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Let ay, s, ..., a, be the roots of the polynomigl(z) = 2" + a12" ' + -+ + a, € Z[z]

and letg = {g,(X)}nen, Wwhereg,(X) = gn(z1,22,...,2,) € Z[z1,22,...,2,] IS @ Sym-

metric polynomial. For each, put A, (f,g) = gn(a1,as,...,a;.). In this paper, for a special
symmetric polynomial sequengg we investigate the numerical factors &f,(f,¢g). If pis a

prime, we establish an analogue of Iwasawa’s theorem in algebraic number theory for the orders
ord, (At (f, g)) of thep-primary part ofA,,,: (f, g) whent varies.

Key words : Recurring series; lwasawa theory; cyclotomic polynomial.

1. INTRODUCTION

Throughout this paper, |€b, Z andN denote the field of rational numbers, the ring of rational integers
and the set of nonnegative integers, respectively.N‘et= N \ {0}. As usual, lebrd, denote the
p-adic valuation ofQ,, such thabrd,(p) = 1.

Letaq, as, ..., a, be the roots of the polynomial
f(:E) ="+ alxv._l + -+ a1+ ay (1)

whose coefficients are rational integers. Supppse{g,(X)}.en is a polynomial sequence, where
9n(X) = gn(x1,29,...,27) € Zl21, 29, . ..,2,] IS @ Symmetric polynomial in variables. For each

n, put

An(fyg) :gn(al,OLQ,---,Oér)- (2)
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Cultivation Fund of the Key Scientific and Technical Innovation Project, Ministry of Education of China (No. 708044).
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Itis clear thatA,,(f, g) € Z. For example, ifg,,(z1, z2,...,z,) = [[;_,; (1 — 27), then

T

Au(f9) =] —ai) e Z. (3)
i=1
This function was introduced by Pierce [4] who studied the forms of its primitive factors. Later,
Lehmer [3] made a detailed study of this sequence of numbers.

The theory ofZ,-extensions is one of the most fruitful areas of research in number theory. A
beautiful result in this area is the theorem of lwasawa which describes the behaviompebaneof
the class number in4,-extension of number fields.

lwasawa Theoren{[7], Theorem 13.13.) —tet K,/ K be aZ,-extension and{,, = :g(’) K,
with [K,, : K] = p". Letp® be the exact power of dividing the class number df,,. Then there
exist integers\ > 0, x4 > 0 andv, all independent ofi, and an integer, such that

en =An+ up" +v, for all n > ny.

By the structure o\-modules, one sees thet: is indeed the value of the characteristic polyno-
mial of someA-module at special points. From this viewpoint, in [2], the authors prove an analogue
of lwasawa’s theorem for highdt-groups of curves over finite fields. Lat be a smooth projective
curve of genug over a finite fieldF with ¢ elements. Forn > 1, let X,,, be the curveX over the
finite field F,,,, the m-th extension off. For1 < i < 2g, denote byr; the characteristic roots of the
Frobenius endomorphism Set

29
Gnam(@1, T2, wag) = [J(1 = (¢"2)™).
=1
We havef Kop (Xim) = gnm(m1,m2, -, mag), Where Ko, (X,,) is the K-group of the smooth
projective curveX,,. Let p be a prime. Denote thg-primary part of the order oK, (X,:) by
perr® e, enp(t) = ordy (8Kan(X,)).

Theorem1.1([2]) — There exist integers,, , > 0, v, , and a positive integeT;, , such that
en,p(t) = )\n,pt + Unp, fOT’ all t> TTLP'

Let f(z) = 2® — Pz — Q € Z[z] andg = {gn(z1,%2) }nen, Wherego(z1, 22) = 0, gn(z1, 72)
= Z;(l) :c’fnglf’“, n > 1. It is well-known that the recurring serie§,,(f, g) is the Lucas se-
guencesl,, with parameters” and @. The following results are consequences of the well-known

properties of the Primitive Divisor Theorem for Lucas sequences.
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Theoreml1.2— ([1]) Letn € N* andp a prime.
(D) Ifpt L,L,, thenord,(L,,:) =0, forall t € N.

(2) If p|L,, Ly, then there exist integers, , andT;, ,, such that

ordy(Lpyt) =t + tnyp, for all t>T,,.

(3) Letn € N* andp, ¢ be two different primes. Then there exists a positive intéger, such
that
ordy(Lyyt) = ordq(anTn,p,q), for all t > T, pq,

i.e., the numbersrd, (L,,) are stable when is sufficiently large.
(4) Let S, ,(t) be the set of all primes which dividg,,:. ThentS,, ,(t) — 400 ast — +o0.

In this paper, we generalize Pierce’s recurring ser{es, },cn defined by (3) and
{gnm(m1,m2, -+ ,Mag) }men defined above to the recurring seri¢d,, ,,},en for any integer
m € N*, whereA,, ,,, = [[i_;(m™ — o). We give a detailed study of essential and characteris-
tic factors ofA,, ,,, especially as regards sequences of numbersp beta prime ana, m € N*, we
establish an analogue of Iwasawa’s theorem for the ordelrg A, ,,,) as follows.

Theorem3.7— Letp be a prime. Fix integers, m € N*, let p¢»m»(*) be thep-primary part of
Ayt fort € N.

(1) If pt Ay, theney, ,,, ,(t) = 0 forall ¢t € N.

(2) If p|Am, then there exist integers,, ,, , > 1 and v, ., ,, both independent of and an
integerT;, ., such that

en)mup(t) - )\n)mupt + anmvz” fO’r all t Z Tnum)p'

On the other hand, let, ¢ be two different primes, we prove that the numbers, (A, ,,,) are
stable whert is sufficiently large (See Theorem 3.9). We also prove that the number of prime factors
of A, ,, goes to infinity ag goes to infinity. (See Corollary 3.10).

2. FACTORIZATION OF A, 1,

Let the notation be as ifil. In this section, fix an integen € N*, defineg,, = {gﬁlm) (X)}nen as
follows

r

gglm)(.xl’xQ, ey xT’) = H(mn _ x?)'

=1
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2.1 Definition ofA,, ,,, — Letay, ..., «, be the roots of the polynomigl(x) € Z[z] defined by
(1). ThenA,, ., is defined by

An,m = An(f7 gm) = gr(zm)(alv a2, ... 7047”) = H(mn - Oé?) (4)

Pierce [4] and Lehmer [3] listed many properties\of = A,, ;. Inthis section, we will generalize
all results in [3] concerning\,, to the case\,, ,,,, for all n, m € N*. We would like point out that the
idea used here is similar to that in [3].

Remark2.2 : (1) The polynomiaf (z) can be viewed as a characteristic polynomial of some
matrix A, for example,

0 0 —a,
0 0 —ay_q
A=]1 01 --- 0 —ar_2
00 1 —a
Thenf(x) = |zF — A| and
Ay =|m"E — A", (5)

where|B| = det(B) for any square matri®.
(2) Leta be aroot off (z). If f(z) is irreducible, then
Apm = Ngjo(m" —a™),
whereK = Q(«a) and N q is the norm map from the fieldt” to Q.
(3) Since(m, a, )| Ay m, for our purposes, we always assu(me, a,) = 1 in this section.
2.3 Essential and characteristic factors of, ,,

Let ®5(x,y) be thesth homogeneous cyclotomic polynomiag,
)
H T = yCa (6)
.
where(s is a primitivedth root of unity. Then we define the integef ,, by

o5, = H D5(m, o). (7)
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It follows from the formulaz™ — y™ =[], ®s(z, y) that

Apm =[] ®5.m- (8)
sn
This gives a partial factorization ak,, ,,, into integer factors. If we assume that eakhwhose
first subscript is a proper divisor af has been factored, the complete factorizatioigf,, depends
only on that of®;, .. For this reason we call this latter number #sentiatactor of A, ,,. On the
other hand, we may consider the prime factora\gf,,,. Similarly, the prime factors of\,, ,,, which
do not divideA,,,,, whered is a proper divisor of, are called thecharacteristic prime factowsf
A, m- The concepts oéssentiafactor andcharacteristic prime factoksere introduced by Lehmer

[3].

Lemma2.4 — The essential factdr;, ,,, of A, ,, contains all the characteristic prime factors of
Apm-

)

PROOF: By (8) a characteristic prime factprof A,, ,,, must divide@gm for some divisow of n.
If 6 were less than, and hence would divideAs ,,,, contrary to the definition gf. Therefored = n
and the lemma follows. O

Lemma2.5 — A characteristic prime facterof A,, ,,, cannot dividen.

PROOF: If possible, letn = pd. Supposef(z) = |¢E — A| for some matrixA. Then by the
multinomial theorem modulp and (5), we have

0= An,m = Ap&m
= |mPE — AP
= |mlE — A%P
= |m5E’ — A‘5|
= A5 (mod p).

This contradicts the hypothesis theits a characteristic factor ak,, ,,,. a

Remark (1) Itis not true that the essential factorAf, ,,, is made up exclusively of characteristic
prime factors (See [3], p. 462).

(2) The essential factap;, ,,, may, however, have a factor in common with

(3) If fis reducible over the rational field so that= fi f, then

Anm(f) = An,m(fl)An,m(fQ)
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is a factorization into integers. Hence for our purposes we may supposg ihatreducible. The
following result is a generalization of [7], Lemma 2.9.

Theorem2.6 — If p°(e > 0) is the highest power of a characteristic prime factoof A,, ,,,(f),
wheref is irreducible and of degree and ifw is the order ofp modn, thenw < r ande is divisible
by w.

PROOF: It is similar to the proof of [3], Theorem 3. O
2.7 The recurring series fof,, ,,

In order to render the factorization &, ,,, practical, it is first necessary to have a simple method of
calculating its actual value. This is done with the help of a polynotgl(z) uniquely determined
by f(x) andm in the following manner. Let

folx) =xz—m",

fi(x) =TTz (@ —m™ ay),

fo(z) =Tlhcjcicr (@ —m ™ i),

M, (z) is defined as the least common multiple of th¢&e That is,

My (x) = [fo(x), fi(z),..., fr(z)] =2 + Ayz?™ o Agx 2+ A,

Definition2.8 — Let{z, } 7>, be a recurring series such that
Tpte + 01 Tpte—1+ -+ Ge—1Zn+1 + aexy =0, forall n > 0.
Then the polynomiat® 4 a12¢~! + - - + a._17 + a. is called the scale of the recurring series
{zn}nlo-
Theorem2.9— The numbers
Aomy Aty Do, Azm, -
form a recurring series whose scaleii$,,(z). That is, for every: > 0,

AnJrq,m + AlAnJrqfl,m +- AqflAnJrl,m + AqAn,m =0. (9)

PROOF: By the definition (4) ofA,, ,,,, we have

r

Ay = H(m" —af) = i Z (—1)"“771(’“_]“)"04?1 o

=1 k=0 1<i1<---<ip<r



NUMERICAL FACTORS OFA,(f,g) 707

Hence we obtain

q r
ZAiAnJrq_i’m — Z Z (_1)km(r7k)nalﬂl . Q&Mm(m(r—k)ail ) =0,
i=0 k=0 1<i1 <-<ip<r
whereAq = 1. This completes the theorem. O

2.10 g-periodicA’s

Lehmer [3] has proved thah,, ; is a periodic function of proper period if and only if f(x)
= ®&.(z,1). In this subsection, for a fixed integet, we will consider the periodic properties of
Ay

Definition2.11 — Supposé” : Z — C is a number theory function. We cdil a ¢-periodic
function of periodr, if there exists a function(n) such that

F(qgr+ k) = Xq)F(k), for all ¢, k € Z. (10)

The function) is called a periodic factor of. We also callF' ¢-periodic with respect ta.. A
positive integetr is called a proper period of@periodic functionZ, if for any positive integefl” < ,
F'is notg-periodic of periodr.

Remark2.12 : (1) It is obvious that a periodic functiof' is g-periodic, in this case
A(n) =1, for all n € Z.

(2) If the functionF' is defined ovelN andr is a positive integer such that
F(qr+ k) = Xq)F(k), for all ¢, k € N,
for some functiom\(n) defined ovelN, then /' can be extended to@periodic function defined over
Z. In this case we also call' a g-periodic function defined ove¥.

Lemma2.13 — If F' # 0 is ag-periodic function with respect to a function then(n) # 0 for
alln € Zand\ : Z — C* is a group homomorphism.

PROOF: Suppose there exists an integgre Z such that\(ng) = 0. By (10), for anyn € Z, we
have
F(n)=F(noT + (n —noT)) = A(ng)F(n —noT") = 0.

This contradicts the assumptidh= 0. Itis easy to see that(0) = 1 andA(m+n) = A(m)A(n)
for all m,n € Z. Hence)\ is a group homomorphism. O

Lemma2.14 — Suppose is a proper period of ga-periodic functionF. If T is a period ofF,
thenr|T.
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PROOF : First we prove thay-periodic functions have properties similar to those of periodic
functions. LetI" > 0 be a period of g-periodic functionF'(n), i.e., there exists a functioh(n) such
that

F(¢T + k) = Mq)F(k), for all ¢, k € Z.

Then we have

(i) foranya € Z, T is a period ofF. In fact, set\,(n) = A(an), then
F(qaT + k) = Maq)F (k) = \a(q)F(k), for all q, k € Z.

(ii) if 77 andTy are two periods of’, thenT; + 15 is also a period of". Assume); is corre-
sponding tdl;, i = 1,2. SetA(n) = A1 (n)A2(n), then

F(g(Ty +T2) + k) = M(@)F (T2 + k) = Mi(@)A2(q) F (k) = A(q)F'(k), for all ¢, k € Z.
Supposer 1 T. ThenT = goT + b whereqp,b € Z and0 < b < 7. By (i) and (ii) above, we
obtain thath = T — qo7 is a period ofF. This contradicts the fact thatis a proper period of. O
For a fixed integern, it may happen thaf\,, ,,, is aX-periodic function ofz. In this case we have

Theorem2.15— A necessary and sufficient condition far, ,,, to be g-periodic function ofn
of proper periodr is that f(z) = ®,(x,m), where®,(x,y) is ther-th homogeneous cyclotomic
polynomial defined by (6).

ProoF: If A, ,, is g-periodic of proper period, thenA,,,, = 0. Hencef has a root for which
a” = m”. Then there exists a primitivigh root¢, of unity such thatv = m .. Sincef is irreducible
all its roots arenc}, 1 <i <k, (k,i) = 1, so thatf(z) = ®y(z, m), wherek is some divisor of-.
But A, ,, is of periodk, for if n, j are any integers 0,

Ank+j,m = 1_[(7/I/Lnk+‘7 — a?k—i_j) = mw(k)kn H(m] - OZ]) — )\(n)A];ﬂu

[
% 7

where\(n) = m#¥*" is the periodic factor. Hence by Lemma 2.%4is a divisor ofk. Therefore
T =kandf(x) = &, (z,m). O

3. IWASAWA THEORY OFA,, ,,

Let the notation be as i§2. For our purposes, in this section, we make the following hypothesis:
(H1) f(x) is defined by (1) and irreducible.

(H 2) Fix an integem satisfying(m, a,) = 1.
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(H3) f(x) # ®&p(x,m) forall T € N*.

LetK = Q(ay,aq,...,a,) be the splitting field off (x) over the rational number fiel@, Ok
the ring of algebraic integers &. For any primep, let 3 be a prime ideal oK lying abovep.

Theorem3.1— Letn € N andp be a prime factor ofA,, ,,,. Then, for any positive integer

satisfyingp|t, we havq;\i‘j%.
ProoOF: By the formula (4), the conditiop|A,, ,,, impliesm™ = o' (mod ‘P) for somei(1 <

i <r).If p|t, then we have
r t—1

t t
At _ H mT a7 (D) IS m™ a9 =0 (mod )
N mn—aff 7 a .
J=1 k=0

Anm 4 B
KE

Hencep|—AA7:;:. 0
Corollary 3.2 — (1) Letn € N* andp a prime factor ofA,, ,,,. Then, for allt € N, we have

P At i, Wheree = ord, (Ay ).
(2) Letn, t € N*. Then we havéA,, ,»)" A, (A, )1 m-

ProOF: (1) It follows easily by induction or. (2) It follows trivially from (1) and the fact:
O

Anl,m|An2,m, |f n1|n2.

Theorem 3.1 is about divisibility. The next result will be about non-divisibility. First, a definition.
0

If pis a prime, puti(p) = lemy <;<k.q{p’ — 1}.
Theorem3.3— Letn, t € N*. Suppose is a prime such that t A,, ,,, and (¢, d(p)) = 1. Then

@) p * Ant,m; (i) p 1 AanJn foranyz € N.
PrOOF: Itis clear that (i) follows (i). Hence it suffices to prove (i).4fA. m, then

(11)

m™ = o™ (mod P) for some i (1<i<r).

If a; = 0 (mod ), thenm = 0 (mod PB). Hencep|(a,, m), this contradicts the assumption
(ar,m) =1.Som, a; € B. By (11), we have

(O‘?>t =1 (mod ).

mTL

But (20)4P) = 1 (mod ) and (¢, d(p)) = 1, we havei = 1 (mod R), i.e, m" = af

(mod PB). HenceA,, ,, = [, (m" — a}) =0 (mod P) contradicty { Ay, . Hencep  Apg .
O

This completes the proof.
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Lemma3.4 — Letn be the smallest integer such thés\,, ,,. Thenn|d(p).

ProoOF: From the proof of Theorem 3.3, A, ,,,, then there exists an indéx1 < i < r) such
thatm™ = o (mod ) andm, a; & P.

(i) Assumem = a; (mod ). ThenAy ,, = [[i_;(m — a;) =0 (mod P), son = 1.
(ii) Assumem # «; (mod B). Thensi # 1 (mod P) and

(Zn =1 (mod ).

m

From the definition ofn, it follows thatn is the order of%: (mod 9B). On the other hand,
(2)4) = 1 (mod ). Hencen|d(p) as asserted. 0

Corollary 3.5 — Letp be a prime. Themp|A, ,, if and only if m = «a; (mod ) for some
i(1<i<r).

Let Q, be thep-adic completion ofQ. Let Q andQ, be the algebraic closures @ and Q,,
respectively. Lep be an embedding @@ into Q,. We simply rename(a) asa.

We will keep the notationrd, for the additive valuation from®, to Q[ J{oo}, extended by the
standard additive valuatiasd, from Q, to Z | J{oc}, namely, ifo € Q,, then

ordy () = [Qp(a) : Q] ordy (N )0, (@)

Here Ng,(a)/q, is the usual norm map frofd,(a) to Q.

Lemma3.6 ([6], p. 172-174) — Lep andq be different primes. For > 1, let¢ € Q, be any
primitive p™-th root of unity. Then the following results hold.

(1) ord,(£ —1) = m andord, (¢ — 1) = 0.
(2) Leta € Q, be integral over,.
(i) If ordp(av —1) =0, thenordp(apt — 1) = 0 for all positive integers > 1.

(ii) If ord,(a —1) > 0, then there exist an integey and a constantdepending orx such that
ordp(apt —1)=t+c,
forall t > ty. In fact, ¢y andc can be chosen as

1
to = min{t € Z’pt il <ordy(a— 1)},

“tp—-1)
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and

c=ordp(av — 1) + Z lord,(ov — &) — ord, (1 — §)],
14¢€S

whereS is the set op’-th roots of unity,l < i < t.
(3) Let3 € Q, be integral ovet,.
(i) If ord, (8 — 1) > 0, thenord,(8”" — 1) = ord, (6 — 1) > 0, forall t > 1.

(i) If ordy(B8 — 1) = 0, then there exists an integgyr > 0 such that, for alt > ¢,
ord, (3" — 1) = ord, (8" —1).

Letn € N* andp a prime. Set,, ,, ,(t) = ord, (At ) fort € N.
Theorem3.7— Letn € N* andp a prime.
(1) If pt Ay, theney, ,,, ,(t) = 0 forall ¢t € N.

(2) If p| Ay, m, then there exist integers, ,, , > 1, v mp @and T, ,, , such that

en7m7p(t) = An7m7pt + I/n7m7p, ‘fO/r. all t Z Tn7m7p.

PrROOF: By Theorem 3.3, ifp f A, thene, », ,(t) = 0, for all t € N. Hence, it suffices to
prove (2). Assume|A,, ,,. Without loss of generality, we may assumés the smallest integer such
thatp|A,, .. By Lemma 3.4p|d(p), hence(p, n) = 1. Let (,, be a primitiventh root of unity. Then

r r n—1 r n—1
D | (LR | ) (OIS §§ ) (R
i=1 1=1 j=0 i=1 j=0

Note thatp|A,, ,, implies ord,(m) = 0 (see the proof of Theorem 3.3). Hence we have
ordy(1 — %gﬂ;) >0foralll <i<r 0<j<n-—1 Foreachi (1 <i < r),we claim
that there is at most one indgx (0 < jo < n — 1) such thabrd, (1 — %gﬂf}) > 0. In fact, if there
exist0 < ji < jo < n—1suchthabrd,(1—%¢}) > 0andord,(1—2¢7?) > 0, thenord,(a;) = 0
and

ordy (1 — ¢277) = ordy(“L G (1 = G2 71) = ord, (1 = 22¢2) = (1 1¢) > 0
m m m
This contradictgp, n) = 1.

Set

;s
Anmp = 8{i | 1 <i <, there exists an index j such that ord,(1 — —¢/) > 0}.
m
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The conditiorp|A,, ., implies A, .., > 1. On the other hand, we have

Apptom = H;ﬂ:l(mnpt - a?pt)
=TT [Ty (m? — ol )
=m™ T, 10 (1= (2)P°¢h)
=m™ [Ty T2 (1 — (267

since(n,p) = 1. By (2) of Lemma 3.6, there exist integers ,,,, and T, ,, , such that for all

(12)

t > Thmp, WE have
enmp(t) = ordy (At m)
—1 i ~J\pt
=i Z?:o ordy(1 — (FGA)P)
= )\n7mvpt + Ijn’m’p7

where the integers,, ,, ,andv,, ,,, , are independent af O

Remark3.8 : For eacm € N, setf,(z) = [[i_,(z — o). Let p be a prime factor of,, ,,,.
Factorf,(x) overF,[z] as follows:

fu(x) = p1(2) po(x) - - ps(x)®

wherep; (z), p2(z), ..., ps(x) € Fp[z] are non-associate irreducible polynomials with multiplicity
ei>1(1<i<s) lfeg=e = --=e;=1,then)\,,,, =1, ie, there exists a unique indeéx
such thabrd,(m™ — o) > 0. In fact, if there existl < i < j < r such thabrd,(m" — aj') > 0
andord,(m™ — af) > 0, thenord, (m) = 0 and so

n

n
ordy(ag’ — @]

) = ordp((m" — aff) — (m" — aj')) > 0.

Hencea! is a root of f,,(z) with multiplicity at least2 overF, which is the algebraic closure of
[F,. This contradicts the assumptions=e; = --- = e; = 1.

Theorem3.9— Letn € N* andp, g be two different primes. Then there exists a positive integer
Ty.m.p,q SUCh that

ordg(Appt m) = ordq(Ainn,myp,qm), for all t> Ty mpqs

i.e., the numbersrd, (A, ,,,) are stable when is sufficiently large.

PrRoOOF: Without loss of generality, we may assufig p) = 1 andord,(m) = 0. On the other
hand, by (12), we have

r n—1

Bngrn =m™ TTTL = C2E0™).

i=1 j=0
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For eachi (1 < i < r), we divide the se{j|0 < j < n —1} = Sfi) U Séi) in such a way
‘ . Q) ‘
that for eachj € S\, there is af§’) > 0 such thabrdy(1 — (%¢2)P” ) > 0, and forj € S, the
equalityord, (1 — (%C%)pt) = 0 holds, for allt > 0. SetT}, ,, p, = maxi<i<, {tg.i)}. Then, for all
jes®
t > Ty m,p,q Dy Lemma 3.6, we have '

ordg (Appem) = Diy Y20 ordg(1 = (%G)7)
0!
= 22:1 Z]ESY) ordq(l — (%C%)p J )
Since the last sum does not depend aihe result follows. 0

Corollary 3.10 — Let S, ,(t) be the set of all primes which divide\, ,,. Then
8.Sn,m,p(t) — +o0 ast — +o0.

PROOF: Suppose that there exists integgrsuch that for alt > to, Sy.m.p(t) = Snmp(to).
By Theorem 3.7 and Theorem 3.9, it would follow th&t,: ,, would be equal to a constant times
prmpt for larget, i.e.,there exist positive constant numbé&tsndc such that

|Anpt,m| = CpAn’m’pt (13)
for all £ > 7. On the other hand, the assumption (H3) implies that |a;|, 1 <i <r. Set

Sy={i|m>lail}, So={i|m <lail}, b= ] max{|m|", |oi|"}.

1<i<r

If m = 1, thenSy # (). Hence, for allm > 1, we haveb > 1 and

Q £ ppt
; | tml : 1<i<r M =o' |
lim mEe = lim ST t
t——+o00 vt t—s+oo pot
t t t t
T |m"P" —al? | |m"P" —al? |
o tﬁhnﬁoo HiES1 mnpt ' Hi652 |t [np®
_ : _ (g \npt| . _ (m\npt
= tim T 11— (%) TLies, 11— ()7
=1.

Therefore for sufficiently large we havglA,,,: .| > ab?" for some constant > 0. Clearly, this
is incompatible with (13) just given. O

At last, we give the following definition.

Definition3.11 — A sequence of integefa,, } is called anlwasawa sequendgfor any positive
integerm and primep, there exist integers, T' € N andv € Z such that

ordy(ay,yt) = M +v, for all t>T.
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Example3.12 : Letm be any positive integer. Then the sequence of binomial coefficients
{C"},>m is an lwasawa sequence. In fact, by Kummer Theorem,

ordy(Cre) =t +v, for all t>T,
whereT' = max{0, [log,m| — ordy(n) + 1} andv = ordy(n) — ord,(m).
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