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In an observed semi-Markov regime, estimation of transition rate of regime switching leads to-
wards calculation of locally risk minimizing option price. Despite the uniform convergence of es-
timated step function of transition rate, to meet the existence of classical solution of the modified
price equation, the estimator is approximated in the class of smooth functions and furthermore,
the convergence is established. Later, the existence of the solution of the modified price equation
is verified and the point-wise convergence of such approximation of option price is proved to
answer the tractability of its application in Finance. To demonstrate the consistency in result a

numerical experiment has been reported.
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1. INTRODUCTION

Among the researchers of financial market modelling and derivative pricing, regime switching econ-
omy is a popular choice, owing to its simplicity and mathematical tractability, along with its ability

to incorporate fluctuations of market parameters. See [1, 2, 3, 4, 5, 6, 8] and references therein for
more details. Broadly speaking, regime switching economy refers to a class of mathematical models
of financial securities where the market parameters such as expected growth rate, volatility, interest
rate etc are assumed to evolve as a stochastic process with finite state space. Therefore, for obvious

reason, a fair price of a contingent claim under such market assumption, depends on the law of this
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finite state process. In practice, the law of such regime switching is not kaguwiori. If the regimes

are observed, then one can perhaps estimate the transition rate of the regime switching and calculate
an option price using the estimator. This approach would be satisfactory provided the calculated price
is ‘close’ to the theoretical price in some sense. In this paper we examine validity of such approach.
Since the market, under discussion, is incomplete, there are multiple fair prices. We consider the

unique locally risk minimizing price as in [11] and often do not mention explicitly.

In this paper we consider semi-Markov regimes which subsumes the popular Markov regimes
as well. It is known that unlike Markov case, the transition rate in this generality cannot be written
as a constant matrix. The rate of semi-Markov process turns out to be a matrix valued measurable
function on[0, c0). Nevertheless, it is possible to construct a sequence of MLE of certain finite
dimensional projections of the transition rate function and then establish the almost sure convergence
of the sequence to the transition rate function [9, 10]. On the other hand, it appears that the price
function of a European option satisfies a differential equation (see [4] for more details) in which the
transition rate appears as a parameter. It is shown in [5] that this equation admits a classical solution
if the transition rate satisfies certain conditions including differentiability. Therefore it is important to
ensure two things. Firstly, if the transition rate function is replaced by a smoothed version of a member
of the sequence of MLE, in the differential equation, does the equation still admit a classical solution?
Secondly, if one gets a sequence of approximated price in the above manner, does it converge to the
theoretical price? We answer both of these in the affirmative. We also illustrate this convergence

result by one numerical experiment.

The rest of this paper is arranged as follows. In Section 2 the mathematical model of the financial
market and the pricing equation is briefly presented. A particular smooth approximation of the tran-
sition rate function is constructed in Section 3. It also contains the convergence result of the smooth
approximation. In Section 4, we show that using the sequence of estimator of transition rate function,
one can construct an approximating sequence of the European call option price which converges to

the true price. Finally some numerical experiments are reported in Section 5.
2. MARKET MODEL AND PRICING

Here we consider a market consisting of only two assets among which one is a locally risk-free

asset, such as a money market account and another is a risky asset, such as stp&k};Letbe



CONVERGENCEOF ESTIMATED OPTION PRICE IN A REGIME SWITCHING MARKET 171

a semi-Markov process on a finite state spate- {1,2,...,6} with transition probabilities from
state: to statej asp;; and conditional holding time distributions given the present stated next
statej as F'(-|i). Assume tha{(2, F, P) is the underlying complete probability space which also
contains a Wiener proce$$V; } > that is independent tpX; },~o. We model the hypothetical state
(assumed to be observable) of the markef By}~ and assume that the bank interest rate, volatility
coefficient, and the growth rate evolve as functionXpfind are denoted a$.X;), o(X;) andu(X;)
respectively. We denote the consecutive transition timeX;0by {7, },,>0 with T, = 0 and the
holding time att by Y;. The price of risk-free and risky assets are denotedBy};~o and{S; }+>¢

respectively and are given by

t

B, = exp(/ r(Xy)du), Q)
0

dsS; = St(u(Xt)dt—‘rU(Xt)th),So >0 (2)

whereo is positive valued and, i are nonnegative maps. L&t be the filtration ofF generated by

X, andS; and satisfying the usual hypothesis. In [4] it is shown that this market model does admit an
equivalent martingale measure, thus it is arbitrage free wdlaissible strategylit turns out that the
above market is incomplete. Therefore, no-arbitrage price of a derivative might not be unique. In this
paper we consider locally risk minimizing option price which exists uniquely [4]. For more details

about this pricing approach in a more general setup we refer [11] and the references therein.

In order to obtain a representation of the option price we further assume that

(A1) () F(yli) € C*([0,00)) Vi
(i) F(y|i) < 1Viandy >0

(iii)(p i;) is an irreducible probability matrix.

We denote the instantaneous transition rate functiok gg) which is given by

P(XTn+1 = ja y < YTn+1 < y+ Ay’XTn = iv YTn+1 > y)

.
Bt )
Thus;;(y) = pij 1f%(|;)lz) '

In this paper, as an example, we consider a European call optia$}, with strike price K and

maturity time7". Then the contingent claiitS7 — K)* is Fr measurable. It is shown in [4] and [5]
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that the locally risk minimizing price of this claim at tintéés a function oft, S;, X; andY; and that,
 say, is the unigue solution in the class of functions of at most linear growth of the initial boundary

value problem

0 o) 0 . 1 5 .\ 502 .

8t (t S,Z,y) + ai(p(t 37Z,y) + T( ) as(p(tv 37Z7y) + 502(2)52@90(157 37Z7y)

+ ) X W)lelt, s, 5.0) = @lt, 5,0, 9)] = r(@)elt, 5,8, 9), 3)
J#i

defined on

D= {(t,s,i,9) € (0,T) x RT x X x (0,T)|y € (0,t)}, (4)
with boundary conditions

liﬁ)l o(t,s,i,y) =0, vVt €0,T],

o(T,s,i,y) = (s —K)T; seR" 0<y<T; i=1.2,..,0. (5)

In [5] it is shown that the above problem is equivalent to a Volterra integral equation of second

kind which can be comfortably solved numerically using a step by step quadrature method.
3. APPROXIMATION OF TRANSITION RATE

We augment the semi-Markov proce&s with the holding time proces¥; to obtain a process
(X,Y) = (X, Y:)e>0, Which is clearly Markov.

Because of the deterministic nature(df;, Y;) during every intervalT,,, T,,+1 ), the dynamics of
(Xt,Y:) can be described by a discrete time Markov progess, Y, ),,>0 where we defineX.
X7, andY,, := Yy, =T, — T,,_1. Thus the augmented Markov process can uniquely be specified

with initial distribution asP (X, = j) := p(j), Y, = 0 and the following semi-Markov kernel,
P(Xn+1 :j’YnJrl < y‘XOaXla-~-3XnaY1>"'7Yn) = anjF(y‘Xn) (CL.S.) (6)

forally e R™ andl < j < 6. We denoteQ;;(y) = pi F(yli) Vi # 3, Ni(y) = D e jozi Nig (¥)s
= J¢ Xi(u)du. We seeF(yli) = 3-7_, Qi;(y) and also

T _ iy = Y pufuli) = )Y Al

JEX jFi JGX J#i
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By solving the above ODE faoF', one obtains
In(1 — F(y|i)) = —A;(y), which impliesF'(y|i) = 1 — exp(—Ai(y)).

Hence
0
Z@m = 1—exp(—Ai(y)). (7)

Consider a history of augmented Markov process censored at fixed time
H(T) = (X07X17 e 7XNT7 Y17Y27 U 7YN7—7 UT):

where N is the number of transitions before timeandU, := 7 — T is the backward recur-
rence time. The associated log-likelihood function is maximized to obtain the maximum likelihood

estimator (MLE) of the transition rate functiok,;(-). The likelihood function fof(7) is

Nr—1

L(7) = p(Xo)(1 —ZQXN (U)) T pxixipn f (YVin | X0).

1=0
Thus from (7),

N-—1

p(Xo) T L(7) = exp(—Axy, (Un) [ exp(—Ax, (Yie)Ax, x40 (Yi).
=0

Then we consider the log-likelihood as

N, -1

I(T) = 10g{p<X0)_1L(T)} = Z (log /\X17X1+1 (YlJrl) AXZ( l+1)) - AXNT (UT)-
=0

We consider(vy)o<k<rr—1, @ regular subdivision df), 7] with stepA, = = andM = |71+¢]

wherea > 0, to define fori £ j € X andy > 0

M-1
) = Z )‘ijkl(vk,vk_;,_l}(y)’ (8)
k=0

where\; i = \ij(vi). After replacing) by the step function\* in the expression df ) one obtains,

M-1
D (digelog Agji — Aijrvin), 9)

i,j€S k=0
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where
No—1
Vig 1= Z (Yie1 A k1 — V) i x (vg,00) (Xt Yi1) + (Ur A Vg1 — V) it x (vp,00) (XN, Ur ),
1=0
and

N-—1

dijk = Z 1{i}><{j}><(vk,vk+1](Xl’Xl"‘l’yl‘*‘l)’
=0

Hence the estimator of;;;, which maximizes the functional in (9), is given by

. dijr/vie 1f v, > 0;

Nijk = (10)

0 otherwise.

Thus we obtain an estimator &f;(y), given by,

M-1

k=0

We have the following result.

Lemma3.1 — Fixa € (0,1/2). Under the assumptions of (Al), the estimanf(’,r), [

uniformly strongly consistent fo;;(-), on [0, 7] in the sense that

max sup |5\¢j(y,7) — Xij(y)| — 0, almost surely, ag- — oo.
Z;A‘] yE[O,T}

PrROOF : If (A1) holds, one can directly derive from the definition &f;(y) that A;;(y)

Dij 1f1(;vy(|;)|z) Now by summing ovej € X' \ {i} and then integrating of), y) both the sides,

obtainsA;(y) = —In(1 — F(y|i)). Thus under assumption (A1) (y) is in C2([0, 00)). Hence,

1)

one

for

anyi # j, A : [0,00) — [0, 00) is well defined and continuously differentiable. Now the rest of the

proof follows from Theorem 1(b) of [9].

In view of the above Lemma, we fix € (0,1/2) for the rest of this paper. Note that-, 7)

|

is

a step function and thus it is discontinuous. We aim to obtain an approximatibinahe class of

smooth functions so that the approximation can be used to obtain an approximated price f

unction by

solving appropriate system of differential equations. To this end we conBidspline interpolation

of A(-, 7). We first extend it orR by assigning\(y, 7) = A(0,7) Vy < 0 and(y, 7) = (T, 7) Vy

> Ty := argmaxyc (7,7 X(y,r) and setting, := kA, forall k € Z. Set
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2
Bl = (V12 _(va(l;’fk)ﬂ — ) Hor) )
n < (y — vi) (Vkr2 — ¥) n (k43 — Y)Y — Vry1)
(Vkg2 — Vkg1) (Vkg2 — V) (Vkg2 — Ukt1) (Vkg3 — Ukt
(kg3 — 9)2
(Vk43 — Vg2) (Vks3 — Ukl

) > 1[vk+1,vk+2) (y)

+

) 1[”k+2»vk+3) <y)

For eachi # j, we interpolate the data points, Xij(k,l)) and we denote the spline interpolation

of \i; as),; which is given by

k=—o00 k=—o00

Since for each # j, S\ijk is non-negative for ever¥, from the property otB-spIine,S\Zj is a

non-negative function.

Lemma3.2 — Under (A1)
max sup |)\Z](y, )= Nij(y, )| = 0
7 yelo,T]

asT — oQ.

PROOF : From Theorem 6.6.4 of [7], for each # j, sup,cpozy [ Aij(y,7) — Aij(y,7)]
< 2w[07T](5\ij(-,T);A7—) wherew;(f,9) = sup{|f(t) — f(s)||t,s € I, |t — s| = &} is the mod-
ulus of continuity. Again it follows from Lemma 3.1, that for a given> 0 there is aV such that
P(N < oo) = 1and forr > N, max;.;j supycpo 1 \Xij(y, 7) — Xij(y)| < e. Thus forr > N,
W[O’T}(S\ij(',T); Ar) < wior(Aij(+); Ar) + 2e. Sincel;;(+) is continuous, its modulus of continuity
converges to zero a&, — 0. Therefore, we get as — oo, u)(j\ij(',T);AT) — 0. Hence the

result. O
Lemma 3.1 and 3.2 lead to the following result.

Theorem3.3— Under (Al)

max sup |Ai; (y,7) — Xij (¥)] — 0, a.s.,as T — oc.
5 [0,T)
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4. APPROXIMATION OF PRICE FUNCTION

It is shown in the previous section that a convergent sequence of smooth approximations of transition
rate function can be constructed using a combination of non-parametric MLBaspline. Having

this result, it is tempting to solve (3)-(5) with the smooth approximation of transition rate to obtain
an approximation of price function. Needless to mention that such approximation is reliable only
when certain continuous dependency of the solution on the transition rate function is established for
the concerned initial boundary value problem. Such result is not readily available for the non-local
degenerate type of parabolic PDE, we consider here. In this section we establish the convergence
of such approximate price function to the true price. For the sake of preciseness we propose the

following definition.

Definition4.1 — LetA : X x X x [0,00) — [0,00) an approximation of the transition rate
function A and¢ the solution of the problem (3)-(5). If (3)-(5), after the functibiis replaced by,
admits a unique classical solutign theng is called theTBA (Transition rate based approximation)

of » with parameter).

Goswamiet al. [5] presents a set of fairly general sufficient conditiom\omhich ensures exis-

tence of a unique classical solution of the modified equation.

Lemma4.1 — Under (A1), the TBA ofp (as in (3)-(5)) with paramete}(-, 7) (as in (12)) exists
for sufficiently large value of.

PrOOF: We definej\i(y,T) = E#i ;\ij(y,T), Ai(yﬂ') = fé" S\i(y,T)dy, F(y|i,7) =1 -
exp(—A;(y, 7)), andp;; = [5° %1(070@(5\1’(%T))dﬁ(y|i,7’). If we can show that there is a
70 > 0 such that forr > 7y, the sufficient conditions in [5] hold i.e., (§(-, 7) is in C*([0, o0)), (i)

lim, . Aj(y, ) = oo for eachi, and (jii) p;; is irreducible, then the existence of TBA gffollows

from Theorem 3.2 of [5].

We note that from the property @-spline, (i) holds. Again since for eacghlim, .., Ai(y) =
limy .o —In(1 — F(y|i)) = oo, from Theorem 3.3 there is@ > 0 such that forr > 7, (i) holds.

We first note that to prove (jii), it is sufficient to show thapif > 0 for somei # j, thenp;; is also

positive. Now ifp;; > 0, Aij(y)(= pijlf%ai)) is not identically zero. Hence using Theorem 3.3,

there exists a; > 0 such that for any > 71, A;;(y, 7) is not identically zero. Thus
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X > Nij(y, 7) 5 Ny
i = < 10.00y(Ni(y, 7)) dF (y|i, T
P = [ T 0 (i A7)
= /0 Nij (g, T)e MO dy
> 0. O

We state the main result below.

Theorem4.2— Under (Al) for a large value of, let, 5™ be the TBA ofp with parameteﬁ\(-, 7).

Then,p™ converges t@ point-wise, ag — oo.
In order to prove this theorem, we need the the following lemma.
Lemmad.3 — Let{S;}:>0 be asin (2). Then
g So . cr
E[/ Sidt] < = (e“F —1) (13)
0 C
for some positive constaut.

PROOF: We know, (2) has a closed form solution given by

S, = Soexp { /O (X - Lo+ /0 t a(Xu>dwu] | (14)

We introduce the following constants

¢ = max {u(i) - ;(72(1')} 4= max{o2(i)}.

ieX ieX
Clearly,
t
Sy < Sp exp(ct) exp </ O'(Xu)qu> . (15)
0
We observe,
t o0 T\t
/ (X)W, = / o(Xg, )W,
0 n—1 Th_1At

= Z o(Xr, ) (Wr,at — W, yat)-
n=1

Hence, the conditional distribution qﬁa(Xu)qu given ¥ is normal with mean zero and
variance

oo
D (X, )T At =Ty AE),

n=1
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whereFX is the filtration of 7 generated byX = {1 Xuuefo,g-

Now using the formula of variance of a log-normal random variable, we get,

E [exp ( /0 ta(Xu)qu)] - E E [exp ( /0 ta(Xu)qu> ‘ftX”

= F exp( ZJ X, )Ty /\t—Tn_l/\t)>]
( ZT At — 1/\t)>

IN
&=
@
¥

S

Using above inequality we obtain from (15),
E(S;) < SoeCte%t = Soe(”%)t,

SincesS; is nonnegative we apply Tonelli’'s theorem and the above relation to get,

T T
E[ / stdt} _ / ES,dt
0 0
T
< S / o(e+H)tgs
0

- <ci0§> (8 -1). .

PrROOF OFTHEOREM4.2 : We define the difference of the functiongnd its TBA™ to be,
wT(ta S, Z'7 y) = QO(t, S, iv y) - @T(t7 S, 7;7 y)

Now, by considering the initial boundary value problems satisfied®ys, i, y) and@” (¢, s, i, y)

respectively, one obtains directly that satisfies the following initial boundary value problem,

0 . L, 0 . 1 5. 502 .
7¢(t78717y) + 7’(@)3%1#@757%,@)4‘ 50 (Z)S @#’(@&%y)

ot 2
+ ZAij(y)(¢(t’87jv 0) - ¢(t’87i7y))
J#i
= T(i)w(ta S, 1, y) - Z(Aw(y) - S‘ij(:% T))(QZ)T(tv 5,7, O) - @T(tv S, 1, y)),
J#i

defined on

D :={(t,s,i,y) € (0,T) x RT x X x (0,T)|y € (0,%)},
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with conditions

lif(r)ld)(t,s,i,y) =0, Vtel0,T],

w(T7S7i7y):0, S€R+; OSyST; 2.2172,...79_
We rewrite the above system of equations as,

D (t5,8,9) + Ll 5,15) = 101 5,8.9) — 1715, (16)

where

2

(O ts3,i00) = 1015+ 30205 | 0t + 3 ) (000,5,5,0) = bt 501.0).
J#

and

FT(t s, i) =Y (i (W) = Aig(y, 7)) (@7 (L, 5,4,0) — §7 (¢, 5,4, ).
j#i
Note that,C is the infinitesimal generator ¢6;, X;,Y;) satisfying

dSy = Sp(r(X;—)dt + o(X—)dWr),

where X; is a semi-Markov process with transition ratg(y) andY; is the holding time process.
Then, using Feynman-Kac formula,
T ¢/ ~
VT (t, s,1,y) = E[/ exp —/ r(Xy)du | 0" (#)dt'|S; = s, Xy =i, Yy = 1], @7
t t
where,

0" (t) = f7(t, Sy, Xu, V).

From Theorem 3.3, we have the uniform convergence gy, 7) to \;;(y) in y € [0, T], almost

surely. Or, in other words we get, for any givep> 0), 3N s.t. P(N < oo) = 1 and forr > N,

[N (y, 7) — Nij(y)| <e Vy€[0,T]. (18)

Using Theorem 3.2 of [5], there exists constanteindk, such thad < @7 (t, s,i,y) < ki + kas

forall i,y andr > N. Hence from (18),

fT(t, s,i,y) < e(ky + kos).
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Therefore, by applying Lemma 4.3, we assert that for all large)” (¢,w)| is dominated by a

fixed integrable function. Thus using dominated convergence theorem, we can see
T ¢ ~
hmwT(t?Svi?y) = hmE[/ exXp _/ 7a(“)(u)du WT(t/)dt/’St = S7Xt = Z?E = y]
T T t t

T t/
= E[/ exp <—/ r(Xu)du> limn™(t")dt'|Sy = 5, Xy = i, Yy = ]
t t T
= 0.

Hences" converges t@ point-wise, ag — oo. O

Remark4.1 : In this section, as an example, we consider a European call option to illustrate the
the convergence of TBA of price. It is important to note that one can have similar convergence results
for other derivatives such as put option price, barrier option price, compound option price etc. as the

prices satisfy similar system of PDEs.
5. NUMERICAL EXPERIMENT

We firstly illustrate the convergence result as in Lemma 3.1 through considering an example of a
semi-Markov process and estimating its transition rate over different time scales of the history of the
process. In order to compute and present the actual estimation error, we simulate the example having

three hypothetical statdd, 2, 3} and the holding time distribution as

fly) :=ye ¥ fory > 0,
and we choose the transition matrix as

00 0.1 09
(pij)=1 04 0.0 0.6
0.7 0.3 0.0

Therefore, the theoretical transition rate function for gny 0, is given by,

R A (1) S N .
Nij(y) = pig Foly Py 41 Vi,j € S andi # j.

The convergence as — oo is illustrated by plotting two different norms of the difference be-

tween) and \* on [0,T] whereT = 4 for many different values of. Although the convergence
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Figure 1: Convergence of MLE
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Figure 2: Convergence of approximation error

result is established only for sup norm, but we find it interesting to illustraté&thmorm also. In the

Figure 1,7 variable is taken on the horizontal axis and the computed norms of error is plotted on the

vertical axis. In the plots, logarithmic trend lines are fitted to visualize the trends.

To illustrate the convergence of TBA of a European call option price function we consider a

market where the volatility and instantaneous interest rate at each regime are given as follows

(r(1),7(2),7(3))
(0(1),0(2),0(3))

(0.3,0.6,0.7)

(0.2,0.2,0.2).

The strike priceX is 1 and the maturity" is 1 unit. Figure 2 shows convergence of TBA of price

function through the plot of sup norm of the error for the estimation, computed as
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Error := [[97(0, -, 4, 0) 1o 5] || sup-

The L2 norm of 47 (0, -, 4, 0)1jo5 is also plotted and finally a logarithmic trend line is added to

each of the data series.
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