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We introduce and compute some Gaussjarinomial sums formulae. In order to prove these
sums, our approach is to ugeanalysis, in particular a formula of Rothe, and computer algebra.
We present some applications of our results.
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1. INTRODUCTION

Let {U,} and{V,,} be generalized Fibonacci and Lucas sequences, respectively, whose the Binet
forms are

a— [ 1—gq
with ¢ = B/ = —a~2, so thate = i/, /3.

U, =

and V, =a"+ " =a" (1 +¢")

Whena = 14/5 (or equivalentlyg = (1 — v/5)/(1 + /5)), the sequencU,, } is reduced to
the Fibonacci sequendéd’, } and the sequendéd/,, } is reduced to the Lucas sequerdsg, }.

Whena = 1 + /2 (or equivalentlyg = (1 — v/2)/(1 4+ +/2)), the sequencél,, } is reduced to
the Pell sequencgP, } and the sequendgd’, } is reduced to the Pell-Lucas sequercg, }.

Throughout this paper we will use the following notations: gf@ochhammer symbak; q),, =
(1—2)(1 —2q)...(1 —x¢"!) and the Gaussiaprbinomial coefficients

[Z] . (05 qg;];;]:;)gz)n—k'
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k
Furthermore, we will usgeneralized Fibonomial coefficients

{n} _ UntUn—1yt-- - Ut 1yt
Uit

Thez = 1 case will be denoted b%n] .

k UUat ... Ugy

with {0}, = 1 whereU,, is thenth generalized Fibonacci number.

In the special case = 1, the generalized Fibonomial coefficients are denotetﬂb};@. When
U, = F,, the generalized Fibonomial reduces to the Fibonomial coefficients deno@c}py

{n} PP Py
F

k B Fy .. Fy

Similarly, whenU,, = P,, the generalized Fibonomial reduces to the Pellnomial coefficients
denoted by{}} ,, :

n _ PnPn,1 . Pn—k:—H
kS p PPy...P,

The link between the generalized Fibonomial and Gausstainomial coefficients is

n _tk(n—k) [n] ; _ -2
=« with ¢g=—a™*.
(=l

For the reader’s convenience and later use, we recall Rothe’s formula [1, 10.2.2(c)]:

> m (~1)* ¢t = (@0),.

k=0

Recently, the authors of [2, 3, 5] computed certain Fibonomial sums with generalized Fibonacci
and Lucas numbers as coefficients. For example gidm are both nonnegative integers, then

2n m
2n 2m — 1
2 { k }U@m”’“ = Frum { o% — 1 }U(‘“”)”’

k=0 k=1
2n+1 m
2n+1 2m
Z { k }U2mk:Pn,mZ{%}U(an)zk,
k=0 k=0
on 2n " (2m—1
Z { k }‘/v(Qm_l)k = anm Z { 2% 1 }‘/(4/6—2)717
k=0 k=1
2n+1 m
2n+1 2m
> { k }Vzmk =Pum Y { o }V(2n+1)2k,
k=0 k=0
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where

m—n—1 .
1 Vit if n<my
k=1
alternating analogues of these sums were also evaluated.
Recently Kili¢ and Prodinger computed the following Gaussgidninomial sums with a para-

metric rational weight function: For any positive integerany nonzero real number nonnegative
integern, integerst andr such that +n > 0 andr > —1,

m (—1)igUs )+t

NE

= Lily (ad?59), 14
=a (g q)n < 27: (=17 qw(@.l)itw
= (0¥:9%);(450%),—j (ag™754), 40
t—r—1 . .
NG DY {””} [t‘l‘J] qw(*?)w—wrwaa’).
§=0 o lg " qv

In this paper we derive some Gaussighinomial sums. Then we present some applications of
our results.

2. THE MAIN RESULTS
We start with our first result;
Theoreml — For anyn > 1,
n
2n 150 2n —1
Z|: :|q2k(k 1) <1_qk):(1_qn)|: :|
n+k n
k=1
and its Fibonomial corollary

2, e

kzl ’ k)
PrRoOOF: Let

Thus
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soS = 0. Let
i 2n 1p0h_
F(n,m) = Z [n+k}q2k(k ! (1_qk>'

k=—n
We need-F (n,0) to evaluate our sum. Define

|2 —=1] o
G (nm) = —(1— g )[ ]q (m1)/2

n+m
Then we have
G (n,m) = F(n,m),

which follows from
2
G(mm)—G(n,m—n:[ " ]q2m<m—1> a—q.

Thereforeour answer is

as claimed.
The Fibonacci corollary follows by first replacingy ¢¢ and then translating. O

For example, wheth = 1 anda = 1 + v/2 (or equivalentlyg = L‘Lg) we have the following
Pellnomial-Pell sum identity:

Whent = 3 anda = 1+—2‘/5 (or equivalentlyqg = ;ﬁ) then we have the following Fibonomial-

Fibonacci sum identity:

{ 2n } (_D(g)ng:an{Qn—l} .
— n+k F3 n F3

Our second result is:

Theorem2 — For all n such that2n — 1 > r we have

n 2n k l(k‘2—k‘(2r+1) k 2r+1 _ o 2n
) e (R e ]

and its generalized Fibonomial-Lucas corollary:

n

S {0 o st a2
n+k Uit kt n oy,

k=1
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ProoF: Define
g .— [ 2n ] (_1)k q%k(kf(QrJrl)) (1 +qk>2r+1.

Then we write

_ 2n ]k Lg(k—(2041)) Aas
25 = {n—f—k‘ (—1)k 3 (1+4)
k0
and so

on " 2n 1 2r+1

2S 227"-‘1-1 — -1 k ,k(k_(27=+]_)) 1 k )
+ [n] k;n-"““]( e (+q>
Consider

k
n —p nlEn@rel) 2% Ton k(%) (. —n—ryk
=0 Y | D W e
k=0

= (=12 g2 )T (g g,

according to formula 10.2.2(c) (Rothe’s formula) in [1]. In order to obtain our claimed$Swee use

this formula forz = 1, ¢, ¢?, ..., ¢* T!. Hence they are all provided that- < 2n — 1. Therefore
n
Z [ an] (1)F gah(h=(2r+1) (1 4 qk)%H — 92 [Qn],
—1 n—+ n
as claimed. O

We can now replace by ¢* to obtain some Fibonomial type corollaries.

As an example, wheh= 3, r = 2 anda = 1%‘/5 (or equivalentlyg = il@ then we have the

following Fibonomial-Lucas sum identity:
n
S {2 ot =
— n+kjps nJps

Our third result is a list of formulae that can be obtained automatically by using Zleéiberger
algorithm, in particular the version that was developed at the Risc center in Linz [9].
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Theorem3—Forn >1

n

2n 1p(p X, s [2n—1
S o) B ]
g\ 2/ [ (1 +¢"7)

k=0
and the polynomials(;, are getting more and more involved.

We give a list of the first few:

Xo=1,
X1 =2+q+q" +2¢"",
Xo=2+42¢+¢ +2¢" + ¢*" 4+ 3¢" T + 3¢""? + 2" + 2¢7" 2 4 247",
X3 =242 +2¢* + ¢
+ 2qn + 2q2n +q3n + 4q1+n +4q2+n + 5q3+n +3q4+n +q5+n + 2q6+n
+ q1+2n + 3q2+2n + 5q3+2n + 4q4+2n + 4q5+2n + 2q6+2n
+ 2q3+3n + 2q5+3n + 2q6+3n7
Xy =2+2q+2¢%+2¢% 4+ ¢'°
+2qn+2q2n _|_2q3n +q4n _|_4q1+n +4q2+n +6q3+n +6q4+n _|_4q5+n
4 3q6+n + 3q7+n 4 q8+n 4 q9+n + 2q10+n
+ 2q1+2n + 4q2+2n + 7q3+2n + 7q4+2n + 10q5+2n + 7q6+2n + 7q7+2n
+ 4q8+2n + 2q9+2n + 2q10+2n
+ q1+3n + q2+3n + 3q3+3n + 3q4+3n + 4q5+3n + 6q6+3n + 6q7+3n
+ 4q8+3n + 4q9+3n + 2q10+3n

As an example, we state the general Fibonomial-Lucas-Fibonacci instarice for

Zn:{ o } (= 1) 3R, — (2Vinry) + (1) Vt(n—l))Unt{Zn—l}
= \ntk]y, (1) Vin—1ye nJug

For example, when = (14 v/5) /2 (or equivalentlyg = =

ﬁ) andt = 1, then we have the
following Fibonomial-Lucas-Fibonacci sum identity:

i{ 2n } (_1)§k:(k:—3)F3k:_Ln+2Fn{2n_1} .
P n+k P Ly n F
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We give another Fibonomial-Lucas-Fibonacci corollary (the instéanee2); more complicated
ones can be obtained by replaciply ¢ and taking largeb’s.

n

Z{nsz}U(_U(@ Usk

=0
= (2Vap1 + Vonez — 2Vapy3 + 3 (=1)" Vi — 2(=1)" V)

" U, 2n —1
Vie1Vi—2 n U‘

Notethat2Vs,, 1+ Va,_3—2V5,, 13 could still simplified a bit using the recursion, but the recursion
depends om.

For example, when = (1 + /5) /2

S {1, o - Bt e SR

k=0

Now we state our next result:

Theorem4 —Forn > 1

31 [ TR S o CEC R s

— n+k n—1 q

andits Fibonomial-Fibonacci corollary

" om 1 on—3
Z{ } (—1)2* B g = (—1>t2UtUmUt<2n_1>{ } :
Ut

PrROOF: One can produce a proof similar to our first theorem, but we gain no insight from it; and
a computer can prove it without any effort. O

1-v5

For example, if we také = 5 anda = % (or equivalentlyg = T

), then we have the
following Fibonomial-Fibonacci sum identity :

n 2n 1 2n — 3
—1)2kk—3) p3 :2{ - } FyFs Frio 1.
kz_o{n%}m( N E =20 By

Now we state our next results including the 5th and 7th powe(ﬂ; efq’“):

Theoremb—Forn > 1

n 2 n\2 n n+1
3 2n q%k(k—5)<1_qk>5:2(1_Q) (1-¢")"(1+3q—3q —q+)2n—1’
n+k B+ (1 +qg"2) n

k=0
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and its Fibonomial-Fibonacci corollary

Zn: { 2n } ( 1)t(§) U — (—1)t 202U, (Ut(n-‘rl) +3 (—1)t Ut(n—l)) {2n — 1}
- th = )
Ut Ut

—lntk Vitn=1)Vi(n—2) n

)

PROOF: Again, this is best done by a computer. O

For example, whemt = 1 anda = (1 + \/5) /2, we get the following Fibonomial-Fibonacci
corollary:

n 2 .
We also give the next instance; after that, the terms get too involved:

Theorem6 —Forn > 1

[ 20 ] ke —9*(1—q")’ =
,;0 [ni k]QQk(k ’ <1_qk)7: q6(1+q2£1)(§+q1"—2q)(1+q”—3> F n 1}

% (1+4q+9q2+10q3+10q2n+9q2n+1+4q2n+2
+ q2n+3 _ 5qn _ 19qn+1 _ 19qn+2 _ 5qn+3)’

and its Fibonomial-Fibonacci-Lucas corollary

n

2n L(k—=T) 777
-1
S{ T, ot

k=0
= (V2n+3 —AVopt1 4+ Va1 — 10Vo,3 — 5(—=1)" V3 + 19 (—1)" V1)

y 2U3U2 2n —1
5Vn71Vn72Vn73 n U‘
For example, whea = (1++/5) /2, we get

zn: { 2n } (_1)%14:(14:77) FT— 2F5(L2n,2 +4Lo,_ 4 — (—1)”) {Qn — 1}
= \nt+klp F 5Ln—1Ln—2Ln_3 noJp
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