλ,H > = λ(H). Forλ, µ ∈ t∗, set< λ, µ >=< Hλ,Hµ >.

3.2Simple roots; the Weyl group

Let N(T) be the normalizer ofT (in G) andW = N(T)/T, the Weyl group. The inner conjugation

action ofN(T) onT factors through to an action ofW onT and hence onX(T); the setΦ is stable

under this action. The set{< ϕ, ϕ >1/2 | ϕ ∈ Φ} of “root-lengths” has at most two elements and the

Weyl group acts transitively on the set of all roots of the same length. We fix a lexicographic (total)

order inX(T) and denote byΦ+ (resp. Φ−, resp. ∆) the system of positive (resp. negative, resp.

simple) roots. LetΩ be the set of roots dominant for the simple system∆. The cardinality ofΩ is the

same as that of the set of root-lengths. Forβ ∈ Ω, Pβ is the parabolic subgroup determined byβ:

it is the sugroup ofG corresponding to the Lie sub-algebra generated by{gϕ|ϕ ∈ Φ+}, t and{gϕ|
ϕ ∈ Φ,< ϕ, β >= 0}.
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3.3The 3-dimensional sub-algebrasgα

For α in Φ, let hα = 2 ·Hα/ < Hα,Hα >. Now for any0 6= v+ ∈ gα; there is a uniquev− ∈ g−α

with [v+, v−] = hα. Defineiα,v : sl(2) → g by settingiα,v(e±) = v±, iα,v(h) = hα: it is a Lie

algebra isomorphism ofsl(2) on the Lie subalgebragα ⊕ C · hα ⊕ g−α = g(α); the Lie subgroup

G(α) corresponding tog(α) is an algebraic subgroup andiα,v integrates to an isomorphismfα,v

of GL(2) on G(α) - we have assumed thatG is simply connected. We setsα,v = fα,v(s). As

s2 = −(Identity) in SL(2), s2
α,v is the unique non-trivial central element inG(α) and is of order2.

It is easy to see thatsα,v belongs toN(T) and that it acts trivially on{t ∈ T|α(t) = 1}, the kernel

of α.

3.4 The groupW̃

For eachα in ∆ we now fix elementse±α with [eα, e−α] = hα and setiα,eα = iα, fα,eα = fα and

sα,eα = sα. Let W̃ be the subgroup ofG generated bỹS = {sα|α ∈ ∆}. ThenW̃ maps ontoW

under the projection mapπ : N(T) → W. Letwα = π(sα) andS = π(S̃). Then(W,S) is a Coxeter

system. LetB be the kernel ofπ : W̃ → W; B = T ∩ W̃. We have with this notation the first key

result.

Proposition3.5 —B = T2, the subgroup of 2-torsion elements inT.

PROOF : Since(W,S) is a Coxeter system the groupB is generated as a normal subgroup by

{(sα · sβ)pαβ |α, β ∈ ∆}: herepαβ is the order ofwα · wβ in W. It suffices therefore to prove that

{(sα · sβ)pαβ |α, β ∈ ∆} are all of order2: note that whenα = β, pαβ = 1 and the{s2
α|α ∈ ∆}

generateT(2) sinceG is simply connected. We will deal with each of the casesp = pαβ = 1, 2, 3, 4

and6 separately:

1. p = 1. This is the caseα = β and by its very definitions2
α has order2.

2. p = 2. In this case the groupsG(α) andG(β) commute, hence so dosα andsβ; it follows that

(sα · sβ)2 has order 2.

3. p = 3. Heregα ⊕ g(α+β) (resp.gβ ⊕ g(α+β)) is an irreducibleG(β)- (resp.G(α)-) module

(of dimension 2). One sees now (from representation theory ofSL(2)) that we havesβ(eα) =

[eβ, eα] = −[eα, eβ] = −sα(eβ). Setv = [eβ, eα] ∈ g(α+β). It follows thatsβ · sα · sβ =

sβ · sα · s−1
β · s2

β = s(α+β),v(modT(2)) = s−1
(α+β),v(modT(2)) = sα · sβ · sα(modT(2)); as

sα = s−1
α ( modT(2)), (sα · sβ · sα)2 ∈ T(2).

4. p = 4. The root system is necessarily of typeB2. We takeα to be the long root. We then have

sα(β) = α + β and< β, α + β >= 0. The subspaceg±α ⊕ g±(α+β) ⊕ g±(α⊕2·β) of g is



ON CHEVALLEY’S Z-FORM 699

then an irreducibleG(β)(' SL(2))-representation and one concludes from Corollary 2.2 that

Ad(sβ)(v) = v for all v ∈ g±(α+β). It follows thatsβ ands((α+β),v) commute for allv 6= 0 in

gα+β. Now sα · sβ · sα = sα · sβ · s−1
α (mod T(2)) = s((α+β),sα(eβ)). Thus(sα · sβ)2 ∈ T(2)

and hence(sα · sβ)4 = 1.

5. p = 6. The root system is of typeG2. We takeα to be the long root. Then{m ·α + n · β | 0 ≤
m ≤ 2, 0 ≤ n ≤ 3,m + n 6= 0} is the set of positive roots. Nowsβ (resp. sα) conjugates

G(α) (resp.G(β)) into G(α + 3 · β) (resp.G(β + α)) takingsα (resp.sβ) into an elementη

(resp.ξ) with η2 (resp.ξ2) in T(2). As (α + 3 · β)± (α + β) are not roots,G(α + 3 · β) and

G(β + α) commute. Thus(sα · sβ)3 = sα · sβ · sα · sβ · sα · sβ = ξ · s2
α · η · s2

β = ξ · η (mod

T(2)). Hence(sα · sβ)6 = (ξ)2 · (η)2 (modT(2)) and thus is inT(2).

This completes the proof of Proposition 3.5.

4. THE CHEVALLEY BASIS

The key step we need is:

Proposition4.1 — If α, α′ ∈ Φ andw, w′ ∈ W̃ are such thatw(α) = w′(α′), thenAd(w)(eα)

= ±Ad(w′)(eα′).

PROOF: Setβ = w(α) = w′(α′). Then one hasw ·sα ·w−1 = s(β,Ad(w)(eα)) andw′ ·sα′ ·w′−1 =

s(β,Ad(w′)(e′α)). We denote these two elements byτ andτ ′ respectively. Thenτ, τ ′ ∈ G(β). As they

both have the same imagewβ in W, we haveτ ′ = τ · θ with θ ∈ G(β) ∩ T(2); it follows thatθ is

±(Identity) in G(β). The proposition now follows from the fact that the mapv → sβ,v of gβ\{0}
into W̃ is injective.

Definition 4.2 — A basisB for g is adapted to a maximal torusT if the following conditions

hold.

1. For some simple system∆ in Φ, the root system ofG with respect toT, B∩ t = {Hα|α ∈ ∆}
2. For any rootϕ ∈ Φ, B ∩ (gϕ\{0}) is non-empty=: {eϕ}.
3. Forα in ∆, [hα, e±α] = ±2 · eα and[eα, e−α] = hα].

4. If fα : SL(2) → G(α) is the isomorphism given byfα(±e) = e±α andfα(h) = hα and

W̃ is the group generated by the{sα|α ∈ ∆}, then forϕ ∈ Φ andw ∈ W̃, Ad(w)(eϕ) =

ε(w,ϕ) · ew(ϕ) whereε(w, ϕ) = ε(w,−ϕ) = ±1.

Remark4.3 :

1. The discussion preceding the definition shows that a basis adapted to a maximal torus exists.
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2. In view of the fact that every root has ãW-conjugate in∆, we have for anyϕ ∈ Φ, [hϕ, e±ϕ]

= 2 · e±ϕ and[eϕ, e−ϕ] = hϕ.

3. If {hα| α ∈ ∆} ∪ {eϕ ∈ gϕ| ϕ ∈ Φ} is a basis adapted toT andδ : Φ → ±1 is a map with

δ(ϕ) = δ(−ϕ) for all ϕ ∈ Φ, {hα| α ∈ ∆} ∪ {δ(ϕ) · eϕ | ϕ ∈ Φ} is again a basis adapted to

T.

4. One can find a basis adapted to a maximal torus such that for any automorphismσ of the

Dynkin diagram of∆, σ(eα) = eσ(α).

5. For ϕ ∈ Φ, the mapiϕ : sl(2) → g defined by settingiϕ(e±) = e±ϕ, iϕ(h) = hϕ is an iso-

morphism ofsl(2) on g(ϕ), the Lie algebra ofG(ϕ); if fϕ : SL(2) → G(ϕ) is the morphism

induced byiϕ andsϕ = fϕ(s), then forw ∈ W̃ andϕ ∈ Φ, w · sϕ · w−1 = sw(ϕ) (modT(2));

asT(2) ⊂ W̃ and everyϕ in Φ is in theW̃ orbit of anα ∈ ∆, sϕ is in W̃.

Chevalley’s theorem— We will now establish the following result which asserts that a basis

adapted to a maximal torus is indeed a Chevalley basis.

Theorem4.4— Lethα|α ∈ ∆} ∪ {eϕ|ϕ ∈ Φ} be a basis adapted to a maximal torus ofg. Then

for ϕ, ψ, ϕ + ψ in Φ, [eϕ, eψ] = ±Nϕ,ψe(ϕ+ψ) whereNϕ,ψ − 1 = max{k| ϕ− k · ψ ∈ Φ}.

PROOF : We begin with the observation that forw ∈ W̃ andϕ ∈ Φ, w · sϕ · w−1 = sw(ϕ)

(modT(2)). Let ϕ,ψ andϕ + ψ be in Φ. Let m be the subalgebra ofg (of rank 2) generated by

{gk·ϕ+l·ψ| k, l ∈ Z, (k · ϕ + l · ψ) ∈ Φ}. Thenm is a semi-simple Lie algebra of rank2. In the light

of Proposition 4.1, we see now that it suffices to prove the theorem for groups of rank2. Thus we

assume thatg = m andh = C · hϕ ⊕ C · hψ. Let h ∈ h be an element such thatϕ(h) = 0 while

ψ(h) > 0. We take on the dual ofhR = R · hϕ ⊕ R · hψ, the lexiographic order determined by the

ordered basis(h, hφ). Then one sees easily thatϕ is a simple root i.e,φ ∈ ∆ while ψ ∈ Φ+. Let E

be the smallest Ad(G(ψ))-stable subspace ofg containinggϕ. ThenE =
∐

r g(ϕ+r·ψ) is easily seen

to be an irreducible representation ofG(ψ)(' SL(2)). The desired results now follow Lemma 2.2.

Sinceϕ+ψ is a root we have only three possibilities: (i)ϕ−ψ is not a root or (ii)ϕ−ψ is a root, but

ϕ−2 ·ψ is not a root or (iii)ϕ−ψ as well asϕ−2 ·ψ are roots root. Correspondingly the dimension

of E is 2, 3 or 4.
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