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We investigate the bulk behaviour of singular values and/or eigenvalues of two types of block

random matrices. In the first one, we allow unrestricted structure of orderm × p with n × n

blocks and in the second one we allowm ×m Wigner structure with symmetricn × n blocks.

Different rows of blocks are assumed to be independent while the blocks within any row satisfy a

weak dependence assumption that allows for some repetition of random variables among nearby

blocks. In general,n can be finite or can grow to infinity. Suppose the input random variables are

i.i.d. with mean0 and variance1 with finite moments of all orders. We prove that under certain

conditions, the Mařcenko-Pastur result holds in the first model whenm → ∞ and m
p → c ∈

(0,∞), and the semicircular result holds in the second model whenm →∞. These in particular

generalize the bulk behaviour results of Loubaton [10].

Key words : Block matrix; Hankel matrix; Toeplitz matrix; symmetric circulant matrix; Wigner

matrix; limit spectral distribution; semi-circle law; Marchenko-Pastur law; Carleman’s condition.

1. INTRODUCTION

Let An be anyn × n real symmetric or hermitian matrix with eigenvaluesλ1, . . . , λn ∈ R. The

empirical spectral measureµn of An is the measure onR given by

µn =
1
n

n∑

i=1

δλi , (1.1)

whereδx is the Dirac delta measure atx. The corresponding probability distribution functionFAn

onR is known as theempirical spectral distribution(ESD) ofAn. For us the entries ofAn shall be
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random, and henceFAn shall be arandom distribution function. If FAn converges weakly almost

surely to a non-random distribution functionF , then it is called thelimiting spectral distribution

(LSD) of An. We note that in the random matrix literature, the almost sure convergence is often

replaced by the weaker notion of convergence in probability. Moreover, the limitF is often allowed

to be random. In all such cases, we shall continue to call the limit to be the LSD. All our results hold

in the almost sure sense with a non-random limit.

Two basic results on LSD are the following. In particular they can be found in Bose and Sen [6].

Both have a long history. Several authors have worked on these matrices under different assumptions.

The earliest references seem to be Wigner [14] (for the Wigner matrix) and Marčenko and Pastur [11]

(for the sample variance-covariance matrix). SupposeWn is a sequence of symmetric matrices with

real entries that are i.i.d. with mean0 and variance1. Then the LSD of 1√
n
Wn (they are called Wigner

matrices) is Wigner’s semicircular law which is supported on the interval[−2, 2] and has density

fW (x) =
1
2π

√
4− x2, I(|x| ≤ 2).

On the other hand supposeXn,p is ann× p random matrix whose all entries are i.i.d. with mean

0 and variance1. If n → ∞ and n
p → c ∈ (0,∞) thenthe LSD of 1

pXn,pX
∗
n,p (calledthe sample

covariance matrix or the Wishart matrix) is the Marčenko-Pastur law (MP (c) with parameterc which

is defined as follows: it has a mass1− 1
c at the origin if c > 1 and has a density

fc(x) =

{
1

2πxc

√
(b− x)(x− a) if a ≤ x ≤ b

0 otherwise

wherea = (1−√c)2 andb = (1 +
√

c)2.

Thisarticle is concerned with the following two kinds of block matrices.

Bn(m, p) :=




An,(1,1) . . . An,(1,p)

An,(2,1) . . . An,(2,p)

...

An,(m,1) . . . An,(m,p)




(1.2)

and

Bn(m) :=




An,(1,1) An,(1,2) . . . An,(1,m−1) An,(1,m)

An,(2,1) An,(2,2) . . . An,(2,m−1) An,(2,m)

...

An,(m,1) An,(m,2) . . . An,(m,m−1) An,(m,m)




. (1.3)
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with the additional conditionA∗n,(i,j) = An,(j,i) for (1.3). HereAn,(i,j)’s are square matrices of order

n. We use the terminologyinner dimensionandouter dimensionfor the block size and dimension of

the block structure respectively. For example, the outer and inner dimension ofBn(m, p) arem × p

andn× n respectively.

There is a growing literature on the LSD of block random matrices, under different assumptions

on the structure of the blocks, on how the blocks are arranged in the matrix and on how the inner and

outer dimensions grow.

Oraby [12] considered two types of block matrices. In one, the blocks are independent Wigner

matrices with symmetric block structure. Assuming that the outer dimension remains fixed and the

inner dimension tends to∞, the author proved the existence of the LSD. In particular, the exact form

of the LSD was found when the block structure is Symmetric Circulant. In the other, the blocks are

Symmetric Circulant arranged in Wigner pattern. In this case an exact expression of the LSD was

obtained when the outer dimension grows to infinity. These results were generalized by Banerjee

and Bose [3] who replaced the Wigner blocks by a general class of “Wigner type” blocks. They also

proved that for certain symmetric block matrices with independent Wigner type blocks, the LSD is

semicircular when both the outer and inner dimensions grow to infinity. Gazzahet al. [8] researched

the asymptotic behaviour of eigenvalue distribution for deterministic block Toeplitz matrices. Rashidi

Faret al. [13] considered block matrices where the entries are complex Gaussian and the blocks are

arranged in certain patterns. They proved the existence of LSD and found functional equations for

the Stieltjes transform for the LSD. The proofs use an operator-valued free probability approach and

Wicks formula for moments of Gaussian variables. Liet al. [9] studied LSD of block Toeplitz and

Hankel matrices. They established the LSD when the outer dimension and inner dimension both grow

to infinity or when only the outer dimension does so. Basuet al. [4] studied the LSD of random block

matrices where the blocks are arranged in a Toeplitz pattern. They considered two types of blocks,

in the first one there is no further assumption on the structure of the blocks and in the second one the

blocks are asymmetric Toeplitz; either the outer or the inner dimension is fixed or both of them grow

to infinity. They showed that LSD exists in all the cases. Ding [7] considered hermitian matrices with

independent rectangular blocks. The random variables inside a particular block were taken to be i.i.d.

with mean0 and fixed variance and the random variables in different blocks were allowed to have

different variances. The existence of the LSD was proved in this case and the exact forms of the LSD

were found for a few special cases.

Loubaton [10] considered matricesWN = (W (1)T
N , . . . , W

(M)T
N )T where(W (m)

N )M
m=1 are inde-

pendentL × N block Hankel matrices with i.i.d. complex Gaussian entries. Under the assumption
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LM
N → c ∈ (0,∞) andM → ∞, it was shown that the LSD ofWNW ∗

N is almost surelyMP (c).

The proof is based on analysing the Stieltjes transform (the resolvent) of the ESD.

Observe that ifn = 1, Bn(m, p)Bn(m, p)∗ andBn(m) reduce to the Wishart and Wigner ma-

trices respectively. Thus it is natural to ask what happens for generaln. We let m → ∞ and
m
p → c ∈ (0,∞) andin Theorems 2.1 and 2.2, we provide sufficient conditions so that the LSD of
1
pnBn(m, p)Bn(m, p)∗ and 1√

mn
Bn(m) areMP (c) and the semicircular law respectively. Our major

assumption is that different rows of blocks are independent whereas within each row the blocks are

K-dependent. Loubaton’s [10] model satisfies all the assumptions of Theorem 2.1. In Corollary 2.1,

we derive his LSD result. However, it must be noted that the author dealt with the almost sure location

of eigenvalues while we deal with only the LSD.

2. MAIN RESULTS

Instead of using the Stieltjes transform, we take a combinatorial approach to our results. It is

convenient to bring the different patterns such as the Toeplitz, Hankel, Symmetric Circulant un-

der a common umbrella. A patterned matrix is defined through a link functionLn. For eachn,

Ln : {0, 1, . . . , n} → Zd is a function (d = 1 or 2). A patterned matrixAn of ordern × n with

link function Ln is defined asAn = ((xLn(i,j)))1≤i,j≤n. Here{xi,j} or {xi} is defined to be the

input sequence of random variables. For notational convenience we writeL for Ln. Some common

(symmetric) link functions are given by

LW (i, j) = (min(i, j), max(i, j)), (Wigner)

LT (i, j) = |i− j|, (Toeplitz)

LH(i, j) = i + j, (Hankel) (2.1)

LRC(i, j) = (i + j) mod n, (Reverse Circulant)

LSC(i, j) = n/2− |n/2− |i− j|| (Symmetric Circulant).

Note that the block matrices also have a corresponding link function with a corresponding input

sequence of matrices. We now introduce an important property for link functions, which we call

Property A.

Definition2.1 (Property A) — The link functionL satisfies Property A if

#{l | 1 ≤ l ≤ n,L(k, l) = t} ∨#{l | 1 ≤ l ≤ n,L(l, k) = t} (2.2)

≤ 1 ∀ t ∈ Zd ∀ 1 ≤ k ≤ n ∈ N.
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This essentially says that along any row or column there is at most one occurrence of a particular

input random variable. Note that the Wigner, Hankel and Reverse Circulant link functions satisfy

Property A. The Symmetric Circulant and Toeplitz link functions satisfy the following more relaxed

Property B that was heavily used in [6]. We shall use Property B in our proofs.

Definition2.2 (Property B) — The link functionL is said to satisfy Property B if

sup
n

sup
t∈Zd

sup
1≤k≤n

#{l | 1 ≤ l ≤ n,L(k, l) = t} ∨#{l | 1 ≤ l ≤ n,L(l, k) = t} = ∆ < ∞. (2.3)

Assumption2.1 — The input random variables are i.i.d. (possibly) complex valued distributed

identically asX such thatE[X] = 0, E[|X|2] = 1 andE[|X|h] < ∞ ∀h ∈ N.

Theorem2.1 — SupposeBn(m, p) satisfies Property A,m → ∞ and m
p → c, 0 < c < ∞.

Suppose the input random variables satisfy Assumption 2.1 and the matrices{An,i}i∈N2 satisfy the

following: the entries of the matricesAn,(i1,i2) andAn,(i3,i4) are independent ifi1 6= i3 for anyi2 and

i4. Also, the entries ofAn,(i,j1) andAn,(i,j2) are independent if|j1 − j2| ≥ K for some fixedK ∈ N.

Then almost surely the LSD of1pnBn(m, p)Bn(m, p)∗ is MP (c).

The LSD result of Loubaton [10] follows as a simple Corollary to Theorem 2.1.

Corollary 2.1 (Loubaton [10]) — LetWN = (W (1)T
N , . . . , W

(M)T
N )T be anML×N block matrix

where(W (i)
N )M

i=1 are independentL × N Hankel matrices. LetW (m)
N (i, j) := wm,i+j−1. Assume

that(wm,n)1≤m≤M,1≤n≤N+L−1 are i.i.d. complex Gaussian withE[|wm,n|2] = σ2

N andE[w2
m,n] = 0.

If M →∞ and ML
N = cN → c ∈ (0,∞) thenthe LSD of 1

σWNW ∗
N is almost surelyMP (c).

Theorem2.2— SupposeBn(m) satisfies Property A. Supposem → ∞, the input random vari-

ables satisfy Assumption 2.1 and the following condition is satisfied.

1. The entries of the matricesAn,(i1,i2) and An,(i3,i4) are independent ifi1 6= i3, i2 ≥ i1 and

i4 ≥ i3. Also, the entries ofAn,(i,j1) and An,(i,j2) are independent ifi ≤ min{j1, j2} and

|j1 − j2| ≥ K for some fixedK ∈ N.

Then almost surely the LSD of1√
mn
Bn(m) is the semicircular law.

Remark2.1 : We emphasize that Theorems 2.1 and 2.2 hold for any value ofn. In particular,n

can be fixed or grow to infinity. However, ifn is fixed then the results may not hold in the absence

of Property A. This is clear from Corollary 1 of Oraby [12] where large Wigner block structure with

independent finite dimensional Symmetric Circulant blocks was considered and it was shown that

the LSD is not the semicircle law. As discussed earlier, Symmetric Circulant matrices do not satisfy
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Property A. Nevertheless, from Theorem 3.1 it is clear that ifn → ∞ then the LSD of Wigner

matrices with independent Symmetric Circulant blocks is indeed semicircular.

3. PROOFS

Proofs of Theorems 2.1, 2.2 and 3.1 (given later) are similar. We only prove Theorem 2.1. We shall

need a few preliminaries; for more details see Bose and Sen [6]. In particular the following notion is

taken from that paper.

SupposeAn is hermitian. Thehth moments of the ESD is given by

h-th moment of FAn =
1
n

n∑

i=1

λh
i =

1
n

Tr(Ah
n) = βh(An) (say). (3.1)

whereTr denotes the trace of a matrix. To show the almost sure existence of the LSD, it is enough to

show:

1. (M1) For everyh ≥ 1, E[βh(An)] → βh

2. (M4)
∑∞

n=1 E[βh(An)− E(βh(An))]4 < ∞ for everyh ≥ 1.

3. (C) The sequence{βh} satisfies Carleman’s condition
∑∞

h=1 β
−1/2h
2h = ∞.

The R.S. of (3.1) is often represented in terms of circuits and words. Acircuit of lengthl(π) := h

is any functionπ : {0, 1, 2, . . . , h} → {1, 2, . . . , n} with π(0) = π(h). For a patterned matrixAn

with link functionL the R.S. of (3.1) equals

1
n

∑

π: l(π)=h

x(L(π(0),π(1)))xL(π(1),π(2)) . . . xL(π(h−1),π(h)) :=
1
n

∑

π: l(π)=h

xπ (say).

k circuitsπ1, . . . , πk arejointly matchedif eachL-value occurs at least twice across all circuits.

They arecross matchedif each circuit has at least oneL-value which occurs in at least one of the

other circuits.

Circuits π1 and π2 are said to beequivalentif and only if their L values match at the same

locations. That is, for alli, j, {L(π1(i−1), π1(i)) = L(π1(j−1), π1(j))} ⇔ {L(π2(i−1), π2(i)) =

L(π2(j − 1), π2(j))}.
This defines an equivalence relation. Any equivalence class of circuits can be indexed by a par-

tition of {1, 2, . . . , h}. Each block of a given partition identifies the positions where theL-matches

take place. We can label these partitions bywordsw of lengthh of letters where the first occurrence
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of each letter is in alphabetic order. For example ifh = 5 then the partition{{1, 3, 5}{2, 4}} is repre-

sented by the wordababa. This identifies the circuitsπ such thatL(π(0), π(1)) = L(π(2), π(3)) =

L(π(4), π(5)) andL(π(1), π(2)) = L(π(3), π(4)).

The set of words of length2k such that each letter is repeated at least twice is denoted byW2k. A

word w ∈ W2k is called pair matched if each letter is repeated exactly twice. The set of such words

is denoted byP2k. A word w ∈ P2k is calledCatalanif there are no four positionsi1 < i2 < i3 < i4

such thatw[i1] = w[i3] andw[i2] = w[i4]. The set of all Catalan words of length2k is denoted by

C2k. For example, the wordsaabb andabba are “Catalan words”. However the wordabab is not.

Define the following classes of circuits:

Π(w) = {π : w(x) = w(y) ⇔ L(π(x− 1), π(x)) = L(π(y − 1), π(y))},
Π∗(w) = {π : w(x) = w(y) ⇒ L(π(x− 1), π(x)) = L(π(y − 1), π(y))}.

Any i (or π(i) by abuse of notation) will be called avertex. It is generatingif either i = 0 or

w[i] is the first occurrence of a letter. For example, ifw = abbcab thenπ(0), π(1), π(2), π(4) are

generating. For a wordw, l(w) andd(w) stand respectively for the length of the word and the number

of distinct letters in it.

If the link function satisfies Property B then a circuit is completely determined up to a finitely

many choices by its generating vertices. Hence#Π∗(w) = O(nd(w)+1). In fact it is easy to see that

#Π∗(w) ≤ ∆l(w)−d(w)−1nd(w)+1. Moreover, for any wordw, #(Π∗(w)\Π(w)) = O(nd(w)). As a

consequence,limn→∞
#(Π∗(w)\Π(w))

nd(w)+1 → 0. Let

p(w) := lim
n→∞

#Π∗(w)
nd(w)+1

(provided the limit exists). (3.2)

One can express often express the final form of an LSD in terms of thesep(w)’s. See Bose and

Sen [6]. For example, for the Wigner matrix,p(w) = 1 if w ∈ C2k and is0 otherwise. In fact, for all

the link functions in (2.1),p(w) = 1 for all w ∈ C2k.

Even thoughXn,p is not symmetric, there is a suitable extension of the concept of link function

and all related concepts to the Wishart matrix1
pXn,pX

∗
n,p. We give a description of the LSD of the

Wishart matrix in terms ofp(w). Its proof is included in the proof of Theorem 5 of Bose and Sen [6].

Lemma3.1 — Thek th moment ofMP (c) is given byβk =
∑

w∈C2k

p(w) where

p(w) =

{
ct if w ∈ C2k and has(t + 1) and(k − t) generating verices at even and odd positions

0 otherwise.
(3.3)
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So one way of identifying the Marčenko-Pastur law as LSD is to show thatp(w) defined in (3.2)

satisfies (3.3).

3.1 Proof of Theorem 2.1

It is enough to verify (M1) (withβk as in Lemma 3.1), (M4) and (C). Observe that

Tr
[
(Bn(m, p)Bn(m, p)∗)k

]
=

∑

i0,i1,...,i2k−1

Tr
[
An,(i0,i1)A

∗
n,(i2,i1) . . . An,(i2k−2,i2k−1)A

∗
n,(i0,i2k−1)

]

=
∑

π: l(π)=2k

Tr
[
An,(π(0),π(1)) . . . A∗n,(π(2k),π(2k−1))

]

=
∑

π: l(π)=2k

Tr(Aπ) (say). (3.4)

Observe that in the monomial(Bn(m, p)Bn(m, p)∗)k the odd and the even positions are occupied

by Bn(m, p) andBn(m, p)∗ respectively. So we need to modify the concepts of words, circuits etc.

For convenience we shall continue to use the earlier terminology. The(i, j) th of blockBn(m, p)∗

is (An,(j,i))∗. So now the earlier role of(π(2i − 1), π(2i)) for symmetric matrices is now taken

by (π(2i), π(2i − 1)) and in the definition of word any letter at the even positions will denote the

transpose of the corresponding matrix. For example ifw = aabb then it will represent all circuitsπ of

the form(π(0), π(1)) = (π(2), π(1)), (π(2), π(3)) = (π(4), π(3)) and(π(0), π(1)) 6= (π(2), π(3)).

Also for any suchπ, Aπ will be MM∗NN∗ whereM = An,(π(0),π(1)) andN = An,(π(2),π(3)). To

keep track of these transformations, we define

f(π, i) :=

{
(π(i), π(i + 1)) if i is even

(π(i + 1), π(i)) otherwise

and

G(π, i) :=

{
An,(π(i),π(i+1)) if i even

(An,(π(i+1),π(i)))∗ otherwise.

Hence the equivalence classΠ(w) induced by a wordw is now defined as

Π(w) := {π | w[i] = w[j] ⇔ f(π, i− 1) = f(π, j − 1)}.

Also let

Aπ =
2k∏

i=1

G(π, i− 1).

We now complete the proof in the following four steps.
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Step1 : Accounting for theK-dependence of the blocks in a row, we construct an apporpriate

equivalence relation on the circuits that will be vital in our proof. Call two matricesAn,(i1,i2) and

An,(i3,i4) as “strongly related” ifi1 = i3 and|i2− i4| < K. We denote this byAn,(i1,i2) ∼s An,(i3,i4).

For any circuitπ, consider all the matrices in the monomialAπ. Two matricesAn,f(π,i) and

An,f(π,j) are called “weakly related”, if there exists a sequence of integersi = i1 < i2 . . . < ir = j

such that

An,f(π,i1) ∼s An,f(π,i2) ∼s . . . ∼s An,f(π,ir−1) ∼s An,f(π,ir).

We denote this equivalence relation byAn,f(π,i) ∼w,π An,f(π,j).

We call two circuitsπ1 andπ2 “R equivalent” if for all i, j

An,f(π1,i) ∼w,π1 An,f(π1,j) ⇔ An,f(π2,i) ∼w,π2 An,f(π2,j).

The “R equivalence” is clearly an equivalence relation on the class of circuits of a fixed length2k.

Every equivalence class is a partition of{1, 2, . . . , 2k} where the “weakly related” matrices are in the

same blocks. Given a wordw we denote the class of all “R equivalent” circuits corresponding tow

by ΠR(w). For example, ifw = aaa, thenΠR(w) will contain the following four kind of circuits:

(a) An,f(π,0) ∼s An,f(π,1) andAn,f(π,1) ∼s An,f(π,2) butAn,f(π,0) �s An,f(π,2).

(b) An,f(π,0) ∼s An,f(π,1) andAn,f(π,0) ∼s An,f(π,2) butAn,f(π,1) �s An,f(π,2).

(c) An,f(π,0) ∼s An,f(π,2) andAn,f(π,1) ∼s An,f(π,2) butAn,f(π,0) �s An,f(π,1).

(d) An,f(π,0) ∼s An,f(π,1) andAn,f(π,1) ∼s An,f(π,2) andAn,f(π,1) ∼s An,f(π,2).

Now observe that if there exists a circuitπ of length2k such thatAn,(i1,i2) ∼w,π An,(j1,j2) then

i1 = j1 and|i2 − j2| < 2kK. As a consequence,

#ΠR(w) ≤ (4kK)2k−d(w)mt(w)+1pd(w)−t(w) (3.5)

wheret(w) + 1 is the number of generating vertices at the even positons ofw.

Step2 : We now show that it is enough to consider onlyπ ∈ ΠR(w) wherew ∈ C2k. From (3.4)

E

[
1

mn
Tr

(
1
pn
Bn(m, p)Bn(m, p)∗

)k
]

=
1

mpknk+1

∑

{w: l(w)=2k}

∑

π∈ΠR(w)

E Tr(Aπ). (3.6)
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We can breakETr(Aπ) in the following way

ETr(Aπ)
nk+1

=
1

nk+1

∑

π′

(
2k∏

i=1

G(π, i− 1)(π′(i− 1), π′(i))

)

=
1

nk+1

∑

w′

∑

π′∈Π(w′)

E

(
2k∏

i=1

G(π, i− 1)(π′(i− 1), π′(i))

)
.

(3.7)

whereπ′ is a circuit of length2k. From Assumption 2.1, we get a random variableX whose distri-

bution is same as the common distribution of the input random variables. NowE[X] = 0, and hence

if w′ /∈ W2k , then

E

(
2k∏

i=1

G(π, i− 1)(π′(i− 1), π′(i))

)
= 0.

However, ifw′ /∈ W2K , then#Π(w′) ≤ nk+1 and Holder’s inequality implies that

E

(
2k∏

i=1

G(π, i− 1)(π′(i− 1), π′(i))

)
≤ E[|X|2k].

As a consequence, the R.S. of (3.7) (in absolute value) is bounded by

∑

w′∈W2k

#Π(w′)
nk+1

E[|X|2k] ≤ B(2k) E[|X|2k]

whereB(2k) is the number of all possible partitions of the set{1, 2, . . . , 2k}.

Now fix a particularw. If w has a letter occurring exactly once at positionj, then for anyπ ∈
ΠR(w) the matrixG(π, j−1) has all elements independent of the matrixG(π, z−1) for all 1 ≤ z 6=
i ≤ 2k. As a consequence,ETr [Aπ] = E Tr

[∏2k
i=1 G(π, i)

]
= 0. Hence to get a non-trivial value

of E Tr[Aπ] the correspondingw must have all letters repeated at least twice. That in turn shows that

the L.S. of (3.6) is bounded by

1
mpk

∑

w: l(w)=2k

#ΠR(w) E[|X|2k]B(2k).

Now we make the following claim.

Claim : If w ∈ W2k\C2k then #ΠR(w)
mpk → 0 asm →∞.

PROOF : The proof is similar to the proof of part(i) of Theorem 1 in Banerjee and Bose [3].

However, due to difference in the context and notation we give a proof here.

First observe that if any letter inw appears at least thrice then the number of generating vertices

in w is at mostk. As a consequence,#ΠR(w) = O(mk) = o(mpk). Hence we need to consider
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only w ∈ P2k. As w ∈ P2k\C2k, there existi < j < t < l such thatw[i] = w[t] = x (say) and

w[j] = w[l] = y (say). Without loss of generality, leti be the minimum such choice (for some

j, t, l), and for thisi, let j be the maximum such choice (for somet, l). Thus all letters ofw in

{w[j + 1], . . . , w[t − 1]} have both copies in{i + 1, . . . , t − 1}. Now we observe the following for

circuitsπ ∈ ΠR(w).

(a) First fill upπ(0), . . . , π(j− 1). Let the number of generating vertices in{0, . . . , j− 1} bep1.

Then there are at mostO(mp1) choices for these vertices. In this procedure we have fixed the matrix

G(π, i− 1) corresponding to the letterx upto finitely many choices.

(b) AsAn,f(π,i−1) ∼w,π An,f(π,t−1), there are at most4kK choices for the verticesπ(t− 1) and

π(t).

(c) Now we fill up π(t), . . . , π(j + 1) in that order according to the following algorithm. We

consider two sub cases.

(i) The position of the first occurrence of the letter atw[t− 1] is in {0, . . . , j − 1}.

The position of the first occurrence of the letter atw[t− 1] is in {j + 1, . . . , t− 1}.

For sub case (i), clearlyπ(t− 2) has at most4kK choices.

For sub case (ii), fillπ(t − 2) arbitrarily. Observe that this specifies the matrixAn,f(π,t−2). As a

consequence, ifz is the first position of first occurrence ofw[t − 1] thenπ(z − 1) andπ(z) have at

most4kK choices.

We fill the verticesπ(t− 3) to π(j + 1) in similar fashion.

Now w[j + 1] is either the first occurrence or the second occurrence of a letter. Since we have

specifiedAn,f(π,j) by backward traversal, if it is a first occurrence then the second letter is in{j +

2, . . . , t − 1}. As a consequence,(π(j), π(j + 1)) have at most4kK choices. On the other hand if

w[j + 1] is a second occurrence then also we have specified the matrixAn,f(π,j) by specifying the

vertices{π(0), . . . , π(j − 1)}. As a consequence, the generating vertexπ(j) has only finitely many

choices.

Let p2 be the number of generating vertices in{j + 1, . . . , t − 2}. Then the vertices{j, . . . , t}
has at mostO(mp2) choices. On the other hand if the number of generating vertices in between

{t + 1, . . . , 2k} is p3 then rest of the vertices have at mostO(mp3) choices.

So anyπ ∈ ΠR(w) has at mostO(mp1+p2+p3) many choices. However, the total number of

generating vertices inw is p1 + p2 + p3 + 1 = k + 1. Hence#ΠR(w) = O(mk). This proves the
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claim and hence completes Step 2.

Step3 : Now fix w ∈ C2k. We show that

lim
1

mpknk+1

∑

π∈ΠR(w)

E Tr(Aπ) = ct(w). (3.8)

Let π ∈ ΠR(w) be any circuit. We first prove that

ETr(Aπ)
nk+1

=

{
1 if π ∈ Π(w) ∩ΠR(w)

0 if π ∈ ΠR(w)\Π(w).
(3.9)

Considerπ ∈ ΠR(w)\Π(w). As w ∈ C2k, there exists a double letter at positionsj andj + 1.

Without loss of generality we assumej to be even. The odd case will follow similarly. Asj is even,

G(π, j − 1) = A∗n,f(π,j−1) andG(π, j) = An,f(π,j). Recalling the definition off we get that

An,f(π,j−1) = An,(π(j),π(j−1)) and An,f(π,j) = An,(π(j),π(j+1)).

By our assumption,An,(π(j),π(j−1)) ∼w,π An,(π(j),π(j+1)). Suppose they are not equal. By Prop-

erty A ofBn(m, p), we get that

An,(π(j),π(j−1))(π
′(j), π′(j − 1)) 6= An,(π(j),π(j+1))(π

′(j), π(j + 1))

for anyπ′. As a consequence,A∗n,(π(j),π(j−1))(π
′(j−1), π′(j)) andAn,(π(j),π(j+1))(π′(j), π′(j +1))

are independent.

As w ∈ C2k, the double letter at positionsj andj + 1 have not appeared anywhere else inw. So

all the elements ofG(π, j − 1) andG(π, j) are independent of the elements of the matrixG(π, z)

whenz /∈ {j − 1, j}. As a consequence for anyπ′, the random variable

A∗n,(π(j),π(j−1))(π
′(j−1), π′(j)) occurs exactly once in the product

2k∏

i=1

G(π, i− 1)(π′(i− 1), π′(i)).

Hence

E

(
2k∏

i=1

G(π, i− 1)(π′(i− 1), π′(i))

)
= 0

implying ETr(Aπ) = 0.

So we are left with the caseAn,(π(j),π(j−1)) = An,(π(j),π(j+1)), which impliesπ(j−1) = π(j+1).

By applying Property A again we observe that one needsπ′(j − 1) = π′(j + 1) to get a non-trivial

value of

E

(
2k∏

i=1

G(π, i− 1)(π′(i− 1), π′(i))

)
.
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As a consequence,

A∗n,(π(j),π(j−1))(π
′(j − 1), π′(j)) = An,(π(j),π(j+1))(π′(j), π′(j + 1)) := x (say).

In this case,

∑

π′(j−1)=π′(j+1)

E

(
j−1∏

i=1

G(π, i− 1)(π′(i− 1), π′(i)) xx
2k∏

i=j+2

G(π, i− 1)(π′(i− 1), π′(i))




=
∑

π′(j−1)=π′(j+1)

E




j−1∏

i=1

G(π, i− 1)(π′(i− 1), π′(i))
2k∏

i=j+2

G(π, i− 1)(π′(i− 1), π′(i))


 .

(3.10)

Now we use a successive reduction argument.

Notice thatπ(j − 1) = π(j + 1). So if we consider the circuit

πred(i) =

{
π(i) if i ≤ j − 1

π(i + 2) if 2k − 2 ≥ i ≥ j,

then
j−1∏

i=1

G(π, i− 1)
2k∏

i=j+2

G(π, i− 1) =
2k−2∏

i=1

G(πred, i− 1).

Let w′ be the reduced word removing lettersw[j] andw[j + 1]. By definitionw′ ∈ C2k−2 and also

πred ∈ ΠR(w′).

Defineπ′red in a similar fashion. Asπ′(j − 1) = π′(j + 1), the R.S. of (3.10) becomes

∑

{π′red | l(π′red)=2k−2}
n E

(
2k−2∏

i=1

G(πred, i− 1)(π′red(i− 1), π′red(i))

)
.

The factorn appears sinceπ′(j) can be chosen freely.

As w ∈ C2k, we can repeat the above arguments till we get an empty word. Hence to get a non-

zero value forETr(Aπ), the weakly related matrices in
∏2k

i=1 G(π, i − 1) are actually equal. Hence

π ∈ ΠR(w) andETr(Aπ) 6= 0 impliesπ ∈ Π(w). In that caseETr(Aπ) = nk+1.

So (3.9) is established.

As equality of two matrices implies them to be strongly related, it is easy to observe that

#(Π(w)\ΠR)(w) = O(mk) = o(mpk). Solim #Π(w)
mpk = lim #(Π(w)∩ΠR(w))

mpk .



286 DEBAPRATIM BANERJEE AND ARUP BOSE

As a consequence the L.S. of (3.8) becomes

lim
#Π(w)
mpk

. (3.11)

We can now recall the proof of part (a) of Theorem 5 from Bose and Sen [6] to conclude that

the above expression convergesct(w). As a consequence, the L.S. of (3.6) converge to
∑

w∈C2k

ct(w)

verifying the (M1) condition.

Step4 : We now verify (M4). Bose and Sen [6] showed the following: ifAn are hermitian

matrices satisfying Property B with input sequence satisfying Assumption 2.1, then

1
n4

E

[
Tr

(
An√

n

)k

− E

(
Tr

(
An√

n

)k
)]4

= O(n−2). (3.12)

Now, the matrixBn(m, p) is not necessarily symmetric and hence we cannot apply directly the

above result. However, we can still use Property B which is implied by Property A and modify the

arguments of the proof of above result suitably to conclude that

1
n4m4

E

[
Tr

(
Bn(m, p)Bn(m, p)∗

pn

)k

− E

(
Tr

(
Bn(m, p)Bn(m, p)∗

pn

)k
)]4

= O(
1

n2m2
).

(3.13)

This implies that the (M4) condition is satisfied.

Note that condition (C) is satisfied asβk are the moments of theMP (c) law which is bounded.

This proves Theorem 2.1 completely. 2

3.2 Proof of Corollary 2.1

First assume thatN is divisible byL. Then we can writeW (i)
N as(W (i,1)

N . . . W
(i,P )
N ) whereP = N

L

and{W (i,j)
N }P

j=1 have L columns. It is easy to check that the matrixWN satisfies the conditions of

Theorem 2.1 withm = M , n = L, p = P andN = pn. Hence, the result follows in this case.

Now assume thatN is not divisible byL and letP = [NL ] + 1. Hence

WN =
(
W̃N : ∆N

)
where∆N =




W
(1,P )
N

W
(2,P )
N

...

W
(M,P )
N




.

Now

WNW ∗
N = W̃NW̃ ∗

N + ∆N∆∗
N .
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Observe that one can directly use Theorem 2.1 for the matrixW̃NW̃ ∗
N to conclude that its LSD is

MP (c) as discussed earlier.

Let λ1 ≥ . . . ≥ λLM andν1 ≥ . . . ≥ νLM be the eigenvalues ofWNW ∗
N andW̃NW̃ ∗

N respec-

tively.

The LSD ofWNW ∗
N andW̃NW̃ ∗

N are identical almost surely. To verify this, it is enough to verify

the following condition.

1
LM

LM∑

i=1

(λi − νi)2
a.s.→ 0. (3.14)

Now

LM∑

i=1

(λi − νi)2 ≤ Tr
[
(WNW∗

N − W̃NW̃∗
N)(WNW∗

N − W̃NW̃∗
N)∗

]
= Tr(∆N∆∗

N)2.

For a proof of the first inequality, see page 69 of Bhatia [5]. Thus it is now enough to show
1

ML Tr(∆N∆∗
N )2 → 0 almost surely.

Let ∆̃N =
√

Nσ∆N so that the variance of each entry of∆̃N is 1. It is enough to show that

1
MLN2

Tr(∆̃N∆̃∗
N )2 a.s.→ 0. (3.15)

Recall the definitions off andΠ(w) from the proof of Theorem 2.1. Now

1
MLN2

ETr(∆̃N∆̃∗
N )2 =

1
MLN2

∑

π: l(π)=4

E
[
∆̃N (f(π, 0))∆̃∗

N (f(π, 1))∆̃N (f(π, 2))∆̃∗
N (f(π, 3))

]
.

=
1

MLN2

∑

{w: l(w)=4}

∑

π∈Π(w)

E
[
∆̃N (f(π, 0)) . . . ∆̃∗

N (f(π, 3))
]

=
1

MLN2

∑

w∈P4

∑

π∈Π(w)

E
[
∆̃N (f(π, 0)) . . . ∆̃∗

N (f(π, 3))
]

+ R (say).

(3.16)

By applying the standard arguments used so far, the termR tends to 0. The first term is

O


 1

MLN2

∑

w∈P4

#Π(w)


 .

However,#Π(w) = O(L2ML) or O(L(ML)2) depending on whether the word has1 or 2

generating vertices at the even positions. In each of the cases

#Π(w)
MLN2

= O

(
L(ML)2

MLN

)
= O

(
1
M

(ML)2

N2

)
.
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As M → ∞, the R.S. of (3.16) goes to0. As a consequence, the expectation of L.S. of (3.15)

goes to0.

Now we verify (M4). As the number of columns iñ∆N is lesser thanN , the number of jointly

matched and cross matched circuits for∆̃N∆̃∗
N is lesser than that of the matrix̃WNW̃ ∗

N . On the other

hand the dimension of̃∆N∆̃∗
N is still ML×ML. As a consequence, the arguments of verification of

(M4) condition in Theorem 2.1 still hold here. Hence (3.15) is satisfied. As we have already proved

the result forW̃NW̃ ∗
N , the proof is complete. 2

The following variant of Theorem 2.2 is now quite straightforward to prove.

Theorem3.1 — Suppose andm,n → ∞, Bn(m) satisfy and condition1 of Theorem 2.2 holds.

Suppose further that the blocks{An,i}i∈Z2 are symmetric, of same pattern and

1. For any1 ≤ p1, p2, p3 ≤ n, An,(i1,i2)(p1, p2) 6= An,(i1,i3)(p1, p3) if i2 6= i3.

2. For anyw ∈ C2k, p(w) = 1 for the patterned matrix1√
n
An,(1,1) asn →∞.

Then the LSD of 1√
mn
Bn(m) is semicircular.
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