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This paper is concerned with the following Séimger-Poisson system

—Au+V(z)u — K(x)p(x)u = q(z)|uP~2u, in R3,
—A¢ = K(x)u?, in R3,

wherep € (2,6), V(z) € C(R? R) is a general periodic function§ (x) andq(x) are non-
periodic functions. Under suitable assumptions, we prove the existence of ground state solutions
via variational methods for strongly indefinite problems.
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indefinite functionals.
1. INTRODUCTION AND MAIN RESULT
In this paper, we study the following nonlinear system

{ —Au+V(2)u - K(z)¢(x)u = q(@)[uf'~?u, in R?, (1.1)

~A¢ = K(x)u?, in R3,

wherep € (2,6), V(z) € C(R3,R) is a general periodic functiordy (z) andq(x) are non-periodic
functions. Such a system, also called $ctinger-Poisson equations, arises in an interesting physical
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450 WEN ZHANG et al.

context. In fact, according to a classical model, the interaction of a charge particle with an electro-
magnetic field can be described by coupling the nonlineard@amger and Maxwell equations. For
more details on the physical background, we refer to [9, 10, 39] and the references therein. In partic-
ular, if we are looking for electrostatic-type solutions, we just have to solve (1.1).

In recent years, the following system

{ —Au+V(z)u+ K(z)¢(x)u = f(z,u), in R3, 12)
~A¢ = K(x)u?, in R3,

has been extensively investigated in the literature based on variant assumption&@and f (x, u).

See for example [3-7, 11, 14, 15, 22, 29, 31, 34, 41, 43, 46] and the references therein. Since
problem (1.2) is set on whole spaBé, it is well known that the main difficulty of this problem is

the lack of compactness for Sobolev’'s embedding theorem, and then it is usually difficult to prove
that a minimizing sequence or a (PS) sequence is strongly convergent if we seek solutions of (1.2) by
variational methods. A usual way to overcome this difficulty is working on the radically symmetric
function space which possesses compact embedding, see, for example [3-5, 14, 15, 29, 31]. When
V is not a constant and not radially symmetric, Wang and Zhou [41] considered the asymptotically
linear case. Based on the main ideas of del Pino and Felmer [13], they proved that the corresponding
functional satisfies the (PS) condition and obtained the existence of positive solutions. In [6], Azzollni
and Pomponio proved the existence of a ground state solution by using concentration compactness
argument for problem (1.2) witffi(z, u) = |u[P~lu and3 < p < 5, in [46] for 2 < p < 3.

Recently, Cerami and Vaira [11] studied system (1.2) with, v) = a(z)|ulP~'u (3 < p < 5),

V = landK € L?(R3) satisfyingK () — 0 as|z| — oo. They proved the existence of positive
ground state by minimization on Nehari manifold and concentration compactness method. Similar
method was also used in Vaira [39] for system (1.1) and (1.2). LatereSain [34] generalized the
results of [11] to the asymptotically linear case. Fbr> 0 is periodic or asymptotically periodic,
Alveset al. [7] established the existence of positive ground state solutions by using the mountain pass
theorem. In addition, whel > 0 and f(x, u) arel-periodic inxz, Zhao [46] obtained the existence
of infinitely many geometrically distinct solutions. Very recently, Zleal. [43] considered the
following system with sign-changing potential

{ —Au+ AV (2)u + K(z)p(z)u = |ulP~2u, in R3, (1.3)

~A¢ = K(x)u?, in R3,

where) > 0 is a parameter. With the aid of paramete() > 0 large enough), they proved that
the variational functional satisfies (PS) condition and obtained the existence of solutions for the case

p € (4,6).
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Moreover, the semiclassical limit of the system (1.2) was also discussed recently. More precisely,
replacing—A by —<?A, namely

{ —&?Au+V(2)u+ K(x)p(x)u = [ulP"?u, in R?, (1.4)

~A¢ = K(x)u?, in R3.

In [3], Ambrosetti proved that the existence of spike-like solutions via perturbation methods. Ruiz
[32] and D’Aprile and Wei [16] showed that system (1.4) with= K = 1 possesses a family of
solutions concentrating around a sphere when 0 for p € (2, 18/7). Their results were generalized
in [26, 27] for the radialV and K. In [33], Ruiz and Vaira proved the existence of multi-bump
solutions whose bumps concentrated around local minimums of the poténtigthe proofs explored
in[26, 27, 33] are based on a singular perturbation, essentially a Lyapunov-Schmitt reduction method.
In [25], assume thal” has a local minimum or maximum poing, lanni and Vaira proved that (1.4)
possesses a nontrivial solutiapfor ¢ > 0 small. For other result of singularly perturbation problem
and concentration phenomena of semiclassical states, we refer the readers to [20, 21, 23, 24] and the
references therein.

Inspired by papers [11] and [39], we will consider system (1.1) with more general periodic poten-
tial V' and the range g and prove the existence of ground state solutions. More precisely, we make
the following assumptions:

(V) V € C(R3,R) is 1-periodic inz; for j = 1,2, 3, and0 lies in a gap of the spectrum efA+V;

(K) K € L*(R?), lim K(z)=0, K(x) > 0forallz € R3 andK # 0;

|z|—o00

(F) ¢ € C(R3R), there exists a constamt > 0 such thatg(z) > a for all z € R? and
lim q(z) = a.

|z|—o0

The main result of this paper is the following theorem.

Theorem1.1— Suppose thatV'), (K), (F') are satisfied. Then problefi.1) has at least one
ground state solutions.

Remarkl.2 : Compared with the ca3é = 1 in [39], our assumptioiV') is more general. To the
best of our knowledge, there is no work focused on this case. Therefore, our result is new, and extend
the corresponding one in [39].

Our argument is variational, which can be outlined as follows. The solutions of (1.1) are obtained
as critical points of the energy function&l ® possesses the linking structure, however it does not
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satisfy the Palais-Smale condition in general. Thus we consider certain auxiliary problem related to
the “limit equation” of (1.1) which is periodic problem and whose least energy solutions with least
energyC are known (see [30, 35, 36, 38, 42]). Based on the result of “limit equation”, we establish
the concentration compactness lemma and provedhsstisfies the Cerami conditiof”'). at all
levelsc < C. Furthermore, by using a recent critical point theorem in [8] and [19], we obtain the
existence of ground state solutions.

On the other hand, to obtain our results, we have to overcome several difficulties in using varia-
tional method. First, there is a lack of the compactness of the Sobolev embedding since the domain
is the wholeR3. Second, the energy functiondl is strongly indefinite and it has more complex
geometry structure than functionals which have mountain pass structure. Third, the appearance of a
non-local term in our problem also brings us some difficulties under the strongly indefiniteness.

As a motivation we recall that there are a large number of literatures devoted to the study of
the existence of ground state solutions. Ding and Wei [18] treated the nonperiodic Dirac equation
with super-quadratic subcritical nonlinearities, Ding and Lee [17] also studied the nonperiodic su-
perquadratic first-order Hamiltonian. By using the variational methods for strongly indefinite prob-
lems developed recently by Bartsch and Ding [8], they proved the existence of least energy solution,
respectively. Very recently, based on the main ideas of [18], Chen and Zheng [12] considered the
Maxwell-Dirac systems. Additionally, some authors have studied several different problems by dif-
ferent methods. Among these problems are the periodid8otger equation in [30, 35-38, 42], and
the Hamiltonian system in [28, 44, 45].

This paper is organized as follows. In Sectiyrmve formulate the variational setting. In Sectiin
we introduce the least energy solutions of the associated limit problem, and recall some critical point
theorems required. In Sectidnwe will use the linking and concentration compactness arguments to
prove our main theorems.

2. VARIATIONAL SETTING

Hereafter we use the following notation:

e DL2(R3) is the completion o5° (R?) with respect to the norm
s = [ [Vuda.
R3

e | - |; denotes the usudl®*- norm,1 < s < oo.

e (-, )2 denotes the usudl® inner product.
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e C, C;, ¢; are different positive constants.
e * denotes the dual space bf

e S is the best Sobolev constant for the embeddin@bf (R?) in LE(R3), that is

S inf [|ul| pi.2
ueD12\{0} |ulg

In what follows, we give the variational setting for problem (1.1). let= —A + V, then A
is formally self-adjoint operator acting ai¥ := L?(R3,R) with domainD(4) = H?(R3 R). In
virtue of assumptiorfV’), we have the orthogonal decomposition

=L LT, u=u +u",

such that4 is negative definite o, ~ and positive definite ol *. Let |A| denote the absolute of
and|A|% bethe square root df|. Let £ := D(|A|%) bethe domain of the self-adjoint operaqaﬂ%
whichis a Hilbert space equipped with the inner product

(u,v) = (|A|7u, |A[2v)s

andnorm ||u|| = (u,u)z. By (V), E = H' := H'(R3,R) with equivalent norm (see [19]). There-
fore E embeds continuously intd® for all s € [2, 6], and compactly intd.;, . for all s € [2,6). Thus
forall s € [2, 6], there existg; > 0 such that

luls < csllull, foru e E.
In addition, we have the following decomposition
E=E & E", where E* = ENL*,

orthogonal with respect to both, -), and(-, -). This decomposition also induces a natural decompo-
sition of L*, s € (2, 6), hence there exists; such that

Bs|ut|? < |ul® forallu € E. (2.1)

It is well known that problem (1.1) can be reduced to a single equation with nonlocal term. Actu-
ally, for eachu € E, the linear functional’, in D'?(R3) defined by

Tu(v) = - K(z)uvdz, v e DV?(R3)
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is continuous. In fact, Blder inequality and Sobolev inequality imply that

|Tu(v)| = K (z)u*vdx

R3

IN

| K2|u?[3]v]6

IN

STHE |2 |ulg|[v]l pro2- (2.2)
It follows from the Lax-Milgram theorem that there exists a unigyec D?(R3) such that

V¢, Vude = K (2)uvdz Yv € DM?(R3), (2.3)
R3 R3
that is¢,, is a weak solution of- A¢ = K (z)u?, andé, can be represented by
K 2
(y)u(y) .
Ré |7 —yl

By (2.2) and (2.3), it is easy to see that

bu() =

K |2]u?|3]dul

STIGI K al|ull* | dull 1. (2.4)

lullpre = [ | K@ouida

IN

IN

It can be proved thatu, ¢) € E x D%?(R?) is a solution of (1.1) if and only if, € F is a critical
point of the functionalb : £ — R defined by

©(w = 5 [ 1V + Ve — g

5 K(z)p u’dx — ]1? /R3 q(x)|ulPdx, (2.5)

R3
and¢ = ¢,,. In virtue of (2.4), we know tha® is well defined. Furthermore, our hypotheses imply
that® € C'(E,R) (see [40)).

From the decomposition df, then (2.5) is equivalent to the following functional

P(u) = %(||U+||2 —[lu™[?) = T(u) — ¥(u), ueE, (2.6)
where
Tu) :i K (2)puuds and (u) = 11? / o) [ulPdz.
R3 R3

Thusassumptior{V") implies that (2.6) is strongly indefinite functional, such type of functionals
have appeared extensively in the study of differential equations via critical point theory, see for exam-
ple [17-19, 30, 35, 40, 42, 44, 45] and the references therein. Moreover, it is not difficult to compute
that, for allu, p,n € E,

Mue = [ K@oupds
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T (u)le,n] = /Rs K(x)qﬁusonder?/Rg K(w)(/R3 K(y)|u(y)n(y)dy)u<pd:c,

|z —y

V' (u)p = /R (@)’ upde,
and
V(wlel = (0-1) [ a0 pnds.
Hence,® is C? in E.

3. SOME PRELIMINARIES AND LIMIT PROBLEM
For the convenience of discussion, we define the opefataf — D'?(R3) as
Llu] = ¢y.
In the following, we give some properties about the functianal
Lemma3.1 — (1) L is continuous ana,, > 0 if u # 0;

(2) L maps bounded sets into bounded sets;

(3) Let K € L?(R?). If u,, — u in E, then up to a subsequence,

bu, — by In DVE(R3).

PrROOF: The proofs were given in [11] and [43], here we omit the details.

Lemma3.2 — LetK € L*(R?). If u,, — win E, up to a subsequence, thenas- o,

K(z)py, uldr = K(z)pyu’dz + o(1),
R3 R3

K (2)u, unpdz — / K («)buupdz + o(1), Y € E.
R3 R3

And if ¢, — ¢ in E, the

K(2) ¢y, unpndr = / K(x)pyupdr + o(1).
R3 R3

PROOF: First, we prove the conclusion (3.1). By Sobolev embedding, — ¢, in D12(R?)

implies that

bu,, — ¢u in LI(R?),

455

(3.1)

(3.2)

(3.3)
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and then

. K (2)u*(¢u, — du)dz — 0, (3.4)

sinceK (z)u? € Lg(R:”) by Holder inequality and assumptidik’). Moreover, fromu,, — u in E,

we can assume that, uptoa subsequence,

Uy — u in L¥(R?), w, — v in L} (R3), for2 < s < 6.

loc

Thus, by Hilder inequality, we have

/ (K@)l — K(@)pui2)de = | K@)gu, (2 — u?)da
R3 R3
< |Bu,l6lun + uls (/R3 IK(ZC)(un—u)|3dx>3
e ( | 1K@ - u>|3dm) T o (3.5)
R3

asn — oo, since the sequeneg, := (u, — u)% — 0in L*(R3) andK(x)% €L
(3.4) and (3.5), we have

/ (K(av)qbunu,?1 — K(x)(buuQ)dw
R3
= K(2)u*(¢u, — ¢u)dz + / K(2)¢y, (u2 — u?)dz — 0
R3 R3
asn — oQ.

Next, we prove the conclusion (3.2). It suffices to show that

[ K @6u e = K@)osupids =0

uniformly for anyy € E with ||| < 1 asn — co. In fact, similar to (3.5), we have

K (x)¢u, (un — u)pdz
R3

IN

el ([ 1K) - wits)

IN

Callel ([ 1K@~ wltaz) 0 @)

asn — oo. On the other hand, by Lemn3al and Holder inequality, it is easy to check that

[, K@) 60, = 6u)upds —0, @7
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asn — oo. Thus, by (3.6) and (3.7), we have
[ K@~ K)o
= . K(z)(pu, — du)updz + / K(z)¢u, (un — u)pdz — 0
R3 R3
asn — oo.

Finally, we prove the conclusion (3.3). By the similar argument, we have

K@) tpnds = [ K(@)on, unpda, (3.8)
R3 R3
K (2)gu, unpdc — / K (2) ¢, upde, (3.9)
R3 R3
and
K(@)owupds — [ K(@)oupds, (3.10)
R3 R3

asn — oo. Thus, by (3.8)-(3.10), we have
K(x)pu, unpndz —>/ K(x)pupdz
R3 R3

asn — oo. The proof is complete. O

In order to find critical points ofp, we will use the following abstract theorem which is taken
from [19] and [8].

Let F be a Banach space with direct sum decomposiica X&@Y, u = x+y and corresponding
projectionsPy, Py onto X, Y, respectively. For a functiondt € C'(E,R) we write®, = {u €
E : ®(u) > b}. Recall that a sequende,,} C F is said to be 4C).-sequence (respectivelyf’.S)..-
sequence) i (uy,) — cand(1+ |luy||)®’ (u,) — 0 (respectivelyp’(u,, — 0). ® is said to satisfy the
(C).-condition (respectively,PS).-condition) if any(C').-sequence (respectivelyf’S).-sequence)
has a convergent subsequence.

Now we assume thaX is separable and reflexive, and we fix a countable dense sfibset™.
For eachs € S there is a semi-norm of' defined by

ps: E— R, ps(u):|s(x)]+ |y foru=z+y € E.

We denote by/s the topology induced by semi-norm famify }, w* denote the weaktopology on
E*. Suppose
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(®g) foranyc € R, superlevelb, is 7g-closed, andd’ : (®., 7g) — (E*, w*) is continuous;

(®,) foranyc > 0, there existg > 0 such that|u|| < &||Pyul forallu € ®;

(®2) there existp > 0 such that: := inf (S, NY) > 0, whereS, := {u € E : |[u|| = p};
The following theorem is a special case of Theorein [8], see also Theorem 3 in [19].

Theorem3.3— Let (®y) — (P2) be satisfied and suppose there @&e> p > 0 ande € Y with
lle]l = 1 such thatup ®(0Q) < k whereQ :={u=x +te:x € X,t >0, ||u|| < R}. Then® has
a (C).-sequence with < ¢ < sup ¢(Q).

The following lemma is useful to verif§d,) (see [19] or [8]).
Lemma3.4 — Suppos® € C'(E, R) is of the form
2(u) = (Il ~ lal?) ~ ¥(w) foru=s+ye E=X oY
such that
(i) ¥ € C'(E,R) is bounded from blow;

(i7) ¥ : (E,7,) — Ris sequentially lower semicontinuous, thatis, — « in E implies ¥ (u)
< liminf ¥ (u,);

(i13) ¥’ : (E,T,) — (E*, Ty,~) is sequentially continuous;
(iv) v: E — Ryv(u) = |[ul]? isCtandv’ : (E,T,) — (E*, T,) is sequentially continuous.
Then® satisfieg ®y).

To prove our main result, we will make use of the associated limit problem. Precisely, we will

consider the following periodic problem

{ —Au+V(z)u = alulP~*u, (3.11)

u € HY(R3)

whereV (z) satisfies assumptiofi’'), anda is given in assumptiofif’). Similar to the previous
variational setting, we know that the solutions of (3.11) are critical points of the following functional
defined by

1 _ 1
Bl) = gt =) = a [
1

= §(|lu+||2 —[lu”[?) = Yoo (u), u € E,
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whereV . (u) = S alulp.

Let Koo = {u € E : &_(u) = 0} be critical setC' := inf{®.,(u),u € Koo \{0}} be the least
energy,S := {u € K. : ®,(u) = C} be least energy solution set. It is well known that there exist
some works for problem (3.11) about the study of existence of ground state solutions, see [30, 35, 36,
38, 42]. The following lemma can be found in [35] (see also [30]).

Lemma3.5 —K # 0, C > 0. Moreover,(C is achieved, that isS # 0.

Following Ackermann [1] and Ding and Lee [17] (see also [18, 19]), for fixed ET, we
introduce the functionat’, : £~ — R by

Fy(v) = @oo(u+v) = %(HUW = [[0ll*) = Voo (u+0).
For anyv,n € E—, we have
Fy/(0)[n,n) = —|Inll* = €2 (u +v)[n,n] < ~ln]?,
which impliesF,(+) is strictly concave. Moreover,
Fulw) < g(JulP = o)) — ~oo, as|] — oo.

Plainly, F, is weakly sequentially upper semicontinuous. Therefore, there is a uhigie) <
E~ such that
Fu(hoo(u)) = max F,(v).
veEE™

As Lemma5.6 in [1] or Lemma3.5 in [17], the maph., : E™ — E~ has following properties:
(1) hoo is R3-invariant, i.e. s (k * 1) = hoo(u) Where(k * u)(z) = u(z + k) for all k € R3;
(2) hoo is bounded map i€ (E*, E7), andhs(0) = 0;
(3) If up, = win E1, theheo (Un) — hoo(tn — 1) — heo(u) @andheg (un) — hoo(u).
4. PROOF OF THEMAIN RESULT
We are going to prove the main result. Let
K:={ueFE:du)=0}
be the critical set of. Set

C:=inf{®u):ueK\{0}} and S := {u e K: d(u)=C}.
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To apply Theoren3.3. Now, we will show the properties a@f, ¥.

Lemmad4.1 —T', ¥ are non-negative and weakly sequentially lower semicontinubysl’ are
weakly sequentially continuous.

PROOF: Itis clear thafl’ and ¥ are non-negative by the assumptidn) and Lemme8.1. ¥’ is
weakly sequentially continuous from the fact taembeds continuously ih? for all s € [2, 6], and
compactly inL; forall s € [2,6). Similar to the conclusion (3.2) of Lemn3a2, we know thafl” is

loc

weakly sequentially continuous. O

Now we discuss the linking structure of

Lemmad.2 — There exists > 0 andp > 0 such that®|p (u) > 0 and®|g, (u) > p, where
B, ={ue€ E":|jul| <r}andS, ={u € E* :|jul]| =r}.

PROOF: For anyu € E™, by (2.4) and Sobolev inequality, we have
1 2
Ou) = Sllull® = T(u) = ¥(u)
1
> Sllull® = Collul® = Cs]lull™
Sincep € (2, 6), choosing suitable > 0 we see that the desired conclusion holds. |

Lemmad.3 — There exist® > 0 such that, for any € E* with ||e|]| = 1 andE, = E~ ¢ Re,
®(u) < 0forallu € E.\Bg.

PROOF: For anyu € E., thatisu = te 4+ v for somet € R andv € E~. By (2.1), we have
1
®() = S(tPlel” = [lvl*) = T(u) — ¥(u)

1.5 1, 5 a
< Gl = Gl = Ste ol

1 1 Gra
< Sl = ol = el
p
Sincep € (2, 6), choosing large? > 0 we see that the desired conclusion holds. O

Let ho be the induced map frold* — E~ as in SectiorB. From now on, we assume that
eo € ET such thakg + hoo(eg) € S. SetE., = E~ + Rey,.

Lemmad.4 — We have

d:=sup{®(u) :u € B} < C.
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PrROOF : Observe that by Lemma.2 and the linking property we hawé > p. Since®(u)
< Poo(u) forallu = teg + v, v € E~,t € R, and by Lemma&.11 in Ding and Lee [17],

Do (1) = Do (teg + v) < Poo(teg + hoo(teg)) < C.

Henced < C. Next we prove that < C. Assume by contradiction that = C. Letu, =
vp +tneo € Ee, be such thatl — % < ®(uy) — d. It follows from Lemmad.3 that{u,, } is bounded.
Hence we can assume that, up to a subsequence; v in E,, with v,, = v € E~ andt,, — t. It
is clear that # 0. In fact, ift = 0, then

1 ~
d— ﬁ < (I)(’Un + 7fneO) < <I>oo('Un + tne()) < <I>oo(75n€0 + hoo(tnBO)) <C,

which implies thaC’' = 0. Hence

A= 20w) < ulu) o [ (a(o) ~ @)funPda

n P JR3
< 0o Gale) - @lulds
R3
Taking the limit yields
C<é 1/ (q(2) — a)|ulPdz
D Jrs
whichimplies thatu = 0 sinceq(x) > a as in condition(£'), a contradiction. O

Set

Q:={u=v+teg:ve E ,t>0,]ul <R}
As a consequence of Lemmat, we have the following

Lemma4.5 —sup ®(Q) < C.

We now turn to the analysis of”').-sequences including the boundness and the compactness.
Firstly, we have

Lemma4.6 — Under the assumptions of Theorérh. Then any(C').-sequences cb is bounded.

ProoF: Let {u,} C E be such that

®(uy,) — cand(1 + ||uy|))®' (u,) — 0, (4.1)

and

3 ) = 5l = i %) = 20 () — 20 (4.2
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By (4.1) and (4.2), there is constafif > 0 such that we have

C > D(uy) — %@’(un)un = () + (&~ 1)W(uy) > 0. (4.3)

Arguing indirectly, assume that up to a subsequéngg — co. Setv,, = m Then||v,|| =1
and|v,|s < csllvn|| = ¢ for s € [2,6). Hence, we can assume that up to a subsequenee v.
Moreover, by (4.3),

Vi) (4.4)
[[n]|
Then,by (4.4)
[ [P~ vn B — 0. (4.5)
Similarly, we have
Llun) (4.6)
Onthe other hand,
/ + ., / + .-
)t 1) = g (1 FL N S I S ) )
Unp,

By Holder inequality, we have

|9 (un) (g = u)| =

/ 0@ PP (it — w3 )dz
RS

< C5/ [ [P — | da (4.8)
R3
< CG’unlgil‘urJLr — Uy, [p-
Then by (4.5) and (4.8), we have

W (un) (1, — )

lunl?

0. (4.9)

Obserne that the functiondl’, which is the unique non-local term i, satisfies the conditions in
Ackermann [2]. Hence, by Lemn®a6 in [2] and (4.6), we have

I (up) (usy — ) 1T ()|

[[n ||

Uy = Uy |

E* n

lunl?

(VI ()i, + T (g )it — | ‘

[[un?

< Oy

I
2

(4.10)

B 1 AT (uy) — 40(up) _
B Cg(Wm Tuall " mu) .
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Therefore, from (4.7), (4.9) and (4.10), we hav&u,,)(u,;} — u,;) — oco. Itis a contradiction.
Hence{u,} is bounded in¥. O

In what follows, let{u,} be a(C).-sequence oft. By Lemma4.6, it is bounded, hence, up
to a subsequence,, — u in E. It is obvious that is a critical point of®. In order to establish
compactness condition, we need to prove some results.

Lemma4.7 — Suppose thatu,,} does not converge to strongly inE, thenu) := u,, — uis a
(PS).,-sequence fob ., with ¢y = ¢ — ®(u) > 0 andul, — 0.

PROOF: Sinceu,, — u, we haveu’ — 0. We can assume thaf® — u™* (respu,, — u~) and

ultt == wut —ut — 0 (resp.ul” := u —uT — 0). Then by direct computation we have
lut1? = lup® + a1 = Jluyt|1? + lu™[* + o(1) (4.11)
and
g 112 = llun™ +u™ > = [luy |2+ [lu” | + o(1). (4.12)

According to Brezis-Lieb lemma in [40], we have
unlp = [ulb + |uy [P + o(1). (4.13)
Now, let us show that
(q(z) — a)|ulP2ul — 0 in E*. (4.14)
Indeed, for anyp € F,
[ (@)~ a)lubp-2uliodo
R3

:/ (q(x) — a)luy [P~ 1<Pd9€+/ (g(z) — a)|ul P 2ul pda.
l2|<R a[>R

SinceE — L compactlyu), — 0in L} forp € [2,6). Hence, for any > 0, we have

< Colun b~ elp < ellll.

/ (g(x) — a)]u1 P=2u <pd:1:
lo|<R

In virtue of assumptioriF') we know whenR > 0 is large enoughig(x) — a| < € for |z| > R.
By the boundness of!, in E, there holds

V \>R<Q(x) — a)|uy, P Puppdr| < elugy 5 ol < eCiollell.
x>
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Thus

[ tal@) ~ a)lub - 2ulipdo — o
R3
Hence (4.14) holds.

Similarly, we also have
/R (a(x) ~ a)ubPdz — 0. (4.15)
Moreover, by using Lemma.1 in [40], we have
[t [P 2, = [P0+ |ul P72l + o(1) in E*. (4.16)

Therefore, by (3.1)-(3.3) and (4.11)-(4.15), we obtain

1 _ 1 1
D) = Sl Juzl?) - | / K@i~ [ q(@)unl?
R3 R3
= Ly -t / K@)éa -~ [ @)
2 4 R3 “ p R3

1 _ 1
U = [l B = [ alul+o(1)
P JRrs

®(u) + Poo(uy) + o(1),

and for allp € F,

o(1) = (2'(un),¥)
= (u;zi_7 90) - (u;, ()0) - /R3 K(m)(ﬁu"ungadx - /R3 Q(x)’un’p_2un§0dx

= W) =) - [ K@upde = [ ol upds

Hut o) = (0 ¢) = [ alubPulpde +o(1)
= (@(0),9) + (@ ub),) + (1)
= (B(uh). o) +o(1).

Hence

and

(ul) = o(1) in E*. (4.17)
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Furthermore, it holds that

n

1
(I)OO(ul) = §<I>f)o(ui)u1 =(z— 1)\Iloo(u1) > 0. (4.18)
Thuswe have proved the conclusion. O

Lemma4.8 — Under the assumptions of Lemni&. There exist a sequendg < R3 with
|kL| — oo and a critical point.! # 0 of &, satisfyingk), * u} — u! and

Poo (bt xul —ul) = ¢ — ®(u) — P (ul) > 0. (4.19)
PrRoOF: Observe that

(@ (uh)ouk” = ul) = b2 = [ kPl = ke (4.20)

By a direct computation, we obtain

o(l) = (¥'(un),ul —uy,)

n

= (®'(u),u” —u") + (P (ul), utt —ul™) +0(1) (4.21)

n/’-n n

= (P (up), un” —uy ) +o(1).

n’ron

Setting

0 := lim sup sup/ lul [Pdz |,
n—o0  \yeR3 JBi(y)
we haves > 0. Actually, if § = 0 would be true, then by Lemma1 in [40], v} — 0 in L? for

€ (2,6). Thus by (4.20) and (4.21) anddttler inequalityu. — 0 in E. Itis a contradiction. Then
we may assume the existence{éf.} ¢ R such that

)
/ lul |Pdx > ~.
By (k) 2

Let us now considek. * ul. We may assume thaf +ul — u! in E. Thereforeg) * ul — u!
a.e. inR3. Since

)
/ kL wul [Pde > =,
B1(0) 2

from the Rellich theorem it follows that

/ lutPda > é,
B1(0) 2
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thusu! # 0. Sinceul — 0in E, {k.} must be unbounded, and up to a subsequence, we can assume
|kL| — 4o0. Furthermore, (4.17) implie®’_(u') = 0, and similar argument as Lemm& shows

Do (') + Poo(ky + Uy, — ') +0(1) = Poo(ky * up,) = Poo(uy,)

= O(up) — P(u) +o(1) (4.22)
= ¢—P(u)+o(1)

and
O (kL xul —ul)=0(1) in E*. (4.23)
By (4.22), (4.23) and similar computation as in (4.18) yield (4.19). The proof is complets.

With these preparations, we have the following compactness lemma.
Lemma4.9 — Either
(i) up — u, OF

(i) ¢ > C and there a positive integer, pointsu!, - - - ,u™ € K., a subsequence denoted again
by {u,}, and sequencgki} C R3, such that, as — oo,

m

un—u—Z(kg*ui)

i=1

— 0,

ki — oo, [k —k}| — oo, ifi# ]

and

PROOF : Suppose that conclusiof) is false, then{u,,} does not converge ta strongly in
E. Therefore, we have the results in Lemeha@ and Lemma4.8. Note thatc > C' since ®(u)
> 0 and @ (u') > C. If kL xul — u!, then we are done. Otherwise, repeating the argument
as in Lemmad.7 and Lemmad.8, after at most finitely many steps we can finish the proof since
Do (u?) > C > 0. O

Lemma4.10 — Ifc < C, then® satisfies théC').-condition.

PROOF: It is a straight consequence of LemraA. O
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PROOF OFTHEOREM1.1 : Observe that, the combination of Lemthéand Lemmat.1 implies
that® verifies(®y). It is clear that® checks(®;) because of the form (2.6). Lemma& is nothing
but (®2). Lemma4.3 shows that the linking condition of Theoresn! is satisfied. These, together
with Lemma4.5 yield a (C). sequencgu,, } with ¢ < C for ®. Hence, by virtue of Lemma.10,
uy, — u such tha®’(u) = 0 and®(u) > p. Therefore L\{0} # 0.

In what following, we proveC’ > 0. Indeed, assume by contradiction tifat= 0. Then there
exists{u, } € K\{0} such that®>(u,) — 0. Then, by Lemmd.6, {u, } is bounded. We can assume
that, up to a subsequenag, — u € K. Then

®(un) = T(up) + (g — 1)U (uy) — 0.
Sincel'(uy,) > 0 and¥(u,) > 0, we have
I'(u,) — 0 and ¥(u,) — 0. (4.24)
Note thaty(z) > a. Hence¥ (u,,) — 0 implies|uy,|, — 0. Since®’ (u,)(u;} — u; ) = 0 and
' (un) (g = upy) = [Jun|* = T (un) (i, — ) = ¥ (un) (1} — ),
we have
lunl® = T (un) (s}, = u) + ' (un) (uf — ;). (4.25)

By assumptior{ K') and Hlder inequality,

W (un ) (uy — )| =

IRCI e

< Oulunlp™ut —uglp — 0. (4.26)
By (4.24) and Lemma.6 in [2], we have
T (un) (uy = ur)| = T (un) | st =y |
< iz (VD) + T (wa)un ) ua|
— O <\/4F(un) v 4F(un)> l[ttn]| — O. (4.27)

Here we used the fact thét., } is bounded. Hence (4.25)-(4.27) imgly,,|| — 0. Furthermore,
by Sobolev embedding inequality, we have

lunl® < Crallunll + Crsllunll* = Cro(lunl"= + [l *)lun |
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Hence,1 < o(1), a contradiction.

Now, we show that’ is achieved. The above argument impligs> 0, then there exist$u,, }
such tha (u,,) — C, ®'(u,) — 0. SinceC' < C, we haveu,, — uin Ewith ®(u) = C, &' (u) = 0,
henceS + (. The proof is complete. O
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