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1. INTRODUCTION

Let g be a complex semisimple Lie algebra. In a path-breaking paper [2], Chevalley exhibitted a basis
B of g (known as Chevalley basis since then) such that the structural constgimatbfrespect to the

basisB are integers. The basis moreover consists of a basis of a Cartan subal@brahich the

roots take integral values) together with root vectorg @fith respect ta. The structural constants

were determined explicitly (up to signs) in terms of the structure of the root systgm TGits [3]
provided a more elegant approach to obtain Chevalley’s results which essentially exploited geometric
properties of the root system. Casselman [1] used the methods of Tits to extend the Chevalley theorem
to the Kac-Moody case. In this note we prove Chevalley’'s theorem through an approach different from
those of Chevalley and Tits.

Let G be the simply connected algebraic group correspondirg toet T be a maximal torus
(the Lie subalgebra corresponding to it is a Cartan subalgebra@)f. Let ¢ be the root system
of G with respect toT' and A a simple root system. Fas € &, let G(p) be the3-dimensional
subgroup (isomorphic t&'L(2)) corresponding tg. For an element # 0 in the root spacg?,
there is a unique natural isomorphisfp, of SL(2) on G(y) taking the diagonal group int@ and
the induced Lie algebra map taking to v. Setf(,, ,y(e12 — €21) = s,,. The key result we prove in
this note is the following.
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For eachn € A, lete, be a non-zero element g and sets, = sqe., - Let W be the sugroup
of G generated bys,|a € A}. Itis well known thatW c N(T), the normalizer ofT. Then
W NT = T(2), the group of2-torsion elements ifl". Further ifw,w’ € W anda, o’ € A with
w(a) = w(d), Ad(w)(eq) = £Ad(w')(eq).

One deduces then the existence of a Chevalley basis from the above two assertions. The second
assertion above is in fact equivalent to the existence of the Chevalley basis and the first can be deduced
from the existence. The first assertion seems to be of some interest in itself. It says that while the
sequence

{1} = T — N(T) — N(T)/T — {1}

does not split it comes close to to doing so.
2. REPRESENTATIONS OFSL(2,C)

We recall in this section some basic facts about finite dimensional (holomorphic) representations
of the SL(2, C) (or simply SL(2)), the group of(2 x 2)-matrices overC of determinant 1 (under
multiplication). D will denote the group of diagonal matrices$1.(2). Fort € C*, d(t) denotes

the diagonal matrix withi(t);; = t andd(t)s2 = t~*. We setC? = V and denote by the natural
representation of L(2) on V. We denote by((2, C) (or simplys((2)), the Lie algebrd X eM (2, C)|
trace(X) = 0} of SL(2). We letp denote the natural representationstf2) on V' (induced by

p). Forl < i,j < 2, lete;; be the matrix whosgk [)-th entry isd;;, - 0;;. Sets = e — ean,

ey = e, e— = eg andh = ej; — exn. Thens € SL(2) is the “Weyl” element; it normalizes

D ands? = —(identity). Further{e,,h,e_} is a basis okl(2); and we haveh,e,] = 2 - ey,

[h,e_] = —2-e_andley,e_] = h.

For an integerm > 0 we denote byp,, (resp. p,,) the representation d§L(2) (resp. sl(2))
induced byp on the symmetrien-th powerS™ (V) of V. If {u, v} is the standard basis &f = C2,
{uP - v? p+ q = m} is abasis o5 (V). LetteC* andseSL(2) be the matrix; — e_. One then
has, as is easily seen by inspection:

Lemma2.1 —
P (d(t)) (uP - v9) = tP~9 . P - v
pm(e)(u? - v7) = g uPt! 07!

pm(es) (WP -v?) =p- WPl et

pm(B) (WP - v?) =2 (p—q) - uP - 07
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pm(8) (WP - v9) = (=1)P - ud - P = (=1)P - (q!/p!)il . pm(ejp):l:(p—q)(up )
according ap > gorq > p.

For any integerm > 0, p,, is an irreducible representation 8§f.(2) of dimensionm + 1 and,
up to equivalence, it is the unique irreducible representation of dimensienl. Moreover every
representation of SL(2) is a direct sum of irreducible representations; thus a direct sum of
copies of the p,,,”s. One deduces from the lemma above the following:

Corollary 2.2 — Letr be an irreducible representation®f (2) on a vector spacg of dimension
m + 1. If z is an eigen vector for(h) in E with eigen value,

7(s)(2) = (=) ((m = k) /2)! - 7(e5)"* (2)/(m + k) /2)!

In particular, ifzeE is a D-fixed vector,r(s)(z) = *=.

3. SEMISIMPLE L1IE GROUPS MAXIMAL TORI, ROOTS

3.1 Maximal torus, roots and root-spaces

Let G be a connected simply connected semisimple algebraic groufCovedg its Lie algebra. Let
T be a maximal torus il andt C g the Lie subalgebra af corresponding te. A root of G (with
respect tdT') is anon-trivial eigen characterp : T — C* for the adjoint action ofl' on the Lie
algebrag. We denote byX (T) the group of characters dh and by® C X (T) the set of roots. For
p € b, g¥ ={v e glAd(t)(v) = ¢(t) - v,Vt € T}, the eigenspace correspondingo“the root-
space ofp” is of dimension 1 angy = t ® Hcpegzs g”. The Killing form < .,. > ong, restricted tct is
non-degenerate. Hence it defines an isomorptissht on its dualt*. For\ € t*, setA=1()\) = H,.
We have then fofd € tand\ € t*, < Hy, H > =\(H). For\, p € t*,set< \, up >=< Hy, H,, >.

3.2Simple roots; the Weyl group

Let N(T) be the normalizer o (in G) andW = N(T)/T, the Weyl group. The inner conjugation
action of N(T) on T factors through to an action & on T and hence oX (T); the set® is stable
under this action. The s¢k ¢, ¢ >/2 | p € &} of “root-lengths” has at most two elements and the
Weyl group acts transitively on the set of all roots of the same length. We fix a lexicographic (total)
order in X (T) and denote by (resp. ®—, resp. A) the system of positive (resp. negative, resp.
simple) roots. Lef? be the set of roots dominant for the simple syst&nirhe cardinality of? is the

same as that of the set of root-lengths. Boe (2, P is the parabolic subgroup determined By

it is the sugroup ofa corresponding to the Lie sub-algebra generateddffy € o'}, t and{g?|
peD < [f>=0}.
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3.3The 3-dimensional sub-algebrgg

Forain @, leth, =2-H,/ < Hy, H, >. Now for any0 # v, € g%; there is a unique_ € g~
with [vy,v_] = h,. Definei,, : sl(2) — g by settingi, ,(e+) = v+,i00(h) = ho! itis aLie
algebra isomorphism aoff(2) on the Lie subalgebrg® @ C - h, @ g~* = g(«); the Lie subgroup
G(«) corresponding t@g(«) is an algebraic subgroup arig, integrates to an isomorphisify, ,,
of GL(2) on G(«a) - we have assumed th& is simply connected. We set,, = fau(s). As
s? = —(Identity) in SL(2), sZ, is the unique non-trivial central element@i«) and is of ordeg.
It is easy to see that, , belongs taV(T) and that it acts trivially ot € T|a(t) = 1}, the kernel
of a.

3.4 The groupw

For eachry in A we now fix elements,, with [eq, e_o] = hq and setiy ¢, = ia, fa,e, = fo @and
Saca = Sa. Lt W be the subgroup oft generated by = {s.|a € A}. ThenW maps ontow

under the projection map: N(T) — W. Letw, =7(s,) andS = n(S). Then(W, S) is a Coxeter
system. LetB be the kernel ofr : W — W; B =T N'W. We have with this notation the first key

result.

Proposition3.5 — B = T, the subgroup of 2-torsion elementsih

PrROOF: Since(W,S) is a Coxeter system the groupis generated as a normal subgroup by

{(sa - sp)P=#|a, B € A}: herep,g is the order ofw, - wg in W. It suffices therefore to prove that
{(sa - 85)Po?|a, B € A} are all of order2: note that whenv = 3, pog = 1 and the{s2|a € A}
generatél’(2) sinceG is simply connected. We will deal with each of the casesp.g = 1,2,3,4
and6 separately:

1. p = 1. This is the case: = 3 and by its very definition? has ordep.

2. p = 2. Inthis case the grougs(a) andG(3) commute, hence so dg, andsg; it follows that
(sa - s5)? has order 2.

3. p=3. Hereg® @ g(®*? (resp. g’ @ g(@™?) is an irreducibleG (B)- (resp. G(«)-) module
(of dimension 2). One sees now (from representation theof/¢R)) that we havesz(e,) =
[es,€a] = —leareg] = —sales). Setv = [eg, eq] € g, It follows thatss - s, - 55 =
58 Sa - sgl . s% = s(,Hﬁ)’U(mod T(2)) = S(_a1+6),v(m0d T(2)) = Sq - 53 - Sa(ModT(2)); as

Sa = 55 (mModT(2)), (s - 85 - 5a)? € T(2).

4. p=4. The root system is necessarily of type. We takex to be the long root. We then have
so(f) = a+ B and< B, + § >= 0. The subspacg®® @ g=(@+F) g gt(@®20) of g is
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then an irreduciblé&s (3)(~ SL(2))-representation and one concludes from Corollary 2.2 that
Ad(sg)(v) = vforallv € g=@+8) It follows thatss ands (4 5,,) commute for ally # 0 in
)- Thus(sa - s3)* € T(2)

gt NOW s, - S5 S0 = Sa - 55 - 55 (mod T(2)) = S((atB),50(cs)

and hencés,, - s3)* = 1.

5. p = 6. The root system is of typ@>. We takex to be the long root. Thefrn-a+n-3|0 <
m < 2,0 <n < 3,m+n # 0} is the set of positive roots. Nowj; (resp. s,) conjugates
G(a) (resp.G(B)) into G(a + 3 - 3) (resp.G (B + «)) taking s, (resp.sg) into an element)
(resp.€) with n? (resp.£2) in T(2). As (a + 3 - 3) £ (a + 3) are not rootsG (a + 3 - 3) and
G(S + a) commute. Thusésa-Sg)3=sa-35'sa-55-5a's,g=§-s§-n‘5%=§'77(m0d
T(2)). Hence(s, - 55)° = (€)% - (1) (mod T(2)) and thus is ifll(2).

This completes the proof of Proposition 3.5.

4. THE CHEVALLEY BAsIs
The key step we need is:

Proposition4.1 — If a, o/ € & andw,w’ € W are such that(a) = w'(/), then Ad(w)(eq)
=+ Ad(w')(eq)-

PROOF: Set = w(a) = w'(c/). Thenone has)- s, - w™! = 53 ad(w)(ea)) @NAW - o7 - w' ™! =
5(8,Ad(w')(e,))- We denote these two elements-bgndr’ respectively. Them, 7" € G(3). As they
both have the same image; in W, we haver’ = 7 - 6 with 6 € G(8) N T(2); it follows that# is
+(Identity) in G(B). The proposition now follows from the fact that the map- s3,, of g%\ {0}
into W is injective.

Definition 4.2 — A basisB for g is adapted to a maximal toru¥' if the following conditions
hold.

1. For some simple systerh in @, the root system o6 with respect téI', BNt = { H,|a € A}

2. Forany rootp € &, BN (g¥\{0}) is non-empty=: {e,}.

3. Forain A, [hqa, e10] = £2 - €4 andleq, e_o] = hal.

4. If f, : SL(2) — G(«) is the isomorphism given by, (+e) = ex, and f,(h) = h, and
W is the group generated by tHe,|a € A}, then fore € ¢ andw € W, Ad(w)(e,) =
€(w, ) - ey(yp) Wheree(w, p) = e(w, —p) = £1.

Remark4.3 :

1. The discussion preceding the definition shows that a basis adapted to a maximal torus exists.
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2. In view of the fact that every root hasW-conjugate inA, we have for any, € &, [he, €+y)
=2-et, andle,, e_y,] = hy.

3. If {ho| @ € A} U {e, € g?| ¢ € ¥} is a basis adapted @ andé : ¢ — +1 is a map with
) =0(—p) forall o € @, {ho| o € A} U{0(p) - e, | ¢ € P} is again a basis adapted to
T.

4. One can find a basis adapted to a maximal torus such that for any automoepli&iine
Dynkin diagram ofA, o(eq) = €4(q)-

5. Foryp € &, the mapi, : sl(2) — g defined by setting,(e+) = e+, i,(h) = hy is an iso-
morphism ofs[(2) ong(¢y), the Lie algebra oG (y); if f, : SL(2) — G(y) is the morphism
induced byi, ands, = f,(s), then forw € W andy € &, w - s, - w ™! = Suw(p) (MOdT(2));
asT(2) C W and everyp in & is in theW orbit of ana € A, s, isin W,

Chevalley’s theorera— We will now establish the following result which asserts that a basis
adapted to a maximal torus is indeed a Chevalley basis.

Theorem4.4— Leth,|a € A} U {e, | € @} be a basis adapted to a maximal torusgofThen
for v, v, o + 9 in @, [ey, ep] = Ny, ye(piy) WhereN,  — 1 = maz{k| p — k- € D},

PROOF : We begin with the observation that far €¢ W andy € &, w - SprwTt = Sw(ep)
(modT(2)). Lety,? andy + ¢ be in®. Letm be the subalgebra gf (of rank 2) generated by
{gheH V| k1 € Z, (k- o +1-1) € }. Thenm is a semi-simple Lie algebra of rafk In the light
of Proposition 4.1, we see now that it suffices to prove the theorem for groups o?.rartkus we
assume thag = m andh = C- h, ® C - hy. Leth € b be an element such thath) = 0 while
y(h) > 0. We take on the dual dfr = R - h, ® R - hy, the lexiographic order determined by the
ordered basi¢h, h;). Then one sees easily thatis a simple rooti.e¢p € A whiley € &*. LetE
be the smallest Adg(v)))-stable subspace gfcontainingg?. ThenE =[], g(»t¥) is easily seen
to be an irreducible representation@{))(~ SL(2)). The desired results now follow Lemma 2.2.
Sincep + 1) is a root we have only three possibilities: @)} v is not a root or (iiyp — % is a root, but
p—2-1isnotaroot or (iii)p — 1 as well asp — 2 - v are roots root. Correspondingly the dimension
of Fis 2,3 or4.
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