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We introduce and compute some Gaussianq-binomial sums formulæ. In order to prove these

sums, our approach is to useq-analysis, in particular a formula of Rothe, and computer algebra.
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1. INTRODUCTION

Let {Un} and{Vn} be generalized Fibonacci and Lucas sequences, respectively, whose the Binet

forms are

Un =
αn − βn

α− β
= αn−1 1− qn

1− q
and Vn = αn + βn = αn (1 + qn)

with q = β/α = −α−2, so thatα = i/
√

q.

Whenα = 1+
√

5
2 (or equivalentlyq = (1 − √5 )/(1 +

√
5 ) ), the sequence{Un} is reduced to

the Fibonacci sequence{Fn} and the sequence{Vn} is reduced to the Lucas sequence{Ln}.

Whenα = 1 +
√

2 (or equivalentlyq = (1−√2 )/(1 +
√

2 ) ), the sequence{Un} is reduced to

the Pell sequence{Pn} and the sequence{Vn} is reduced to the Pell-Lucas sequence{Qn}.

Throughout this paper we will use the following notations: theq-Pochhammer symbol(x; q)n =

(1− x)(1− xq) . . . (1− xqn−1) and the Gaussianq-binomial coefficients
[
n

k

]

z

=
(qz; qz)n

(qz; qz)k(qz; qz)n−k
.
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Thez = 1 case will be denoted by

[
n

k

]
.

Furthermore, we will usegeneralized Fibonomial coefficients

{
n

k

}

U,t

=
UntU(n−1)t . . . U(n−k+1)t

UtU2t . . . Ukt

with
{

n
0

}
U,t

= 1 whereUn is thenth generalized Fibonacci number.

In the special caset = 1, the generalized Fibonomial coefficients are denoted by
{

n
k

}
U

. When

Un = Fn, the generalized Fibonomial reduces to the Fibonomial coefficients denoted by
{

n
k

}
F

:

{
n

k

}

F

=
FnFn−1 . . . Fn−k+1

F1F2 . . . Fk
.

Similarly, whenUn = Pn, the generalized Fibonomial reduces to the Pellnomial coefficients

denoted by
{

n
k

}
P

: {
n

k

}

P

=
PnPn−1 . . . Pn−k+1

P1P2 . . . Pk
.

The link between the generalized Fibonomial and Gaussianq-binomial coefficients is
{

n

k

}

U,t

= αtk(n−k)

[
n

k

]

t

with q = −α−2.

For the reader’s convenience and later use, we recall Rothe’s formula [1, 10.2.2(c)]:

n∑

k=0

[
n

k

]
(−1)k q(

k
2)xk = (x; q)n .

Recently, the authors of [2, 3, 5] computed certain Fibonomial sums with generalized Fibonacci

and Lucas numbers as coefficients. For example, ifn andm are both nonnegative integers, then

2n∑

k=0

{
2n

k

}
U(2m−1)k = Pn,m

m∑

k=1

{
2m− 1
2k − 1

}
U(4k−2)n,

2n+1∑

k=0

{
2n + 1

k

}
U2mk = Pn,m

m∑

k=0

{
2m

2k

}
U(2n+1)2k,

2n∑

k=0

{
2n

k

}
V(2m−1)k = Pn,m

m∑

k=1

{
2m− 1
2k − 1

}
V(4k−2)n,

2n+1∑

k=0

{
2n + 1

k

}
V2mk = Pn,m

m∑

k=0

{
2m

2k

}
V(2n+1)2k,
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where

Pn,m =





n−m∏
k=0

V2k if n ≥ m,

m−n−1∏
k=1

V −1
2k if n < m;

alternating analogues of these sums were also evaluated.

Recently Kılıç and Prodinger computed the following Gaussianq-binomial sums with a para-

metric rational weight function: For any positive integerw, any nonzero real numbera, nonnegative

integern, integerst andr such thatt + n ≥ 0 andr ≥ −1,
n∑

j=0

[
n

j

]

q

(−1)jq(
j+1
2 )+jt

(aqj ; qw)r+1

= a−t(q; q)n

( r∑

j=0

(−1)j

(qw; qw)j (qw; qw)r−j

qw(j+1
2 )−twj

(aqwj ; q)n+1

+ (−1)r+1
t−r−1∑

j=0

[
n + j

n

]

q

[
t− 1− j

r

]

qw

qw(r+1
2 )+(j−t)rwaj

)
.

In this paper we derive some Gaussianq-binomial sums. Then we present some applications of

our results.

2. THE MAIN RESULTS

We start with our first result:

Theorem1 — For anyn ≥ 1,
n∑

k=1

[
2n

n + k

]
q

1
2
k(k−1)

(
1− qk

)
= (1− qn)

[
2n− 1

n

]

and its Fibonomial corollary:
n∑

k=1

{
2n

n + k

}

U,t

(−1)(
k
2) Utk = Utn

{
2n− 1

n

}

U,t

.

PROOF : Let

S =
n∑

k=−n

[
2n

n + k

]
q

1
2
k(k−1)

(
1− qk

)
.

Thus

S =
n∑

k=−n

[
2n

n + k

]
q

1
2
k(k+1)

(
1− q−k

)

=
n∑

k=−n

[
2n

n + k

]
q

1
2
k(k−1)

(
qk − 1

)
= −S,
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soS = 0. Let

F (n, m) =
m∑

k=−n

[
2n

n + k

]
q

1
2
k(k−1)

(
1− qk

)
.

We need−F (n, 0) to evaluate our sum. Define

G (n,m) := −(1− qn)
[
2n− 1
n + m

]
qm(m+1)/2.

Then we have

G (n,m) = F (n,m),

which follows from

G(n,m)−G(n,m− 1) =
[

2n

n + m

]
q

1
2
m(m−1) (1− qn) .

Thereforeour answer is

−F (n, 0) = −G(n, 0) = (1− qn)
[
2n− 1

n

]
,

as claimed.

The Fibonacci corollary follows by first replacingq by qt and then translating. 2

For example, whent = 1 andα = 1 +
√

2 (or equivalentlyq = 1−√2
1+
√

2
), we have the following

Pellnomial-Pell sum identity:

n∑

k=1

{
2n

n + k

}

P

(−1)(
k
2) Pk = Pn

{
2n− 1

n

}

P

.

Whent = 3 andα = 1+
√

5
2 (or equivalentlyq = 1−√5

1+
√

5
), then we have the following Fibonomial-

Fibonacci sum identity:

n∑

k=1

{
2n

n + k

}

F,3

(−1)(
k
2) F3k = F3n

{
2n− 1

n

}

F,3

.

Our second result is:

Theorem2 — For all n such that2n− 1 ≥ r we have

n∑

k=1

[
2n

n + k

]
(−1)k q

1
2(k2−k(2r+1))

(
1 + qk

)2r+1
= −22r

[
2n

n

]
,

and its generalized Fibonomial-Lucas corollary:

n∑

k=1

{
2n

n + k

}

U,t

(−1)
k(k+(−1)r)

2 V 2r+1
kt = −4r

{
2n

n

}

U,t

.
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PROOF : Define

S :=
n∑

k=1

[
2n

n + k

]
(−1)k q

1
2
k(k−(2r+1))

(
1 + qk

)2r+1
.

Then we write

2S =
∑

k 6=0

[
2n

n + k

]
(−1)k q

1
2
k(k−(2r+1))

(
1 + qk

)2r+1

and so

2S + 22r+1

[
2n

n

]
=

n∑

k=−n

[
2n

n + k

]
(−1)k q

1
2
k(k−(2r+1))

(
1 + qk

)2r+1
.

Consider

n∑

k=−n

[
2n

n + k

]
(−1)k q

1
2
k(k−(2r+1))zk

=
2n∑

k=0

[
2n

k

]
(−1)k−n q

1
2
(k−n)(k−n−(2r+1))zk−n

= (−1)nz−nq
n2+n(2r+1)

2

2n∑

k=0

[
2n

k

]
(−1)k q(

k
2)(zq−n−r)k

= (−1)nz−nq(
n+1

2 )+nr(zq−n−r; q)2n,

according to formula 10.2.2(c) (Rothe’s formula) in [1]. In order to obtain our claimed sumS, we use

this formula forz = 1, q, q2, . . . , q2r+1. Hence they are all0 provided thatr ≤ 2n− 1. Therefore

n∑

k=1

[
2n

n + k

]
(−1)k q

1
2
k(k−(2r+1))

(
1 + qk

)2r+1
= −22r

[
2n

n

]
,

as claimed. 2

We can now replaceq by qt to obtain some Fibonomial type corollaries.

As an example, whent = 3, r = 2 andα = 1+
√

5
2 (or equivalentlyq = 1−√5

1+
√

5
), then we have the

following Fibonomial-Lucas sum identity:

n∑

k=1

{
2n

n + k

}

F,3

(−1)(
k+1
2 )L5

3t = −16
{

2n

n

}

F,3

.

Our third result is a list of formulæ that can be obtained automatically by using theq-Zeilberger

algorithm, in particular the version that was developed at the Risc center in Linz [9].
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Theorem3 — For n ≥ 1

n∑

k=0

[
2n

n + k

]
q

1
2
k(k−(2b+1))

(
1− q(2b+1)k

)
=

Xb

q(
b+1
2 ) ∏b

j=1(1 + qn−j)
(1− qn)

[
2n− 1

n

]
,

and the polynomialsXb are getting more and more involved.

We give a list of the first few:

X0 = 1,

X1 = 2 + q + qn + 2qn+1,

X2 = 2 + 2q + q3 + 2qn + q2n + 3qn+1 + 3qn+2 + 2qn+3 + 2q2n+2 + 2q2n+3,

X3 = 2 + 2q + 2q3 + q6

+ 2qn + 2q2n + q3n + 4q1+n + 4q2+n + 5q3+n + 3q4+n + q5+n + 2q6+n

+ q1+2n + 3q2+2n + 5q3+2n + 4q4+2n + 4q5+2n + 2q6+2n

+ 2q3+3n + 2q5+3n + 2q6+3n,

X4 = 2 + 2q + 2q3 + 2q6 + q10

+ 2qn + 2q2n + 2q3n + q4n + 4q1+n + 4q2+n + 6q3+n + 6q4+n + 4q5+n

+ 3q6+n + 3q7+n + q8+n + q9+n + 2q10+n

+ 2q1+2n + 4q2+2n + 7q3+2n + 7q4+2n + 10q5+2n + 7q6+2n + 7q7+2n

+ 4q8+2n + 2q9+2n + 2q10+2n

+ q1+3n + q2+3n + 3q3+3n + 3q4+3n + 4q5+3n + 6q6+3n + 6q7+3n

+ 4q8+3n + 4q9+3n + 2q10+3n

+ 2q4+4n + 2q7+4n + 2q9+4n + 2q10+4n.

As an example, we state the general Fibonomial-Lucas-Fibonacci instance forb = 1:

n∑

k=0

{
2n

n + k

}

U,t

(−1)
1
2
tk(k−3)U3kt =

(
2Vt(n+1) + (−1)t Vt(n−1)

)
Unt

(−1)t V(n−1)t

{
2n− 1

n

}

U,t

.

For example, whenα =
(
1 +

√
5

)
/2 (or equivalentlyq = 1−√5

1+
√

5
) andt = 1, then we have the

following Fibonomial-Lucas-Fibonacci sum identity:

n∑

k=0

{
2n

n + k

}

F

(−1)
1
2
k(k−3)F3k = −Ln+2Fn

Ln−1

{
2n− 1

n

}

F

.
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We give another Fibonomial-Lucas-Fibonacci corollary (the instanceb = 2); more complicated

ones can be obtained by replacingq by qt and taking largerb’s.

n∑

k=0

{
2n

n + k

}

U

(−1)(
k
2) U5k

= (2V2n+1 + V2n−3 − 2V2n+3 + 3 (−1)n V1 − 2 (−1)n V3)

× Un

Vn−1Vn−2

{
2n− 1

n

}

U

.

Notethat2V2n+1+V2n−3−2V2n+3 could still simplified a bit using the recursion, but the recursion

depends onα.

For example, whenα =
(
1 +

√
5

)
/2

n∑

k=0

{
2n

n + k

}

F

(−1)(
k
2) F5k =

Fn (L2n+1 − 4L2n − 5 (−1)n)
Ln−1Ln−2

{
2n− 1

n

}

F

.

Now we state our next result:

Theorem4 — For n ≥ 1
n∑

k=0

[
2n

n + k

]
q

1
2
k(k−3)

(
1− qk

)3
= 2

[
2n− 3
n− 1

]
(1− q)

q
(1− qn)

(
1− q2n−1

)
,

andits Fibonomial-Fibonacci corollary

n∑

k=0

{
2n

n + k

}

U,t

(−1)
1
2
tk(k−3) U3

tk = (−1)t 2UtUtnUt(2n−1)

{
2n− 3
n− 1

}

U,t

.

PROOF : One can produce a proof similar to our first theorem, but we gain no insight from it; and

a computer can prove it without any effort. 2

For example, if we taket = 5 andα = 1+
√

5
2 (or equivalentlyq = 1−√5

1+
√

5
), then we have the

following Fibonomial-Fibonacci sum identity :

n∑

k=0

{
2n

n + k

}

F,5

(−1)
1
2
k(k−3) F 3

5k = −2
{

2n− 3
n− 1

}

F,5

F5F5nF5(2n−1).

Now we state our next results including the 5th and 7th powers of
(
1− qk

)
:

Theorem5 — For n ≥ 1
n∑

k=0

[
2n

n + k

]
q

1
2
k(k−5)

(
1− qk

)5
=

2(1− q)2(1− qn)2(1 + 3q − 3qn − qn+1)
q3(1 + qn−1)(1 + qn−2)

[
2n− 1

n

]
,
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and its Fibonomial-Fibonacci corollary

n∑

k=0

{
2n

n + k

}

U,t

(−1)t(k
2) U5

tk =
(−1)t 2U2

t U2
tn

(
Ut(n+1) + 3 (−1)t Ut(n−1)

)

Vt(n−1)Vt(n−2)

{
2n− 1

n

}

U,t

.

PROOF : Again, this is best done by a computer. 2

For example, whent = 1 andα =
(
1 +

√
5

)
/2, we get the following Fibonomial-Fibonacci

corollary:
n∑

k=0

{
2n

n + k

}

F

(−1)(
k
2) F 5

k =
2F 2

nFn−3

Ln−1Ln−2

{
2n− 1

n

}

F

.

We also give the next instance; after that, the terms get too involved:

Theorem6 — For n ≥ 1
n∑

k=0

[
2n

n + k

]
q

1
2
k(k−7)

(
1− qk

)7
=

2(1− q)3 (1− qn)2

q6(1 + qn−1)(1 + qn−2)(1 + qn−3)

[
2n− 1

n

]

× (1 + 4q + 9q2 + 10q3 + 10q2n + 9q2n+1 + 4q2n+2

+ q2n+3 − 5qn − 19qn+1 − 19qn+2 − 5qn+3),

and its Fibonomial-Fibonacci-Lucas corollary

n∑

k=0

{
2n

n + k

}

U

(−1)
1
2
k(k−7) U7

k

=
(
V2n+3 − 4V2n+1 + 9V2n−1 − 10V2n−3 − 5 (−1)n V3 + 19 (−1)n V1

)

× 2U3
1 U2

n

5Vn−1Vn−2Vn−3

{
2n− 1

n

}

U

.

For example, whenα =
(
1 +

√
5

)
/2, we get

n∑

k=0

{
2n

n + k

}

F

(−1)
1
2
k(k−7) F 7

k =
2F 2

n(L2n−2 + 4L2n−4 − (−1)n)
5Ln−1Ln−2Ln−3

{
2n− 1

n

}

F

.
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