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We investigate the bulk behaviour of singular values and/or eigenvalues of two types of block
random matrices. In the first one, we allow unrestricted structure of enderp with n x n

blocks and in the second one we allawx m Wigner structure with symmetria x n blocks.
Different rows of blocks are assumed to be independent while the blocks within any row satisfy a
weak dependence assumption that allows for some repetition of random variables among nearby
blocks. In generalp can be finite or can grow to infinity. Suppose the input random variables are
i.i.d. with mean0 and variance with finite moments of all orders. We prove that under certain
conditions, the Marenko-Pastur result holds in the first model when— oo and% — c €

(0, 00), and the semicircular result holds in the second model wher co. These in particular
generalize the bulk behaviour results of Loubaton [10].

Key words : Block matrix; Hankel matrix; Toeplitz matrix; symmetric circulant matrix; Wigner
matrix; limit spectral distribution; semi-circle law; Marchenko-Pastur law; Carleman’s condition.

1. INTRODUCTION

Let A,, be anyn x n real symmetric or hermitian matrix with eigenvalugs ..., \, € R. The
empirical spectral measure, of A, is the measure oR given by

1 n
=-S5, 11
% n; Ai (1.1)

whered,, is the Dirac delta measure at The corresponding probability distribution functidt'~
onR is known as thempirical spectral distributiofESD) of 4,,. For us the entries aofl,, shall be
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random, and hencg“~ shall be arandom distribution functionlf F4~ converges weakly almost
surely to a non-random distribution functidn, then it is called thdimiting spectral distribution
(LSD) of A,,. We note that in the random matrix literature, the almost sure convergence is often
replaced by the weaker notion of convergence in probability. Moreover, thefinsitoften allowed

to be random. In all such cases, we shall continue to call the limit to be the LSD. All our results hold
in the almost sure sense with a non-random limit.

Two basic results on LSD are the following. In particular they can be found in Bose and Sen [6].
Both have a long history. Several authors have worked on these matrices under different assumptions.
The earliest references seem to be Wigner [14] (for the Wigner matrix) anceMles and Pastur [11]

(for the sample variance-covariance matrix). Supddses a sequence of symmetric matrices with
real entries that are i.i.d. with me@rand variancé. Then the LSD oanWn (they are called Wigner

Yo
matrices) is Wigner’s semicircular law which is supported on the intérv2| 2] and has density

fw(x) = %M I(|z] < 2).

On the other hand supposg, , is ann x p random matrix whose all entries are i.i.d. with mean
0 and variancd. If n — coand} — ¢ € (0, o0) thenthe LSD of%Xn,pX;;p (calledthe sample
covariance matrix or the Wishart matrix) is the Manko-Pastur law\/ P(c) with parameter which
is defined as follows: it has a maks- % atthe origin ifc > 1 and has a density

f(x) = 2/ (b—z)(z — a) ifaggégb
0 otherwise

wherea = (1 — /c)? andb = (1 + \/c)%.

This article is concerned with the following two kinds of block matrices.

An,(l,l) P An,(l,p)
A, A,

B, (m,p) = | 0 Tney (1.2)
An7(m71) “ e An7(m7p)

and
Anany A2 o Anam-1) Anm)
A, A, S N
]Bn(m) — 7(271) 7(272) ] 7(27 1) 7(27) (1.3)

An,(m,l) An,(m,Z) An,(mnn—l) Am(m,m)
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with the additional conditiomd] , ., = A, .. for (1.3). Hered,, ; ;)'s are square matrices of order
n. We use the terminologyner dimensiorandouter dimensiorfior the block size and dimension of
the block structure respectively. For example, the outer and inner dimensy{«f p) arem x p

andn x n respectively.

There is a growing literature on the LSD of block random matrices, under different assumptions
on the structure of the blocks, on how the blocks are arranged in the matrix and on how the inner and
outer dimensions grow.

Oraby [12] considered two types of block matrices. In one, the blocks are independent Wigner
matrices with symmetric block structure. Assuming that the outer dimension remains fixed and the
inner dimension tends tso, the author proved the existence of the LSD. In particular, the exact form
of the LSD was found when the block structure is Symmetric Circulant. In the other, the blocks are
Symmetric Circulant arranged in Wigner pattern. In this case an exact expression of the LSD was
obtained when the outer dimension grows to infinity. These results were generalized by Banerjee
and Bose [3] who replaced the Wigner blocks by a general class of “Wigner type” blocks. They also
proved that for certain symmetric block matrices with independent Wigner type blocks, the LSD is
semicircular when both the outer and inner dimensions grow to infinity. Gaszlh[8] researched
the asymptotic behaviour of eigenvalue distribution for deterministic block Toeplitz matrices. Rashidi
Faret al. [13] considered block matrices where the entries are complex Gaussian and the blocks are
arranged in certain patterns. They proved the existence of LSD and found functional equations for
the Stieltjes transform for the LSD. The proofs use an operator-valued free probability approach and
Wicks formula for moments of Gaussian variables.eLal. [9] studied LSD of block Toeplitz and
Hankel matrices. They established the LSD when the outer dimension and inner dimension both grow
to infinity or when only the outer dimension does so. Betsal. [4] studied the LSD of random block
matrices where the blocks are arranged in a Toeplitz pattern. They considered two types of blocks,
in the first one there is no further assumption on the structure of the blocks and in the second one the
blocks are asymmetric Toeplitz; either the outer or the inner dimension is fixed or both of them grow
to infinity. They showed that LSD exists in all the cases. Ding [7] considered hermitian matrices with
independent rectangular blocks. The random variables inside a particular block were taken to be i.i.d.
with mean0 and fixed variance and the random variables in different blocks were allowed to have
different variances. The existence of the LSD was proved in this case and the exact forms of the LSD
were found for a few special cases.

Loubaton [10] considered matricéEy = (W](Vl)T, .. .,W](VM)T)T Where(W](Vm))M are inde-

m=1

pendentL x N block Hankel matrices with i.i.d. complex Gaussian entries. Under the assumption
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LM — ¢ € (0,00) andM — oo, it was shown that the LSD d/y W, is almost surelyM P(c).
The proof is based on analysing the Stieltjes transform (the resolvent) of the ESD.

Observe that it = 1, B,,(m, p)B,(m,p)* andB, (m) reduce to the Wishart and Wigner ma-
trices respectively. Thus it is natural to ask what happens for generdVe letm — oo and
e (0,00) andin Theorems 2.1 and 2.2, we provide sufficient conditions so that the LSD of
Z%I[Bn(m,p)IBSn(m,p)* andﬁBn(m) areM P(c) and the semicircular law respectively. Our major
assumption is that different rows of blocks are independent whereas within each row the blocks are
K-dependent. Loubaton’s [10] model satisfies all the assumptions of Theorem 2.1. In Corollary 2.1,
we derive his LSD result. However, it must be noted that the author dealt with the almost sure location
of eigenvalues while we deal with only the LSD.

2. MAIN RESULTS

Instead of using the Stieltjes transform, we take a combinatorial approach to our results. It is
convenient to bring the different patterns such as the Toeplitz, Hankel, Symmetric Circulant un-
der a common umbrella. A patterned matrix is defined through a link fundijon For eachn,

L, : {0,1,...,n} — Z%is afunction § = 1 or 2). A patterned matrix4,, of ordern x n with

link function L,, is defined asd,, = ((zr,,(i,j)))1<ij<n- Here{z;;} or {x;} is defined to be the
input sequence of random variables. For notational convenience welwidteL,,. Some common
(symmetric) link functions are given by

Lw (i,j) = (min(i,j), max(, j)), (Wigner)

Lr(i,j) = |i—j|, (Toeplitz)

Ly(i,j) = i+ j, (Hankel) (2.1)
Lrc(i,j) = (i+j) mod n, (Reverse Circulant)
Lsc(i,j) = n/2—1|n/2—|i— j|| (Symmetric Circulant)

Note that the block matrices also have a corresponding link function with a corresponding input
sequence of matrices. We now introduce an important property for link functions, which we call
Property A.

Definition2.1 (Property A) — The link functiotd, satisfies Property A if

#I1 <I<n Lk 1) =t} V#{ |11 <n,L(I,k) =t} (2.2)
<1VtezZiVi<k<neN.
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This essentially says that along any row or column there is at most one occurrence of a particular
input random variable. Note that the Wigner, Hankel and Reverse Circulant link functions satisfy
Property A. The Symmetric Circulant and Toeplitz link functions satisfy the following more relaxed
Property B that was heavily used in [6]. We shall use Property B in our proofs.

Definition2.2 (Property B) — The link functioid is said to satisfy Property B if

supsup sup #{l|1<I<n,Lk1)=t}VH#{|1<I<n,L{lk)=t} =A <oco. (2.3)
n tezd 1<k<n
Assumptior2.1 — The input random variables are i.i.d. (possibly) complex valued distributed
identically asX such thaf[X] = 0, E[| X |?] = 1 andE[|X|"] < 0o Vh € N.

Theorem?2.1 — SupposeB,,(m, p) satisfies Property Am — oo and% — ¢,0 < ¢ < .
Suppose the input random variables satisfy Assumption 2.1 and the mdtAge$; 2 satisfy the

following: the entries of the matrices$, and4,, (;,.i,) are independent ify # i3 for anyi, and

i1,02)

i4. Also, the entries oft,, (; ;) and 4,, ; ;,) are independent ifj; — jo| > K for some fixed( € N.
Then almost surely the LSD gfB,, (m, p)B,,(m, p)* is M P(c).

The LSD result of Loubaton [10] follows as a simple Corollary to Theorem 2.1.

Corollary 2.1 (Loubaton [10]) — LetVy = (W](Vl)T, s W](VM)T)T be anM L x N block matrix
Where(I/V](Vi))f‘i1 are independent x N Hankel matrices. LeW](Vm) (4,7) := Wm,itj—1. Assume
that (Wi n)1<m<M.1<n<nN+L—1 are i.i.d. complex Gaussian With|w,, ,|?] = ”—; andE[w?, ,,] = 0.
If M — ocoand4L = ¢y — ¢ € (0, 00) thenthe LSD of LWy W}, is almost surelyM P(c).

Theorem2.2— SupposéB,,(m) satisfies Property A. Suppose — oo, the input random vari-
ables satisfy Assumption 2.1 and the following condition is satisfied.

1. The entries of the matrices,, ;, ;,y and 4, ( are independent if; # i3, io > i; and

i3,34)

iqg > i3. Also, the entries ofl,, ( and A4, ( are independent if < min{ji,j2} and

i,91) 1,52)

|j1 — jo| > K for some fixed< € N.

Then almost surely the LSD %Bn(m) is the semicircular law.

Remark2.1 : We emphasize that Theorems 2.1 and 2.2 hold for any value lof particular,n
can be fixed or grow to infinity. However, if is fixed then the results may not hold in the absence
of Property A. This is clear from Corollary 1 of Oraby [12] where large Wigner block structure with
independent finite dimensional Symmetric Circulant blocks was considered and it was shown that
the LSD is not the semicircle law. As discussed earlier, Symmetric Circulant matrices do not satisfy
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Property A. Nevertheless, from Theorem 3.1 it is clear that i~ oo then the LSD of Wigner
matrices with independent Symmetric Circulant blocks is indeed semicircular.

3. PROOFS

Proofs of Theorems 2.1, 2.2 and 3.1 (given later) are similar. We only prove Theorem 2.1. We shall
need a few preliminaries; for more details see Bose and Sen [6]. In particular the following notion is
taken from that paper.

Supposed,, is hermitian. Théith moments of the ESD is given by
h-th moment of FA» = Z M= —Tr (AMY = B,(A,) (say) (3.1)
whereTr denotes the trace of a matrix. To show the almost sure existence of the LSD, it is enough to
show:
1. (M1) For everyh > 1, E[3,(A4,)] — B
2. (M4) S | E[B4(An) — E(B(An)))* < oo for everyh > 1.

3. (C) The sequencksy, } satisfies Carleman’s condition;” , 5, V2h — o

The R.S. of (3.1) is often represented in terms of circuits and woracAit of lengthl(w) := h
is any functionr : {0,1,2,...,h} — {1,2,...,n} with 7(0) = w(h). For a patterned matrix,,
with link function L the R.S. of (3.1) equals

1 1
~ ) TLEOFO)ILEW) - L) = D, T (Say)
m: l(m)=h m: l(m)=h
k circuitsy, ..., m, arejointly matchedf each L-value occurs at least twice across all circuits.

They arecross matchedf each circuit has at least one-value which occurs in at least one of the
other circuits.

Circuits m; and m, are said to beequivalentif and only if their L values match at the same
locations. Thatis, forall, j, {L(m1(i—1),m1(i)) = L(m(j—1),m1(j))} < {L(m2(i—1),m2(3)) =
L(ma(j — 1), m2(4))}-

This defines an equivalence relation. Any equivalence class of circuits can be indexed by a par-
tition of {1,2,...,h}. Each block of a given partition identifies the positions whereltheatches
take place. We can label these partitionsdmydsw of lengthh of letters where the first occurrence
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of each letter is in alphabetic order. For example i 5 then the partitioq {1, 3,5}{2,4}} is repre-
sented by the wordbaba. This identifies the circuits such thatl(7(0),7(1)) = L(7(2),7(3)) =
L(m(4),7(5)) andL(7 (1), 7(2)) = L(w(3), w(4)).

The set of words of lengt®k such that each letter is repeated at least twice is denotethpyA
wordw € Wy is called pair matched if each letter is repeated exactly twice. The set of such words
is denoted byP,.. A word w € Py is calledCatalanif there are no four positiong < is < i3 < iy
such thatw[i1] = w[is] andw(iz] = w[i4]. The set of all Catalan words of lengtx is denoted by
Coi. For example, the wordsabb andabba are “Catalan words”. However the woadlab is not.

Define the following classes of circuits:

(w) = {m:w(@)=wy) < Lr(z - 1),7(2)) = Lr(y - 1),7(y))},
F(w) = {m:w(r) =w(y) = Lir(z —1),7(z)) = L(r(y — 1), 7(y))}-

Any i (or w(i) by abuse of notation) will be called\eertex It is generatingif eitheri = 0 or
wli] is the first occurrence of a letter. For examplewif= abbcab thenn(0), 7 (1), 7(2),w(4) are
generating. For aword, [(w) andd(w) stand respectively for the length of the word and the number
of distinct letters in it.

If the link function satisfies Property B then a circuit is completely determined up to a finitely
many choices by its generating vertices. Hegdé* (w) = O(n¥®)+1), In fact it is easy to see that
#IT* (w) < Alw)=dw)=1,dw)+1 Moreover, for any wordp, # (IT* (w)\II(w)) = O(n4™)). As a
consequencéim,, oo W — 0. Let

I : T

p(w) ;== lim #di(“ﬂ (provided the limit exists) (3.2)
n—oo (w)+1

One can express often express the final form of an LSD in terms of tiieg&. See Bose and
Sen [6]. For example, for the Wigner matri{w) = 1 if w € Cy;, and isO otherwise. In fact, for all

the link functions in (2.1)p(w) = 1 for all w € Co.

Even thoughX,, , is not symmetric, there is a suitable extension of the concept of link function
and all related concepts to the Wishart ma%an,pX;;,p. We give a description of the LSD of the
Wishart matrix in terms op(w). Its proof is included in the proof of Theorem 5 of Bose and Sen [6].

Lemma3.1 — Thek th moment ofM P(c) is given byj;, = Z p(w) where

weCQk

(w) { ¢t if w € Cy, and hagt + 1) and(k — t) generating verices at even and odd positions
pr\w) =

0 otherwise
(3.3)
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So one way of identifying the M&enko-Pastur law as LSD is to show thatv) defined in (3.2)
satisfies (3.3).

3.1 Proof of Theorem 2.1

It is enough to verify (M1) (with3, as in Lemma 3.1), (M4) and (C). Observe that

x\k * *
Tr [(Bn(m,p)Bn(m,p) ) } = Z Tr [Am(io,il)An,(iz,il) s An,(i2k72ﬂ:2k71)An,(ioﬂék—l)

205015502k —1

= Tr [An,(w(()),ﬂ(l)) AL r(2k) m(26-1))

= Tr(Ay) (say). (3.4)
m: l(m)=2k

Observe that in the monomi@s,,(m, p)B,,(m, p)*)* the odd and the even positions are occupied
by B,,(m, p) andB, (m,p)* respectively. So we need to modify the concepts of words, circuits etc.
For convenience we shall continue to use the earlier terminology.(iThigeth of block B, (m, p)*
is (Ap,(ji))"- So now the earlier role ofr(2i — 1), 7(2i)) for symmetric matrices is now taken
by (7(2¢),m(2¢ — 1)) and in the definition of word any letter at the even positions will denote the
transpose of the corresponding matrix. For example# aabb then it will represent all circuits of
the form(m(0), (1)) = (w(2), 7(1)), (x(2), 7(3)) = (n(4),7(3)) and(m(0), 7 (1)) # (w(2),7(3)).

Also for any suchr, A, will be MM*NN* whereM = A, 0)x1)) @dN = A, (z2),x(3))- TO
keep track of these transformations, we define

, (m(i), (i +1)) if iiseven
f(m, i) := _ _ .
(m(i+1),7(i)) otherwise
and
G(m, i) = { An,w(i)nii+r) 1T i even
(An,(n(i+1),7r(i)))* otherwise

Hence the equivalence clabd$w) induced by a wordv is now defined as
I(w) :=={r | wli] =w[j] & f(mi—1)= f(m,j—1)}.

Also let

2k
A =[G i-1).
=1

We now complete the proof in the following four steps.
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Stepl : Accounting for the/-dependence of the blocks in a row, we construct an apporpriate
equivalence relation on the circuits that will be vital in our proof. Call two matri¢gs;, ;,) and
A as “strongly related” if; = i3 and|is —i4| < K. We denote this by, ~s An (is,ia)-

n,(13,i4) ,(i1,i2)

For any circuitr, consider all the matrices in the monomi&}. Two matricesA,, ;) and
Ay, f(x5) are called “weakly related”, if there exists a sequence of integers; < iz... <i, =j
such that

Anvf(ﬂ-:il) ~s An,f(ﬂ',ig) s Ns An7f(7r7i7‘—1) s An»f(ﬂ7i7‘).

We denote this equivalence relation By, ;. ;) ~w.x Ap f(r.j)-

We call two circuitsr; andms “R equivalent” if for alli, j
An f(mri) ~wm Anfir,g) S Anflra) ~wms An,f(rs,j)-

The “R equivalence” is clearly an equivalence relation on the class of circuits of a fixed f&ngth
Every equivalence class is a partition{df 2, . . ., 2k} where the “weakly related” matrices are in the
same blocks. Given a word we denote the class of all “R equivalent” circuits corresponding to
by I1z(w). For example, itv = aaa, thenIlg(w) will contain the following four kind of circuits:

(@) Ay frir0) ~s Anfr) @NAA, 1) ~s Ap fir2) PULAL ¢(r0) s An f(r,2)-
(b) An,f(ﬂ,O) ~s An,f(Tr,l) andAn,f(ﬂ,O) ~s An,f(ﬂ',Q) bUtAn,f(w,l) s An,f(ﬂ,2)'
(©) Ay fim0) ~s A fr2) @NAA, 1) ~s Ap fir2) DPULAL ¢(r0) %s A fir,1)-

(d) An,f(mO) ~s An,f(fr,l) andAn,f(ml) ~s An,f(Tr,Q) andAn,f(ml) ~s An,f(Tr,Q)'

Now observe that if there exists a circuitof length2k such thatA,, ;, i,) ~w.r An, (1 5o) then
i1 = j1 andlis — jo| < 2kK. As a consequence,
#HR(U]) < (4k,K)Qk—d(’w)mt(w)-i-lpd(w)—t(w) (35)

wheret(w) + 1 is the number of generating vertices at the even positons of

Step2 : We now show that it is enough to consider onlyg I1z(w) wherew € Coi. From (3.4)

E

1 1 A7 1
%TT <an(map)Bn(m7p) > ] = kL Z Z ETr(Az). (3.6)
p p {w: I(w)=2k} w€llg(w)
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We can breal Tr( A, ) in the following way

ETr(A

nkﬂ nk+1Z<HGm—1 "(i—1),7 ()))

7{'/

:#Z 3 (HGH—1 G- 1),7 ())).

w' ' ell(w’)

(3.7)

wherer’ is a circuit of length2k. From Assumption 2.1, we get a random varialllavhose distri-

bution is same as the common distribution of the input random variables E\l&\yv= 0, and hence
if w' ¢ Wy, then

(HG Ji— 1) (' —1),7 ())):o.

However, ifw’ ¢ Wa, then#II(w') < n*+1 and Holder’s inequality implies that

(HG ERCIEIR, <'>>> < BJ|X[%)

As a consequence, the R.S. of (3.7) (in absolute value) is bounded by

S WD < Bk B P

k+1
w' EWag

whereB(2k) is the number of all possible partitions of the §&12, . .., 2k}.

Now fix a particularw. If w has a letter occurring exactly once at positjgrihen for anyr €
IIr(w) the matrixG(m, j — 1) has all elements independent of the ma¥ixr, = — 1) forall 1 < z #
i < 2k. As a consequenc®& Tr [A;] = ETr [Hfﬁl G(m, i)] = 0. Hence to get a non-trivial value
of E Tr[A,| the corresponding must have all letters repeated at least twice. That in turn shows that
the L.S. of (3.6) is bounded by

1

- Z #11r(w) E[| X |**]B(2k).

(w)=2k

Now we make the following claim.
Claim: If w € Wy, \Cax then% — 0asm — oo.

PrROOF : The proof is similar to the proof of part(i) of Theorem 1 in Banerjee and Bose [3].
However, due to difference in the context and notation we give a proof here.

First observe that if any letter i appears at least thrice then the number of generating vertices
in w is at mostk. As a consequenceétllg(w) = O(m*) = o(mp*). Hence we need to consider
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only w € Pa. Asw € Pop\Cax, there exist < j < ¢t < [ such thatw[i] = w[t] = = (say) and
wlj] = w[l] = y (say). Without loss of generality, let be the minimum such choice (for some
j,t,1), and for thisi, let j be the maximum such choice (for sorhé). Thus all letters ofw in
{w[j +1],...,w[t — 1]} have both copies ifi + 1,...,¢ — 1}. Now we observe the following for
circuitsm € Ilp(w).

(@) Firstfillupm(0),...,w(j7 —1). Let the number of generating vertices{iy ..., — 1} bep;.
Then there are at moét(m?!) choices for these vertices. In this procedure we have fixed the matrix
G(m,i — 1) corresponding to the letterupto finitely many choices.

(D) AS Ay, #(r,i—1) ~wr An f(xt—1), there are at mositk K choices for the vertices(t — 1) and
m(t).

(c) Now we fill up«(t),...,m(j + 1) in that order according to the following algorithm. We
consider two sub cases.

(i) The position of the first occurrence of the letterdt — 1) isin {0,...,j — 1}.
The position of the first occurrence of the lettewdt — 1] isin{j +1,...,¢ — 1}.
For sub case (i), clearly(t — 2) has at mostk K choices.

For sub case (ii), fillr(t — 2) arbitrarily. Observe that this specifies the matfix ¢ ;—2). As a
consequence, i is the first position of first occurrence ofit — 1] thenw(z — 1) andn(z) have at
most4k K choices.

We fill the verticesr(t — 3) to w(j + 1) in similar fashion.

Now w(j + 1] is either the first occurrence or the second occurrence of a letter. Since we have

specifiedA y by backward traversal, if it is a first occurrence then the second letter{is-in

n?f(ﬂ-h]
2,...,t —1}. As a consequencér(j), m(j + 1)) have at mosttk K choices. On the other hand if
wl[j + 1] is a second occurrence then also we have specified the mffrjx. ;) by specifying the
vertices{r(0),...,7(j — 1)}. As a consequence, the generating vertéx has only finitely many

choices.

Let ps be the number of generating vertices{in+ 1,...,¢ — 2}. Then the vertice$j,...,t}
has at mosO(m*?) choices. On the other hand if the number of generating vertices in between
{t+1,...,2k} is ps then rest of the vertices have at m@¥tn??) choices.

So anyr € Ig(w) has at mosO(m?!+P21P3) many choices. However, the total number of
generating vertices i is p; + ps + p3 + 1 = k + 1. Hence#Ilz(w) = O(m*). This proves the
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claim and hence completes Step 2.

Step3 : Now fix w € Cor. We show that

: 1 w
lim W Z E TI'(AW) = Ct( ) (38)
w€llg(w)

Let 7 € IIx(w) be any circuit. We first prove that

ETr(4,) _ { 1 if 7 € (w) NTr(w) (3.9)

nk+1 0 if 7 € Op(w)\I(w)

Considerr € IIg(w)\II(w). Asw € Cy, there exists a double letter at positighandj + 1.
Without loss of generality we assunjdo be even. The odd case will follow similarly. Ads even,

G(m,j—1) = A ¢ ;1) @NAG(T, j) = Ay ¢z j)- Recalling the definition of we get that

A f(rj—1) = Any(x(g)n(i—1)) @D Ay f(rj) = An (z(j),7(j+1)-

By our assumptiond,, (=), r(j—1)) ~wx An,(x().x(j+1))- SUPPOse they are not equal. By Prop-
erty A of B,,(m, p), we get that

A ey r(G—1) (T (), 7' (5 = 1)) # A (n () m(41)) (T (5), 7(G + 1))

foranyn’. As a consequencel’ o . 1y (7'(7 = 1), 7'(5)) and Ay, (x ()= (1)) (7' (5), 7' ( +1))
are independent.

As w € Cy, the double letter at positionsand;j + 1 have not appeared anywhere elsevinSo
all the elements of#(m, j — 1) andG(w, j) are independent of the elements of the maf¥ixr, z)

whenz ¢ {j — 1, j}. As a consequence for any, the random variable
2k

A% w1y (7' (G = 1), 7' () oceurs exactly once in the produe] G(m,i — 1)(x'(i — 1), 7' (i)).
=1

(HGM—1 "(i—1),m ())):0

Hence

implying ETr(A;) = 0.

So we are left withthe case, (r(j) r(j—1)) = An,(x(j),r(j+1)), Whichimpliesr(j—1) = 7(j+1).
By applying Property A again we observe that one neg@s— 1) = 7/(j + 1) to get a non-trivial
value of

<HG7TZ—1 "(i—1),7 ())).
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As a consequence,

A ey (TG = 1), 7 (5)) = An (n () w1 (7 (3), 7 (G + 1)) 2= @ (say).

In this case,

7 (j=1)=n"(j+1) i=j+2

— Z (HG vi—1)(7'(i = 1), HG i —1)( (il),ﬂ/(i)))-

' (j—1)=n'(j+1) i=1 i=j+2

Z (HGﬂ'Z—l "6 —1),7'(i mxHGwz—l (21),77’(2')))

(3.10)

Now we use a successive reduction argument.

Notice thatr(j — 1) = w(j + 1). So if we consider the circuit

0 (i) ifi<j—1
Tred\t) =
I n(i+2) if2k—2>i> ]

then
7j—1 2k 2k—2
[[émi-1 J] ¢ i-1) =[] Grreasi — 1)
i=1 i=j+2 i=1

Let w’ be the reduced word removing letter§j] andw[j + 1]. By definitionw’ € Cy;_o and also
Tred € Hg(w').

Definer! , in a similar fashion. As’(j — 1) = 7/(j + 1), the R.S. of (3.10) becomes

2k—2
> nB < ] Gmreasi = 1)(meali - 1)77T;~ed(i))> :

{ﬂ"red | l( ng) 2k 2} =1
The factorn appears since’(j) can be chosen freely.

As w € Cq, We can repeat the above arguments till we get an empty word. Hence to get a non-

zero value foilE Tr(A, ), the weakly related matrices lﬁfil G(m,i — 1) are actually equal. Hence

7 € Ilr(w) andE Tr(A,) # 0 impliesw € II(w). In that casét Tr(A,) = nF+1.
So (3.9) is established.

As equality of two matrices implies them to be strongly related, it is easy to observe that
#(I(w)\Ig)(w) = O(mF) = o(mp"). Solim £1G) — jim FEIOLR),

mpk
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As a consequence the L.S. of (3.8) becomes

lim w. (3.11)

We can now recall the proof of part (a) of Theorem 5 from Bose and Sen [6] to conclude that

the above expression convergés). As a consequence, the L.S. of (3.6) convergeE W)
wECok
verifying the (M1) condition. ’

Step4 : We now verify (M4). Bose and Sen [6] showed the following:Aif are hermitian
matrices satisfying Property B with input sequence satisfying Assumption 2.1, then

() ()

Now, the matrixB,, (m, p) is not necessarily symmetric and hence we cannot apply directly the

4

! =0(n?). (3.12)

n4

E

above result. However, we can still use Property B which is implied by Property A and modify the
arguments of the proof of above result suitably to conclude that

Tr <Bn(m,p)lﬂ3n(mm)*>k _E (Tr (Bn(m,mﬁn(m,p)*)k)] 4: O(——).

pn n n2m?
(3.13)

1

nim4

E

Thisimplies that the (M4) condition is satisfied.

Note that condition (C) is satisfied &g are the moments of th&/ P(c) law which is bounded.
This proves Theorem 2.1 completely. a

3.2 Proof of Corollary 2.1

First assume thaV is divisible by L. Then we can writéV](Vi) as(WJ(\f’l) e ](\f’P)) whereP = ¥

and{I/V](\f’j)}f:1 have L columns. It is easy to check that the matiixy satisfies the conditions of
Theorem 2.1 withn = M, n = L, p = P andN = pn. Hence, the result follows in this case.

Now assume thaV is not divisible byL and letP = [%] + 1. Hence
wy
(2,P)
- W
Wy = (WN : AN) whereAy = | N

W](VM,P)

Now
WNWy = WNW;\} + AnNAy.
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Observe that one can directly use Theorem 2.1 for the mﬁm)ﬁ/]@ to conclude that its LSD is
M P(c) as discussed earlier.

LetA\; > ... > Aray andyy > ... > vy be the eigenvalues 6¥ W3 and Wy W3 respec-
tively.

The LSD of Wy Wy andVNVNI/T/j\} are identical almost surely. To verify this, it is enough to verify

the following condition.
LM

1 a.s.
p 2 — ) 0. (3.14)
=1
Now

LM
Do = ) < Te [ (W Wi — W Wi (Wx Wi — WaW5)*| = Tr(AnAg)%
=1
For a proof of the first inequality, see page 69 of Bhatia [5]. Thus it is how enough to show
117 Tr(AnA%)? — 0 almost surely.

Let AN = v/ NoAy so that the variance of each entryz&f\; is 1. Itis enough to show that
1 Rk 2 ..
Recall the definitions of andIl(w) from the proof of Theorem 2.1. Now
_ 1 E[A A% (f(m1))A 2)A:
=7 O B[AN((m0)AR(F(m ))AN(f(r, 2)Ax (f(r.3))] .

m: l(m)=4

:ﬁ S Y E[AnUm0). . Ax(f(r.3)]

{w: l(w)=4} rell(w)

MLN2 > 2 [A ))---AE(f(W73))}+R (say).

wePy well(w)

1 A A% \2

(3.16)
By applying the standard arguments used so far, the fetends to 0. The first term is
O 1 II(w)
ALe 2 #1w) |-
wEPy

However, #11(w) = O(L*ML) or O(L(ML)?) depending on whether the word hasr 2
generating vertices at the even positions. In each of the cases

#(w) <L<ML>2> i <1<ML>2> |

MLN?2 MLN M N2
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As M — oo, the R.S. of (3.16) goes @ As a consequence, the expectation of L.S. of (3.15)
goes ta.

Now we verify (M4). As the number of columns iy is lesser thanV, the number of jointly
matched and cross matched circuitsfog A%, is lesser than that of the matfiX 15, On the other
hand the dimension aiNA’jV is still M L x M L. As a consequence, the arguments of verification of
(M4) condition in Theorem 2.1 still hold here. Hence (3.15) is satisfied. As we have already proved
the result forlV W3, the proof is complete. O

The following variant of Theorem 2.2 is now quite straightforward to prove.

Theorem3.1— Suppose aneh,n — oo, B,,(m) satisfy and conditionl of Theorem 2.2 holds.
Suppose further that the blocksl,, ; };c~2 are symmetric, of same pattern and

1. Foranyl < p1,p2,p3 <1, Ap (iy,i0)(P1,02) # An iy i5) (D1, p3) 1T iz # 3.
2. For anyw € Co, p(w) = 1 for the patterned matri%An,(M) asn — oo.

Then the LSD %Bn(m) is semicircular.
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