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Let α1, α2, . . . , αr be the roots of the polynomialf(x) = xr + a1x
r−1 + · · · + ar ∈ Z[x]

and letg = {gn(X)}n∈N, wheregn(X) = gn(x1, x2, . . . , xr) ∈ Z[x1, x2, . . . , xr] is a sym-

metric polynomial. For eachn, put ∆n(f, g) = gn(α1, α2, . . . , αr). In this paper, for a special

symmetric polynomial sequenceg, we investigate the numerical factors of∆n(f, g). If p is a

prime, we establish an analogue of Iwasawa’s theorem in algebraic number theory for the orders

ordp(∆npt(f, g)) of thep-primary part of∆npt(f, g) whent varies.

Key words : Recurring series; Iwasawa theory; cyclotomic polynomial.

1. INTRODUCTION

Throughout this paper, letQ,Z andN denote the field of rational numbers, the ring of rational integers

and the set of nonnegative integers, respectively. LetN∗ = N \ {0}. As usual, letordp denote the

p-adic valuation ofQp such thatordp(p) = 1.

Let α1, α2, . . . , αr be the roots of the polynomial

f(x) = xr + a1x
r−1 + · · ·+ ar−1x + ar (1)

whose coefficients are rational integers. Supposeg = {gn(X)}n∈N is a polynomial sequence, where

gn(X) = gn(x1, x2, . . . , xr) ∈ Z[x1, x2, . . . , xr] is a symmetric polynomial inr variables. For each

n, put

∆n(f, g) = gn(α1, α2, . . . , αr). (2)
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It is clear that∆n(f, g) ∈ Z. For example, ifgn(x1, x2, . . . , xr) =
∏r

i=1(1− xn
i ), then

∆n(f, g) =
r∏

i=1

(1− αn
i ) ∈ Z. (3)

This function was introduced by Pierce [4] who studied the forms of its primitive factors. Later,

Lehmer [3] made a detailed study of this sequence of numbers.

The theory ofZp-extensions is one of the most fruitful areas of research in number theory. A

beautiful result in this area is the theorem of Iwasawa which describes the behavior of thep-part of

the class number in aZp-extension of number fields.

Iwasawa Theorem([7], Theorem 13.13.) —LetK∞/K be aZp-extension andK∞ =
⋃+∞

n=0 Kn

with [Kn : K] = pn. Let pen be the exact power ofp dividing the class number ofKn. Then there

exist integersλ ≥ 0, µ ≥ 0 andν, all independent ofn, and an integern0 such that

en = λn + µpn + ν, for all n ≥ n0.

By the structure ofΛ-modules, one sees thatpen is indeed the value of the characteristic polyno-

mial of someΛ-module at special points. From this viewpoint, in [2], the authors prove an analogue

of Iwasawa’s theorem for higherK-groups of curves over finite fields. LetX be a smooth projective

curve of genusg over a finite fieldF with q elements. Form ≥ 1, let Xm be the curveX over the

finite fieldFm, them-th extension ofF. For 1 ≤ i ≤ 2g, denote byπi the characteristic roots of the

Frobenius endomorphismφ. Set

gn,m(x1, x2, · · · , x2g) =
2g∏

i=1

(1− (qnxi)m).

We have]K2n(Xm) = gn,m(π1, π2, · · · , π2g), whereK2n(Xm) is theK-group of the smooth

projective curveXm. Let p be a prime. Denote thep-primary part of the order ofK2n(Xpt) by

pen,p(t), i.e.,en,p(t) = ordp(]K2n(Xpt)).

Theorem1.1 ([2]) — There exist integersλn,p ≥ 0, νn,p and a positive integerTn,p such that

en,p(t) = λn,pt + νn,p, for all t ≥ Tn,p.

Let f(x) = x2 − Px − Q ∈ Z[x] andg = {gn(x1, x2)}n∈N, whereg0(x1, x2) = 0, gn(x1, x2)

=
∑n−1

k=0 xk
1x

n−1−k
2 , n ≥ 1. It is well-known that the recurring series∆n(f, g) is the Lucas se-

quencesLn with parametersP andQ. The following results are consequences of the well-known

properties of the Primitive Divisor Theorem for Lucas sequences.
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Theorem1.2— ([1]) Letn ∈ N∗ andp a prime.

(1) If p - LnLp, thenordp(Lnpt) = 0, for all t ∈ N.

(2) If p|LnLp, then there exist integersνn,p andTn,p such that

ordp(Lnpt) = t + νn,p, for all t ≥ Tn,p.

(3) Let n ∈ N∗ andp, q be two different primes. Then there exists a positive integerTn,p,q such

that

ordq(Lnpt) = ordq(LnpTn,p,q ), for all t ≥ Tn,p,q,

i.e., the numbersordq(Lnpt) are stable whent is sufficiently large.

(4) LetSn,p(t) be the set of all primes which divideLnpt . Then]Sn,p(t) −→ +∞ ast −→ +∞.

In this paper, we generalize Pierce’s recurring series{∆n}n∈N defined by (3) and

{gn,m(π1, π2, · · · , π2g)}m∈N defined above to the recurring series{∆n,m}n∈N for any integer

m ∈ N∗, where∆n,m =
∏r

i=1(m
n − αn

i ). We give a detailed study of essential and characteris-

tic factors of∆n,m especially as regards sequences of numbers. Letp be a prime andn,m ∈ N∗, we

establish an analogue of Iwasawa’s theorem for the ordersordp(∆npt,m) as follows.

Theorem3.7— Let p be a prime. Fix integersn,m ∈ N∗, let pen,m,p(t) be thep-primary part of

∆npt,m for t ∈ N.

(1) If p - ∆n,m, thenen,m,p(t) = 0 for all t ∈ N.

(2) If p|∆n,m, then there exist integersλn,m,p ≥ 1 and νn,m,p, both independent oft, and an

integerTn,m,p such that

en,m,p(t) = λn,m,pt + νn,m,p, for all t ≥ Tn,m,p.

On the other hand, letp, q be two different primes, we prove that the numbersordq(∆npt,m) are

stable whent is sufficiently large (See Theorem 3.9). We also prove that the number of prime factors

of ∆npt,m goes to infinity ast goes to infinity. (See Corollary 3.10).

2. FACTORIZATION OF ∆n,m

Let the notation be as in§1. In this section, fix an integerm ∈ N∗, definegm = {g(m)
n (X)}n∈N as

follows

g(m)
n (x1, x2, . . . , xr) =

r∏

i=1

(mn − xn
i ).
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2.1 Definition of∆n,m — Let α1, . . . , αr be the roots of the polynomialf(x) ∈ Z[x] defined by

(1). Then∆n,m is defined by

∆n,m = ∆n(f, gm) = g(m)
n (α1, α2, . . . , αr) =

r∏

i=1

(mn − αn
i ). (4)

Pierce [4] and Lehmer [3] listed many properties of∆n = ∆n,1. In this section, we will generalize

all results in [3] concerning∆n to the case∆n,m, for all n,m ∈ N∗. We would like point out that the

idea used here is similar to that in [3].

Remark2.2 : (1) The polynomialf(x) can be viewed as a characteristic polynomial of somer×r

matrixA, for example,

A =




0 0 · · · 0 −ar

1 0 · · · 0 −ar−1

0 1 · · · 0 −ar−2

...
...

...
...

0 0 · · · 1 −a1




.

Thenf(x) = |xE −A| and

∆n,m = |mnE −An|, (5)

where|B| = det(B) for any square matrixB.

(2) Letα be a root off(x). If f(x) is irreducible, then

∆n,m = NK/Q(mn − αn),

whereK = Q(α) andNK/Q is the norm map from the fieldK toQ.

(3) Since(m, ar)|∆n,m, for our purposes, we always assume(m, ar) = 1 in this section.

2.3 Essential and characteristic factors of∆n,m

Let Φδ(x, y) be theδth homogeneous cyclotomic polynomial,i.e.,

Φδ(x, y) =
δ∏

i=1
(i,δ)=1

(x− yζi
δ) (6)

whereζδ is a primitiveδth root of unity. Then we define the integerΦ∗δ,m by

Φ∗δ,m =
r∏

i=1

Φδ(m,αi). (7)
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It follows from the formulaxn − yn =
∏

δ|n Φδ(x, y) that

∆n,m =
∏

δ|n
Φ∗δ,m. (8)

This gives a partial factorization of∆n,m into integer factors. If we assume that each∆, whose

first subscript is a proper divisor ofn, has been factored, the complete factorization of∆n,m depends

only on that ofΦ∗n,m. For this reason we call this latter number theessentialfactor of∆n,m. On the

other hand, we may consider the prime factors of∆n,m. Similarly, the prime factors of∆n,m which

do not divide∆d,m, whered is a proper divisor ofn, are called thecharacteristic prime factorsof

∆n,m. The concepts ofessentialfactor andcharacteristic prime factorswere introduced by Lehmer

[3].

Lemma2.4 — The essential factorΦ∗n,m of ∆n,m contains all the characteristic prime factors of

∆n,m.

PROOF : By (8) a characteristic prime factorp of ∆n,m must divideΦ∗δ,m for some divisorδ of n.

If δ were less thann, and hencep would divide∆δ,m, contrary to the definition ofp. Thereforeδ = n

and the lemma follows. 2

Lemma2.5 — A characteristic prime factorp of ∆n,m cannot dividen.

PROOF : If possible, letn = pδ. Supposef(x) = |xE − A| for some matrixA. Then by the

multinomial theorem modulop and (5), we have

0 ≡ ∆n,m ≡ ∆pδ,m

≡ |mpδE −Apδ|
≡ |mδE −Aδ|p
≡ |mδE −Aδ|
≡ ∆δ,m (mod p).

This contradicts the hypothesis thatp is a characteristic factor of∆n,m. 2

Remark: (1) It is not true that the essential factor of∆n,m is made up exclusively of characteristic

prime factors (See [3], p. 462).

(2) The essential factorΦ∗n,m may, however, have a factor in common withn.

(3) If f is reducible over the rational field so thatf = f1f2, then

∆n,m(f) = ∆n,m(f1)∆n,m(f2)
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is a factorization into integers. Hence for our purposes we may suppose thatf is irreducible. The

following result is a generalization of [7], Lemma 2.9.

Theorem2.6— If pe(e > 0) is the highest power of a characteristic prime factorp of ∆n,m(f),

wheref is irreducible and of degreer, and ifw is the order ofp modn, thenw ≤ r ande is divisible

byw.

PROOF : It is similar to the proof of [3], Theorem 3. 2

2.7 The recurring series for∆n,m

In order to render the factorization of∆n,m practical, it is first necessary to have a simple method of

calculating its actual value. This is done with the help of a polynomialMm(x) uniquely determined

by f(x) andm in the following manner. Let

f0(x) = x−mr,

f1(x) =
∏r

i=1(x−mr−1αi),

f2(x) =
∏

1≤j<i≤r(x−mr−2αiαj),

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
fr(x) = x− α1α2 · · ·αr = x− (−1)rar.

Mm(x) is defined as the least common multiple of thesef ′s. That is,

Mm(x) = [f0(x), f1(x), . . . , fr(x)] = xq + A1x
q−1 + A2x

q−2 + · · ·+ Aq.

Definition2.8 — Let{xn}∞n=0 be a recurring series such that

xn+e + a1xn+e−1 + · · ·+ ae−1xn+1 + aexn = 0, for all n ≥ 0.

Then the polynomialxe + a1x
e−1 + · · · + ae−1x + ae is called the scale of the recurring series

{xn}∞n=0.

Theorem2.9— The numbers

∆0,m, ∆1,m, ∆2,m, ∆3,m, · · ·

form a recurring series whose scale isMm(x). That is, for everyn ≥ 0,

∆n+q,m + A1∆n+q−1,m + · · ·+ Aq−1∆n+1,m + Aq∆n,m = 0. (9)

PROOF : By the definition (4) of∆n,m, we have

∆n,m =
r∏

i=1

(mn − αn
i ) =

r∑

k=0

∑

1≤i1<···<ik≤r

(−1)km(r−k)nαn
i1 · · ·αn

ik
.
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Hence we obtain
q∑

i=0

Ai∆n+q−i,m =
r∑

k=0

∑

1≤i1<···<ik≤r

(−1)km(r−k)nαn
i1 · · ·αn

ik
Mm(m(r−k)αi1 · · ·αik) = 0,

whereA0 = 1. This completes the theorem. 2

2.10 q-periodic∆’s

Lehmer [3] has proved that∆n,1 is a periodic function of proper periodτ if and only if f(x)

= Φτ (x, 1). In this subsection, for a fixed integerm, we will consider the periodic properties of

∆n,m.

Definition2.11 — SupposeF : Z −→ C is a number theory function. We callF a q-periodic

function of periodτ, if there exists a functionλ(n) such that

F (qτ + k) = λ(q)F (k), for all q, k ∈ Z. (10)

The functionλ is called a periodic factor ofF. We also callF q-periodic with respect toλ. A

positive integerτ is called a proper period of aq-periodic functionF, if for any positive integerT < τ,

F is notq-periodic of periodT.

Remark 2.12 : (1) It is obvious that a periodic functionF is q-periodic, in this case

λ(n) = 1, for all n ∈ Z.

(2) If the functionF is defined overN andτ is a positive integer such that

F (qτ + k) = λ(q)F (k), for all q, k ∈ N,

for some functionλ(n) defined overN, thenF can be extended to aq-periodic function defined over

Z. In this case we also callF a q-periodic function defined overN.

Lemma2.13 — If F 6= 0 is aq-periodic function with respect to a functionλ, thenλ(n) 6= 0 for

all n ∈ Z andλ : Z −→ C∗ is a group homomorphism.

PROOF: Suppose there exists an integern0 ∈ Z such thatλ(n0) = 0. By (10), for anyn ∈ Z, we

have

F (n) = F (n0T + (n− n0T )) = λ(n0)F (n− n0T ) = 0.

This contradicts the assumptionF 6= 0. It is easy to see thatλ(0) = 1 andλ(m+n) = λ(m)λ(n)

for all m, n ∈ Z. Henceλ is a group homomorphism. 2

Lemma2.14 — Supposeτ is a proper period of aq-periodic functionF. If T is a period ofF,

thenτ |T.
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PROOF : First we prove thatq-periodic functions have properties similar to those of periodic

functions. LetT > 0 be a period of aq-periodic functionF (n), i.e., there exists a functionλ(n) such

that

F (qT + k) = λ(q)F (k), for all q, k ∈ Z.

Then we have

(i) for anya ∈ Z, aT is a period ofF. In fact, setλa(n) = λ(an), then

F (qaT + k) = λ(aq)F (k) = λa(q)F (k), for all q, k ∈ Z.

(ii) if T1 andT2 are two periods ofF, thenT1 + T2 is also a period ofF. Assumeλi is corre-

sponding toTi, i = 1, 2. Setλ(n) = λ1(n)λ2(n), then

F (q(T1 + T2) + k) = λ1(q)F (qT2 + k) = λ1(q)λ2(q)F (k) = λ(q)F (k), for all q, k ∈ Z.

Supposeτ - T. ThenT = q0τ + b whereq0, b ∈ Z and0 < b < τ. By (i) and (ii) above, we

obtain thatb = T − q0τ is a period ofF. This contradicts the fact thatτ is a proper period ofF. 2

For a fixed integerm, it may happen that∆n,m is aλ-periodic function ofn. In this case we have

Theorem2.15— A necessary and sufficient condition for∆n,m to beq-periodic function ofn

of proper periodτ is that f(x) = Φτ (x,m), whereΦτ (x, y) is theτ -th homogeneous cyclotomic

polynomial defined by (6).

PROOF: If ∆n,m is q-periodic of proper periodτ , then∆τ,m = 0. Hencef has a rootα for which

ατ = mτ . Then there exists a primitivekth rootζk of unity such thatα = mζk. Sincef is irreducible

all its roots aremζi
k, 1 ≤ i ≤ k, (k, i) = 1, so thatf(x) = Φk(x,m), wherek is some divisor ofτ.

But ∆n,m is of periodk, for if n, j are any integers≥ 0,

∆nk+j,m =
∏

i

(mnk+j − αnk+j
i ) = mϕ(k)kn

∏

i

(mj − αj
i ) = λ(n)∆j,m,

whereλ(n) = mϕ(k)kn is the periodic factor. Hence by Lemma 2.14,τ is a divisor ofk. Therefore

τ = k andf(x) = Φτ (x,m). 2

3. IWASAWA THEORY OF∆n,m

Let the notation be as in§2. For our purposes, in this section, we make the following hypothesis:

(H 1) f(x) is defined by (1) and irreducible.

(H 2) Fix an integerm satisfying(m, ar) = 1.
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(H 3) f(x) 6= ΦT (x,m) for all T ∈ N∗.

Let K = Q(α1, α2, . . . , αr) be the splitting field off(x) over the rational number fieldQ, OK

the ring of algebraic integers ofK. For any primep, let P be a prime ideal ofK lying abovep.

Theorem3.1 — Let n ∈ N and p be a prime factor of∆n,m. Then, for any positive integert

satisfyingp|t, we havep|∆nt,m

∆n,m
.

PROOF : By the formula (4), the conditionp|∆n,m impliesmn ≡ αn
i (mod P) for somei(1 ≤

i ≤ r). If p|t, then we have

∆nt,m

∆n,m
=

r∏

j=1

mnt − αnt
j

mn − αn
j

≡ tmn(t−1)
r∏

j=1
j 6=i

t−1∑

k=0

mnkα
n(t−1−k)
j ≡ 0 (mod P).

Hencep|∆nt,m

∆n,m
. 2

Corollary 3.2 — (1) Letn ∈ N∗ andp a prime factor of∆n,m. Then, for allt ∈ N, we have

pe+t|∆npt,m, wheree = ordp(∆n,m).

(2) Letn, t ∈ N∗. Then we have(∆n,m)t|∆n(∆n,m)t−1,m.

PROOF : (1) It follows easily by induction ont. (2) It follows trivially from (1) and the fact:

∆n1,m|∆n2,m, if n1|n2. 2

Theorem 3.1 is about divisibility. The next result will be about non-divisibility. First, a definition.

If p is a prime, putd(p) = lcm1≤i≤[K:Q]{pi − 1}. 2

Theorem3.3— Letn, t ∈ N∗. Supposep is a prime such thatp - ∆n,m and(t, d(p)) = 1. Then

(i) p - ∆nt,m; (ii) p - ∆npx,m for anyx ∈ N.

PROOF : It is clear that (ii) follows (i). Hence it suffices to prove (i). Ifp|∆nt,m, then

mnt ≡ αnt
i (mod P) for some i (1 ≤ i ≤ r). (11)

If αi ≡ 0 (mod P), thenm ≡ 0 (mod P). Hencep|(ar,m), this contradicts the assumption

(ar,m) = 1. Som,αi 6∈ P. By (11), we have

(
αn

i

mn

)t

≡ 1 (mod P).

But ( αn
i

mn )d(p) ≡ 1 (mod P) and(t, d(p)) = 1, we have αn
i

mn ≡ 1 (mod P), i.e., mn ≡ αn
i

(mod P). Hence∆n,m =
∏r

j=1(m
n − αn

j ) ≡ 0 (mod P) contradictsp - ∆n,m. Hencep - ∆nt,m.

This completes the proof. 2



710 QINGZHONG JI AND HOURONG QIN

Lemma3.4 — Letn be the smallest integer such thatp|∆n,m. Thenn|d(p).

PROOF: From the proof of Theorem 3.3, ifp|∆n,m, then there exists an indexi (1 ≤ i ≤ r) such

thatmn ≡ αn
i (mod P) andm,αi 6∈ P.

(i) Assumem ≡ αi (mod P). Then∆1,m =
∏r

j=1(m− αj) ≡ 0 (mod P), son = 1.

(ii) Assumem 6≡ αi (mod P). Then αi
m 6≡ 1 (mod P) and

(
αi

m
)n ≡ 1 (mod P).

From the definition ofn, it follows that n is the order ofαi
m (mod P). On the other hand,

(αi
m )d(p) ≡ 1 (mod P). Hencen|d(p) as asserted. 2

Corollary 3.5 — Let p be a prime. Thenp|∆1,m if and only if m ≡ αi (mod P) for some

i (1 ≤ i ≤ r).

Let Qp be thep-adic completion ofQ. Let Q andQp be the algebraic closures ofQ andQp,

respectively. Letρ be an embedding ofQ intoQp. We simply renameρ(a) asa.

We will keep the notationordp for the additive valuation fromQp toQ
⋃{∞}, extended by the

standard additive valuationordp fromQp toZ
⋃{∞}, namely, ifα ∈ Qp, then

ordp(α) = [Qp(α) : Qp]−1ordp(NQp(α)/Qp
(α)).

HereNQp(α)/Qp
is the usual norm map fromQp(α) toQp.

Lemma3.6 ([6], p. 172-174) — Letp andq be different primes. Forn ≥ 1, let ξ ∈ Qp be any

primitive pn-th root of unity. Then the following results hold.

(1) ordp(ξ − 1) = 1
pn−1(p−1)

andordq(ξ − 1) = 0.

(2) Letα ∈ Qp be integral overZp.

(i) If ordp(α− 1) = 0, thenordp(αpt − 1) = 0 for all positive integerst ≥ 1.

(ii) If ordp(α− 1) > 0, then there exist an integert0 and a constantc depending onα such that

ordp(αpt − 1) = t + c,

for all t ≥ t0. In fact,t0 andc can be chosen as

t0 = min{t ∈ Z| 1
pt−1(p− 1)

< ordp(α− 1)},
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and

c = ordp(α− 1) +
∑

1 6=ξ∈S

[ordp(α− ξ)− ordp(1− ξ)],

whereS is the set ofpi-th roots of unity,1 ≤ i < t0.

(3) Letβ ∈ Qq be integral overZq.

(i) If ordq(β − 1) > 0, thenordq(βpt − 1) = ordq(β − 1) > 0, for all t ≥ 1.

(ii) If ordq(β − 1) = 0, then there exists an integert0 ≥ 0 such that, for allt ≥ t0,

ordq(βpt − 1) = ordq(βpt0 − 1).

Let n ∈ N∗ andp a prime. Seten,m,p(t) = ordp(∆npt,m) for t ∈ N.

Theorem3.7— Letn ∈ N∗ andp a prime.

(1) If p - ∆n,m, thenen,m,p(t) = 0 for all t ∈ N.

(2) If p|∆n,m, then there exist integersλn,m,p ≥ 1, νn,m,p andTn,m,p such that

en,m,p(t) = λn,m,pt + νn,m,p, for all t ≥ Tn,m,p.

PROOF : By Theorem 3.3, ifp - ∆n,m, thenen,m,p(t) = 0, for all t ∈ N. Hence, it suffices to

prove (2). Assumep|∆n,m. Without loss of generality, we may assumen is the smallest integer such

thatp|∆n,m. By Lemma 3.4,n|d(p), hence(p, n) = 1. Let ζn be a primitiventh root of unity. Then

∆n,m =
r∏

i=1

(mn − αn
i ) =

r∏

i=1

n−1∏

j=0

(m− αiζ
j
n) = mrn

r∏

i=1

n−1∏

j=0

(1− αi

m
ζj
n).

Note thatp|∆n,m implies ordp(m) = 0 (see the proof of Theorem 3.3). Hence we have

ordp(1 − αi
m ζj

n) ≥ 0 for all 1 ≤ i ≤ r, 0 ≤ j ≤ n − 1. For eachi (1 ≤ i ≤ r), we claim

that there is at most one indexj0 (0 ≤ j0 ≤ n − 1) such thatordp(1 − αi
m ζj0

n ) > 0. In fact, if there

exist0 ≤ j1 < j2 ≤ n−1 such thatordp(1− αi
m ζj1

n ) > 0 andordp(1− αi
m ζj2

n ) > 0, thenordp(αi) = 0

and

ordp(1− ζj2−j1
n ) = ordp(

αi

m
ζj1
n (1− ζj2−j1

n )) = ordp((1− αi

m
ζj2
n )− (1− αi

m
ζj1
n )) > 0.

This contradicts(p, n) = 1.

Set

λn,m,p = ]{i | 1 ≤ i ≤ r, there exists an index j such that ordp(1− αi

m
ζj
n) > 0}.
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The conditionp|∆n,m impliesλn,m,p ≥ 1. On the other hand, we have

∆npt,m =
∏r

i=1(m
npt − αnpt

i )

=
∏r

i=1

∏n−1
j=0 (mpt − αpt

i ζj
n)

= mrnpt ∏r
i=1

∏n−1
j=0 (1− (αi

m )pt
ζj
n)

= mrnpt ∏r
i=1

∏n−1
j=0 (1− (αi

m ζj
n)pt

)

(12)

since (n, p) = 1. By (2) of Lemma 3.6, there exist integersνn,m,p and Tn,m,p such that for all

t ≥ Tn,m,p, we have

en,m,p(t) = ordp(∆npt,m)

=
∑r

i=1

∑n−1
j=0 ordp(1− (αi

m ζj
n)pt

)

= λn,m,pt + νn,m,p,

where the integersλn,m,pandνn,m,p are independent oft. 2

Remark3.8 : For eachn ∈ N, setfn(x) =
∏r

i=1(x − αn
i ). Let p be a prime factor of∆n,m.

Factorfn(x) overFp[x] as follows:

fn(x) = p1(x)e1p2(x)e2 · · · ps(x)es

wherep1(x), p2(x), . . . , ps(x) ∈ Fp[x] are non-associate irreducible polynomials with multiplicity

ei ≥ 1 (1 ≤ i ≤ s). If e1 = e2 = · · · = es = 1, thenλn,m,p = 1, i.e., there exists a unique indexi0

such thatordp(mn − αn
i0

) > 0. In fact, if there exist1 ≤ i < j ≤ r such thatordp(mn − αn
i ) > 0

andordp(mn − αn
j ) > 0, thenordp(m) = 0 and so

ordp(αn
i − αn

j ) = ordp((mn − αn
j )− (mn − αn

i )) > 0.

Henceαn
i is a root offn(x) with multiplicity at least2 overFp which is the algebraic closure of

Fp. This contradicts the assumptionse1 = e2 = · · · = es = 1.

Theorem3.9— Letn ∈ N∗ andp, q be two different primes. Then there exists a positive integer

Tn,m,p,q such that

ordq(∆npt,m) = ordq(∆npTn,m,p,q ,m), for all t ≥ Tn,m,p,q,

i.e., the numbersordq(∆npt,m) are stable whent is sufficiently large.

PROOF : Without loss of generality, we may assume(n, p) = 1 andordq(m) = 0. On the other

hand, by (12), we have

∆npt,m = mrnpt
r∏

i=1

n−1∏

j=0

(1− (
αi

m
ζj
n)pt

).
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For eachi (1 ≤ i ≤ r), we divide the set{j|0 ≤ j ≤ n − 1} = S
(i)
1 ∪ S

(i)
2 in such a way

that for eachj ∈ S
(i)
1 , there is at(i)j ≥ 0 such thatordq(1 − (αi

m ζj
n)p

t
(i)
j ) > 0, and forj ∈ S

(i)
2 , the

equalityordq(1 − (αi
m ζj

n)pt
) = 0 holds, for allt ≥ 0. SetTn,m,p,q = max 1≤i≤r

j∈S
(i)
1

{t(i)j }. Then, for all

t ≥ Tn,m,p,q, by Lemma 3.6, we have

ordq(∆npt,m) =
∑r

i=1

∑n−1
j=0 ordq(1− (αi

m ζj
n)pt

)

=
∑r

i=1

∑
j∈S

(i)
1

ordq(1− (αi
m ζj

n)p
t
(i)
j ).

Since the last sum does not depend ont, the result follows. 2

Corollary 3.10 — Let Sn,m,p(t) be the set of all primes which divide∆npt,m. Then

]Sn,m,p(t) −→ +∞ ast −→ +∞.

PROOF : Suppose that there exists integert0 such that for allt ≥ t0, Sn,m,p(t) = Sn,m,p(t0).

By Theorem 3.7 and Theorem 3.9, it would follow that∆npt,m would be equal to a constant times

pλn,m,pt for larget, i.e., there exist positive constant numbersT andc such that

|∆npt,m| = cpλn,m,pt (13)

for all t ≥ T. On the other hand, the assumption (H3) implies thatm 6= |αi|, 1 ≤ i ≤ r. Set

S1 = {i | m > |αi|}, S2 = {i | m < |αi|}, b =
∏

1≤i≤r

max{|m|n, |αi|n}.

If m = 1, thenS2 6= ∅. Hence, for allm ≥ 1, we haveb > 1 and

lim
t−→+∞

|∆npt,m|
bpt = lim

t−→+∞

Q
1≤i≤r |mnpt−αnpt

i |
bpt

= lim
t−→+∞

∏
i∈S1

|mnpt−αnpt

i |
mnpt ·∏i∈S2

|mnpt−αnpt

i |
|αi|npt

= lim
t−→+∞

∏
i∈S1

|1− (αi
m )npt | ·∏i∈S2

|1− ( m
αi

)npt |
= 1.

Therefore for sufficiently larget, we have|∆npt,m| > abpt
for some constanta > 0. Clearly, this

is incompatible with (13) just given. 2

At last, we give the following definition.

Definition3.11 — A sequence of integers{an} is called anIwasawa sequenceif for any positive

integerm and primep, there exist integersλ, T ∈ N andν ∈ Z such that

ordp(ampt) = λt + ν, for all t ≥ T.
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Example3.12 : Let m be any positive integer. Then the sequence of binomial coefficients

{Cm
n }n≥m is an Iwasawa sequence. In fact, by Kummer Theorem,

ordp(Cm
npt) = t + ν, for all t ≥ T,

whereT = max{0, [logpm]− ordp(n) + 1} andν = ordp(n)− ordp(m).
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