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In an observed semi-Markov regime, estimation of transition rate of regime switching leads to-

wards calculation of locally risk minimizing option price. Despite the uniform convergence of es-

timated step function of transition rate, to meet the existence of classical solution of the modified

price equation, the estimator is approximated in the class of smooth functions and furthermore,

the convergence is established. Later, the existence of the solution of the modified price equation

is verified and the point-wise convergence of such approximation of option price is proved to

answer the tractability of its application in Finance. To demonstrate the consistency in result a

numerical experiment has been reported.
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1. INTRODUCTION

Among the researchers of financial market modelling and derivative pricing, regime switching econ-

omy is a popular choice, owing to its simplicity and mathematical tractability, along with its ability

to incorporate fluctuations of market parameters. See [1, 2, 3, 4, 5, 6, 8] and references therein for

more details. Broadly speaking, regime switching economy refers to a class of mathematical models

of financial securities where the market parameters such as expected growth rate, volatility, interest

rate etc are assumed to evolve as a stochastic process with finite state space. Therefore, for obvious

reason, a fair price of a contingent claim under such market assumption, depends on the law of this
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finite state process. In practice, the law of such regime switching is not knowna priori. If the regimes

are observed, then one can perhaps estimate the transition rate of the regime switching and calculate

an option price using the estimator. This approach would be satisfactory provided the calculated price

is ‘close’ to the theoretical price in some sense. In this paper we examine validity of such approach.

Since the market, under discussion, is incomplete, there are multiple fair prices. We consider the

unique locally risk minimizing price as in [11] and often do not mention explicitly.

In this paper we consider semi-Markov regimes which subsumes the popular Markov regimes

as well. It is known that unlike Markov case, the transition rate in this generality cannot be written

as a constant matrix. The rate of semi-Markov process turns out to be a matrix valued measurable

function on [0,∞). Nevertheless, it is possible to construct a sequence of MLE of certain finite

dimensional projections of the transition rate function and then establish the almost sure convergence

of the sequence to the transition rate function [9, 10]. On the other hand, it appears that the price

function of a European option satisfies a differential equation (see [4] for more details) in which the

transition rate appears as a parameter. It is shown in [5] that this equation admits a classical solution

if the transition rate satisfies certain conditions including differentiability. Therefore it is important to

ensure two things. Firstly, if the transition rate function is replaced by a smoothed version of a member

of the sequence of MLE, in the differential equation, does the equation still admit a classical solution?

Secondly, if one gets a sequence of approximated price in the above manner, does it converge to the

theoretical price? We answer both of these in the affirmative. We also illustrate this convergence

result by one numerical experiment.

The rest of this paper is arranged as follows. In Section 2 the mathematical model of the financial

market and the pricing equation is briefly presented. A particular smooth approximation of the tran-

sition rate function is constructed in Section 3. It also contains the convergence result of the smooth

approximation. In Section 4, we show that using the sequence of estimator of transition rate function,

one can construct an approximating sequence of the European call option price which converges to

the true price. Finally some numerical experiments are reported in Section 5.

2. MARKET MODEL AND PRICING

Here we consider a market consisting of only two assets among which one is a locally risk-free

asset, such as a money market account and another is a risky asset, such as stock. Let{Xt}t≥0 be
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a semi-Markov process on a finite state spaceX = {1, 2, . . . , θ} with transition probabilities from

statei to statej aspij and conditional holding time distributions given the present statei and next

statej asF (·|i). Assume that(Ω,F , P ) is the underlying complete probability space which also

contains a Wiener process{Wt}t≥0 that is independent to{Xt}t≥0. We model the hypothetical state

(assumed to be observable) of the market by{Xt}t≥0 and assume that the bank interest rate, volatility

coefficient, and the growth rate evolve as functions ofXt and are denoted asr(Xt), σ(Xt) andµ(Xt)

respectively. We denote the consecutive transition times ofXt by {Tn}n≥0 with T0 = 0 and the

holding time att by Yt. The price of risk-free and risky assets are denoted by{Bt}t≥0 and{St}t≥0

respectively and are given by

Bt = exp(
∫ t

0
r(Xu)du), (1)

dSt = St(µ(Xt)dt + σ(Xt)dWt), S0 > 0 (2)

whereσ is positive valued andr, µ are nonnegative maps. LetFt be the filtration ofF generated by

Xt andSt and satisfying the usual hypothesis. In [4] it is shown that this market model does admit an

equivalent martingale measure, thus it is arbitrage free underadmissible strategy. It turns out that the

above market is incomplete. Therefore, no-arbitrage price of a derivative might not be unique. In this

paper we consider locally risk minimizing option price which exists uniquely [4]. For more details

about this pricing approach in a more general setup we refer [11] and the references therein.

In order to obtain a representation of the option price we further assume that

(A1) (i) F (y|i) ∈ C2([0,∞)) ∀i
(ii) F (y|i) < 1 ∀i andy > 0

(iii)(p ij) is an irreducible probability matrix.

We denote the instantaneous transition rate function asλij(y) which is given by

lim
∆y↓0

P (XTn+1 = j, y < YTn+1 ≤ y + ∆y|XTn = i, YTn+1 > y)
∆y

.

Thusλij(y) = pij
f(y|i)

1−F (y|i) .

In this paper, as an example, we consider a European call option, onSt with strike priceK and

maturity timeT . Then the contingent claim(ST −K)+ isFT measurable. It is shown in [4] and [5]
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that the locally risk minimizing price of this claim at timet is a function oft, St, Xt andYt and that,

ϕ say, is the unique solution in the class of functions of at most linear growth of the initial boundary

value problem

∂

∂t
ϕ(t, s, i, y) +

∂

∂y
ϕ(t, s, i, y) + r(i)s

∂

∂s
ϕ(t, s, i, y) +

1
2
σ2(i)s2 ∂2

∂s2
ϕ(t, s, i, y)

+
∑

j 6=i

λij(y)[ϕ(t, s, j, 0)− ϕ(t, s, i, y)] = r(i)ϕ(t, s, i, y), (3)

defined on

D := {(t, s, i, y) ∈ (0, T )× R+ ×X × (0, T )|y ∈ (0, t)}, (4)

with boundary conditions

lim
s↓0

ϕ(t, s, i, y) = 0, ∀t ∈ [0, T ],

ϕ(T, s, i, y) = (s−K)+; s ∈ R+; 0 ≤ y ≤ T ; i = 1, 2, ..., θ. (5)

In [5] it is shown that the above problem is equivalent to a Volterra integral equation of second

kind which can be comfortably solved numerically using a step by step quadrature method.

3. APPROXIMATION OFTRANSITION RATE

We augment the semi-Markov processXt with the holding time processYt to obtain a process

(X, Y ) = (Xt, Yt)t≥0, which is clearly Markov.

Because of the deterministic nature of(Xt, Yt) during every interval(Tn, Tn+1), the dynamics of

(Xt, Yt) can be described by a discrete time Markov process(Xn, Yn)n≥0 where we defineXn :=

XTn andYn := YTn− = Tn − Tn−1. Thus the augmented Markov process can uniquely be specified

with initial distribution asP (X0 = j) := p(j), YT0 = 0 and the following semi-Markov kernel,

P (Xn+1 = j, Yn+1 ≤ y|X0, X1, ..., Xn, Y1, ..., Yn) := pXnjF (y|Xn) (a.s.) (6)

for all y ∈ R+
and1 ≤ j ≤ θ. We denoteQij(y) := pijF (y|i) ∀i 6= j, λi(y) :=

∑
j∈X ,j 6=i λij(y),

Λi(y) :=
∫ y
0 λi(u)du. We see,F (y|i) =

∑θ
j=1 Qij(y) and also

dF (u|i)
du

= f(u|i) =
∑

j∈X ,j 6=i

pijf(u|i) = (1− F (u|i))
∑

j∈X ,j 6=i

λij(u).
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By solving the above ODE forF , one obtains

ln(1− F (y|i)) = −Λi(y), which impliesF (y|i) = 1− exp(−Λi(y)).

Hence

θ∑

j=1

Qij(y) = 1− exp(−Λi(y)). (7)

Consider a history of augmented Markov process censored at fixed timeτ ,

H(τ) = (X0, X1, · · · , XNτ , Y1, Y2, · · · , YNτ , Uτ ),

whereNτ is the number of transitions before timeτ andUτ := τ − TNτ is the backward recur-

rence time. The associated log-likelihood function is maximized to obtain the maximum likelihood

estimator (MLE) of the transition rate function,λij(·). The likelihood function forH(τ) is

L(τ) = p(X0)(1−
θ∑

l=1

QXNτ l(Uτ ))
Nτ−1∏

l=0

pXlXl+1
f(Yl+1|Xl).

Thus from (7),

p(X0)−1L(τ) = exp(−ΛXNτ
(Uτ ))

Nτ−1∏

l=0

exp(−ΛXl
(Yl+1))λXl,Xl+1

(Yl+1).

Then we consider the log-likelihood as

l(τ) := log{p(X0)−1L(τ)} =
Nτ−1∑

l=0

(log λXl,Xl+1
(Yl+1)− ΛXl

(Yl+1))− ΛXNτ
(Uτ ).

We consider(vk)0≤k≤M−1, a regular subdivision of[0, τ ] with step∆τ = τ
M andM = bτ1+αc

whereα > 0, to define fori 6= j ∈ X andy > 0

λ∗ij(y) :=
M−1∑

k=0

λijk1(vk,vk+1](y), (8)

whereλijk = λij(vk). After replacingλ by the step functionλ∗ in the expression ofl(τ) one obtains,

∑

i,j∈S

M−1∑

k=0

(dijk log λijk − λijkvik), (9)
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where

vik :=
Nτ−1∑

l=0

(Yl+1 ∧ vk+1 − vk)1{i}×(vk,∞)(Xl, Yl+1) + (Uτ ∧ vk+1 − vk)1{i}×(vk,∞)(XNτ , Uτ ),

and

dijk :=
Nτ−1∑

l=0

1{i}×{j}×(vk,vk+1](Xl, Xl+1, Yl+1).

Hence the estimator ofλijk which maximizes the functional in (9), is given by

λ̂ijk =





dijk/vik if vik > 0;

0 otherwise.
(10)

Thus we obtain an estimator ofλ∗ij(y), given by,

λ̂ij(y, τ) =
M−1∑

k=0

λ̂ijk1(vk,vk+1](y) + λ̂ij01{0}(y). (11)

We have the following result.

Lemma3.1 — Fix α ∈ (0, 1/2). Under the assumptions of (A1), the estimatorλ̂ij(·, τ), is

uniformly strongly consistent forλij(·), on [0, T ] in the sense that

max
i6=j

sup
y∈[0,T ]

|λ̂ij(y, τ)− λij(y)| → 0, almost surely, asτ →∞.

PROOF : If (A1) holds, one can directly derive from the definition ofλij(y) that λij(y) =

pij
f(y|i)

1−F (y|i) . Now by summing overj ∈ X \ {i} and then integrating on[0, y) both the sides, one

obtainsΛi(y) = − ln(1 − F (y|i)). Thus under assumption (A1)Λi(y) is in C2([0,∞)). Hence, for

anyi 6= j, λij : [0,∞) → [0,∞) is well defined and continuously differentiable. Now the rest of the

proof follows from Theorem 1(b) of [9]. 2

In view of the above Lemma, we fixα ∈ (0, 1/2) for the rest of this paper. Note thatλ̂(·, τ) is

a step function and thus it is discontinuous. We aim to obtain an approximation ofλ in the class of

smooth functions so that the approximation can be used to obtain an approximated price function by

solving appropriate system of differential equations. To this end we considerB2-spline interpolation

of λ̂(·, τ). We first extend it onR by assigninĝλ(y, τ) = λ̂(0, τ) ∀y < 0 andλ̂(y, τ) = λ̂(T1, τ) ∀y
> T1 := argmaxy∈[T,τ ] λ̂(y, τ) and settingvk := k∆τ , for all k ∈ Z. Set
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B2
k(y) =

(y − vk)2

(vk+2 − vk)(vk+1 − vk)
1[vk,vk+1)(y)

+
(

(y − vk)(vk+2 − y)
(vk+2 − vk+1)(vk+2 − vk)

+
(vk+3 − y)(y − vk+1)

(vk+2 − vk+1)(vk+3 − vk+1)

)
1[vk+1,vk+2)(y)

+
(vk+3 − y)2

(vk+3 − vk+2)(vk+3 − vk+1)
1[vk+2,vk+3)(y).

For eachi 6= j, we interpolate the data points(vk, λ̂ij(k−1)) and we denote the spline interpolation

of λ̂ij asλ̃ij which is given by

λ̃ij(y, τ) :=
∞∑

k=−∞
λ̂ij(vk+2, τ)B2

k(y) =
∞∑

k=−∞
λ̂ij(k+1)B

2
k(y). (12)

Since for eachi 6= j, λ̂ijk is non-negative for everyk, from the property ofB-spline, λ̃ij is a

non-negative function.

Lemma3.2 — Under (A1)

max
i6=j

sup
y∈[0,T ]

|λ̂ij(y, τ)− λ̃ij(y, τ)| → 0

asτ →∞.

PROOF : From Theorem 6.6.4 of [7], for eachi 6= j, supy∈[0,T ] |λ̂ij(y, τ) − λ̃ij(y, τ)|
≤ 2ω[0,T ](λ̂ij(·, τ); ∆τ ) whereωI(f, δ) := sup{|f(t) − f(s)||t, s ∈ I, |t − s| = δ} is the mod-

ulus of continuity. Again it follows from Lemma 3.1, that for a givenε > 0 there is aN such that

P (N < ∞) = 1 and forτ ≥ N , maxi6=j supy∈[0,T ] |λ̂ij(y, τ) − λij(y)| < ε. Thus forτ > N ,

ω[0,T ](λ̂ij(·, τ); ∆τ ) ≤ ω[0,T ](λij(·);∆τ ) + 2ε. Sinceλij(·) is continuous, its modulus of continuity

converges to zero as∆τ → 0. Therefore, we get asτ → ∞, ω(λ̂ij(·, τ);∆τ ) → 0. Hence the

result. 2

Lemma 3.1 and 3.2 lead to the following result.

Theorem3.3— Under (A1)

max
i6=j

sup
[0,T ]

|λ̃ij(y, τ)− λij(y)| → 0, a.s., as τ →∞.



176 ANINDYA GOSWAMI AND SANKET NANDAN

4. APPROXIMATION OFPRICE FUNCTION

It is shown in the previous section that a convergent sequence of smooth approximations of transition

rate function can be constructed using a combination of non-parametric MLE andB2 spline. Having

this result, it is tempting to solve (3)-(5) with the smooth approximation of transition rate to obtain

an approximation of price function. Needless to mention that such approximation is reliable only

when certain continuous dependency of the solution on the transition rate function is established for

the concerned initial boundary value problem. Such result is not readily available for the non-local

degenerate type of parabolic PDE, we consider here. In this section we establish the convergence

of such approximate price function to the true price. For the sake of preciseness we propose the

following definition.

Definition 4.1 — Let λ̃ : X × X × [0,∞) → [0,∞) an approximation of the transition rate

functionλ andϕ the solution of the problem (3)-(5). If (3)-(5), after the functionλ is replaced bỹλ,

admits a unique classical solutioñϕ, thenϕ̃ is called theTBA (Transition rate based approximation)

of ϕ with parameter̃λ.

Goswamiet al. [5] presents a set of fairly general sufficient condition onλ̃, which ensures exis-

tence of a unique classical solution of the modified equation.

Lemma4.1 — Under (A1), the TBA ofϕ (as in (3)-(5)) with parameter̃λ(·, τ) (as in (12)) exists

for sufficiently large value ofτ .

PROOF : We defineλ̃i(y, τ) :=
∑

j 6=i λ̃ij(y, τ), Λ̃i(y, τ) =
∫ y
0 λ̃i(y, τ)dy, F̃ (y|i, τ) := 1 −

exp(−Λ̃i(y, τ)), and p̂ij :=
∫∞
0

λ̃ij(y,τ)

λ̃i(y,τ)
1(0,∞)(λ̃i(y, τ))dF̃ (y|i, τ). If we can show that there is a

τ0 > 0 such that forτ ≥ τ0, the sufficient conditions in [5] hold i.e., (i)̃λ(·, τ) is in C1([0,∞)), (ii)

limy→∞ Λ̃i(y, τ) = ∞ for eachi, and (iii) p̂ij is irreducible, then the existence of TBA ofϕ follows

from Theorem 3.2 of [5].

We note that from the property ofB-spline, (i) holds. Again since for eachi, limy→∞ Λi(y) =

limy→∞− ln(1− F (y|i)) = ∞, from Theorem 3.3 there is aτ0 > 0 such that forτ ≥ τ0, (ii) holds.

We first note that to prove (iii), it is sufficient to show that ifpij > 0 for somei 6= j, thenp̂ij is also

positive. Now ifpij > 0, λij(y)(= pij
f(y|i)

1−F (y|i)) is not identically zero. Hence using Theorem 3.3,

there exists aτ1 > 0 such that for anyτ > τ1, λ̃ij(y, τ) is not identically zero. Thus
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p̂ij =
∫ ∞

0

λ̃ij(y, τ)
λ̃i(y, τ)

1(0,∞)(λ̃i(y, τ))dF̃ (y|i, τ)

=
∫ ∞

0
λ̃ij(y, τ)e−Λ̃i(y,τ)dy

> 0.

We state the main result below.

Theorem4.2— Under (A1) for a large value ofτ , let, ϕ̃τ be the TBA ofϕ with parameter̃λ(·, τ).

Then,ϕ̃τ converges toϕ point-wise, asτ →∞.

In order to prove this theorem, we need the the following lemma.

Lemma4.3 — Let{St}t≥0 be as in (2). Then

E[
∫ T

0
Stdt] ≤ S0

C

(
eCT − 1

)
(13)

for some positive constantC.

PROOF : We know, (2) has a closed form solution given by

St = S0 exp
[∫ t

0
{µ(Xu)− 1

2
σ2(Xu)}du +

∫ t

0
σ(Xu)dWu

]
. (14)

We introduce the following constants

c := max
i∈X

{
µ(i)− 1

2
σ2(i)

}
, d := max

i∈X
{σ2(i)}.

Clearly,

St ≤ S0 exp(ct) exp
(∫ t

0
σ(Xu)dWu

)
. (15)

We observe,
∫ t

0
σ(Xu)dWu =

∞∑

n=1

∫ Tn∧t

Tn−1∧t
σ(XTn−1)dWu

=
∞∑

n=1

σ(XTn−1)(WTn∧t −WTn−1∧t).

Hence, the conditional distribution of
∫ t
0 σ(Xu)dWu givenFX

t is normal with mean zero and

variance ∞∑

n=1

σ2(XTn−1)(Tn ∧ t− Tn−1 ∧ t),
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whereFX
t is the filtration ofF generated byX = {Xu}u∈[0,t].

Now using the formula of variance of a log-normal random variable, we get,

E

[
exp

(∫ t

0
σ(Xu)dWu

)]
= E

[
E

[
exp

(∫ t

0
σ(Xu)dWu

) ∣∣∣FX
t

]]

= E

[
exp

(
1
2

∞∑

n=1

σ2(XTn−1)(Tn ∧ t− Tn−1 ∧ t)

)]

≤ E

[
exp

(
d

2

∞∑

n=1

(Tn ∧ t− Tn−1 ∧ t)

)]

= exp
(

d

2
t

)
.

Using above inequality we obtain from (15),

E(St) ≤ S0e
cte

d
2
t = S0e

(c+ d
2 )t.

SinceSt is nonnegative we apply Tonelli’s theorem and the above relation to get,

E

[∫ T

0
Stdt

]
=

∫ T

0
EStdt

≤ S0

∫ T

0
e(c+ d

2 )tdt

=
S0

(c + d
2)

(
e(c+ d

2 )T − 1
)

.

PROOF OFTHEOREM 4.2 : We define the difference of the functionsϕ and its TBAϕ̃τ to be,

ψτ (t, s, i, y) := ϕ(t, s, i, y)− ϕ̃τ (t, s, i, y).

Now, by considering the initial boundary value problems satisfied byϕ(t, s, i, y) andϕ̃τ (t, s, i, y)

respectively, one obtains directly thatψτ satisfies the following initial boundary value problem,

∂

∂t
ψ(t, s, i, y) + r(i)s

∂

∂s
ψ(t, s, i, y) +

1
2
σ2(i)s2 ∂2

∂s2
ψ(t, s, i, y)

+
∑

j 6=i

λij(y)(ψ(t, s, j, 0)− ψ(t, s, i, y))

= r(i)ψ(t, s, i, y)−
∑

j 6=i

(λij(y)− λ̃ij(y, τ))(ϕ̃τ (t, s, j, 0)− ϕ̃τ (t, s, i, y)),

defined on

D := {(t, s, i, y) ∈ (0, T )× R+ ×X × (0, T )|y ∈ (0, t)},
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with conditions

lim
s↓0

ψ(t, s, i, y) = 0, ∀t ∈ [0, T ],

ψ(T, s, i, y) = 0, s ∈ R+; 0 ≤ y ≤ T ; i = 1, 2, · · · , θ.

We rewrite the above system of equations as,

∂

∂t
ψ(t, s, i, y) + Lψ(t, s, i, y) = r(i)ψ(t, s, i, y)− f τ (t, s, i, y), (16)

where

(Lψ)(t, s, i, y) :=
[
r(i)s

∂

∂s
+

1
2
σ2(i)s2 ∂2

∂s2

]
ψ(t, s, i, y) +

∑

j 6=i

λij(y)(ψ(t, s, j, 0)− ψ(t, s, i, y)),

and

f τ (t, s, i, y) :=
∑

j 6=i

(λij(y)− λ̃ij(y, τ))(ϕ̃τ (t, s, j, 0)− ϕ̃τ (t, s, i, y)).

Note that,L is the infinitesimal generator of(S̃t, Xt, Yt) satisfying

dS̃t = S̃t(r(Xt−)dt + σ(Xt−)dWt),

whereXt is a semi-Markov process with transition rateλij(y) andYt is the holding time process.

Then, using Feynman-Kac formula,

ψτ (t, s, i, y) = E[
∫ T

t
exp

(
−

∫ t′

t
r(Xu)du

)
ητ (t′)dt′|S̃t = s,Xt = i, Yt = y], (17)

where,

ητ (t) = f τ (t, S̃t, Xt, Yt).

From Theorem 3.3, we have the uniform convergence ofλ̃ij(y, τ) to λij(y) in y ∈ [0, T ], almost

surely. Or, in other words we get, for any givenε(> 0), ∃N s.t.P (N < ∞) = 1 and forτ ≥ N,

|λ̃ij(y, τ)− λij(y)| < ε ∀y ∈ [0, T ]. (18)

Using Theorem 3.2 of [5], there exists constantsk1 andk2 such that0 ≤ ϕ̃τ (t, s, i, y) ≤ k1 +k2s

for all i, y andτ ≥ N . Hence from (18),

f τ (t, s, i, y) ≤ ε(k1 + k2s).
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Therefore, by applying Lemma 4.3, we assert that for all largeτ , |ητ (t, ω)| is dominated by a

fixed integrable function. Thus using dominated convergence theorem, we can see

lim
τ

ψτ (t, s, i, y) = lim
τ

E[
∫ T

t
exp

(
−

∫ t′

t
r(Xu)du

)
ητ (t′)dt′|S̃t = s,Xt = i, Yt = y]

= E[
∫ T

t
exp

(
−

∫ t′

t
r(Xu)du

)
lim
τ

ητ (t′)dt′|S̃t = s,Xt = i, Yt = y]

= 0.

Hence,ϕ̃τ converges toϕ point-wise, asτ →∞. 2

Remark4.1 : In this section, as an example, we consider a European call option to illustrate the

the convergence of TBA of price. It is important to note that one can have similar convergence results

for other derivatives such as put option price, barrier option price, compound option price etc. as the

prices satisfy similar system of PDEs.

5. NUMERICAL EXPERIMENT

We firstly illustrate the convergence result as in Lemma 3.1 through considering an example of a

semi-Markov process and estimating its transition rate over different time scales of the history of the

process. In order to compute and present the actual estimation error, we simulate the example having

three hypothetical states{1, 2, 3} and the holding time distribution as

f(y) := ye−y for y > 0,

and we choose the transition matrix as

(pij) =




0.0 0.1 0.9

0.4 0.0 0.6

0.7 0.3 0.0


 .

Therefore, the theoretical transition rate function for anyy ≥ 0, is given by,

λij(y) = pij
f(y|i)

1− F (y|i) = pij
y

y + 1
∀i, j ∈ S andi 6= j.

The convergence asτ → ∞ is illustrated by plotting two different norms of the difference be-

tweenλ̂ andλ∗ on [0, T ] whereT = 4 for many different values ofτ . Although the convergence



CONVERGENCE OF ESTIMATED OPTION PRICE IN A REGIME SWITCHING MARKET 181

Figure 1: Convergence of MLE

Figure 2: Convergence of approximation error

result is established only for sup norm, but we find it interesting to illustrate theL2 norm also. In the

Figure 1,τ variable is taken on the horizontal axis and the computed norms of error is plotted on the

vertical axis. In the plots, logarithmic trend lines are fitted to visualize the trends.

To illustrate the convergence of TBA of a European call option price function we consider a

market where the volatility and instantaneous interest rate at each regime are given as follows

(r(1), r(2), r(3)) = (0.3, 0.6, 0.7)

(σ(1), σ(2), σ(3)) = (0.2, 0.2, 0.2).

The strike priceK is 1 and the maturityT is 1 unit. Figure 2 shows convergence of TBA of price

function through the plot of sup norm of the error for the estimation, computed as
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Error := ||ψτ (0, ·, i, 0)1[0,5]||sup.

TheL2 norm ofψτ (0, ·, i, 0)1[0,5] is also plotted and finally a logarithmic trend line is added to

each of the data series.
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