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In this paper we consider a second-order Sturm-Liouville operator of the form

l (y) := − [
p (t) y∆ (t)

]∇
+ q (t) y (t)

on bounded time scales. In this study, we construct a space of boundary values of the minimal op-

erator and describe all maximal dissipative, maximal accretive, self-adjoint and other extensions

of the dissipative Sturm-Liouville operators in terms of boundary conditions. Using Krein’s the-

orem, we proved a theorem on completeness of the system of eigenvectors and associated vectors

of the dissipative Sturm-Liouville operators on bounded time scales.
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1. INTRODUCTION

The study of dynamic equations on time scales is a new area of theoretical exploration in mathemat-

ics. The first fundamental results in this area were obtained by Hilger [15]. Time scale calculus unites

the study of differential and difference equations. The study of time scales has led to several impor-

tant applications, e.g., in the study of neural networks, heat transfer, and insect population models,

epidemic models [1]. We refer the reader to consult the reference [2, 3, 6, 7, 14, 19] for some basic

definitions.

The completeness theorems are important for solving various problems in mathematical physics

by the Fourier method, and also for the spectral theory itself. Dissipative operator is important part
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of non self adjoint operators. In the spectral analysis of a dissipative operator, we should answer the

question that whether all eigenvectors and associated vectors of a dissipative operator span the whole

space or not.

The organization of this document is as follows: In Section 2, some time scale essentials are

included for the convenience of the reader. In Section 3, we construct a space of boundary values of

the minimal operator and describe all maximal dissipative, maximal accretive, self-adjoint and other

extensions of the dissipative Sturm-Liouville operators in terms of boundary conditions. Finally, we

proved a theorem on completeness of the system of eigenvectors and associated vectors of dissipative

operators under consideration. A similar way was employed earlier in the differential and difference

operators case in [4, 5, 11, 12, 13]. In this paper, we unite the study of differential and difference

operators.

2. PRELIMINARIES

LetT be a time scale. The forward jump operatorσ : T→ T is defined by

σ (t) = inf {s ∈ T : s > t} , t ∈ T

and the backward jump operatorρ : T→ T is defined by

ρ (t) = sup {s ∈ T : s < t} , t ∈ T.

It is convenient to have graininess operatorsµσ : T→ [0,∞) andµρ : T→ (−∞, 0] defined by

µσ (t) = σ (t)− t andµρ (t) = ρ (t)− t, respectively. A pointt ∈ T is left scattered ifµρ (t) 6= 0 and

left dense ifµρ (t) = 0. A point t ∈ T is right scattered ifµσ (t) 6= 0 and right dense ifµσ (t) = 0.

We introduce the setsTk, Tk, T∗ which are derived form the time scaleT as follows. IfT has a left

scattered maximumt1, thenTk = T− {t1} , otherwiseTk = T. If T has a right scattered minimum

t2, thenTk = T− {t2} , otherwiseTk = T. Finally,T∗ = Tk ∩ Tk.

Some functionf on T is said to be∆-differentiable at some pointt ∈ T if there is a number

f∆(t) such that for everyε > 0 there is a neighborhoodU ⊂ T of t such that

|f(σ(t))− f(s)− f∆(t)(σ(t)− s)| ≤ ε|σ(t)− s|, s ∈ U.

Analogously one may define the notion of∇-differentiability of some function using the back-

ward jumpρ. One can show [14]

f∆(t) = f∇(σ(t)), f∇(t) = f∆(ρ(t))
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for continuously differentiable functions.

Let f : T → R be a function, anda, b ∈ T. If there exists a functionF : T → R, such that

F∆ (t) = f (t) for all t ∈ Tk, thenF is a∆-antiderivative off. In this case the integral is given by

the formula ∫ b

a
f (t)∆t = F (b)− F (a) for a, b ∈ T.

Analogously one may define the notion of∇-antiderivative of some function.

Let L2
∆ (T∗) be the space of all functions defined onT∗ such that

‖f‖ :=
(∫ b

a
|f (t)|2 ∆t

)1/2

< ∞.

The spaceL2
∆ (T∗) is a Hilbert space with the inner product [21]

(f, g) :=
∫ b

a
f (t) g (t)∆t, f, g ∈ L2

∆(T∗) .

Let a ≤ b be fixed points inT anda ∈ Tk, b ∈ Tk. We will consider the Sturm-Liouville equation

l (y) := − [
p (t) y∆ (t)

]∇
+ q (t) y (t) , t ∈ [a, b], (2.1)

whereq : T→ C is continuous function,p : T→ R is ∇-differentiable onTk, p (t) 6= 0 for all

t ∈ T, andp∇ : Tk→ R is continuous. The Wronskian ofy, z is defined to be [14]

W (y, z) (t) := p (t)
[
y (t) z∆ (t)− y∆ (t) z (t)

]
, t ∈ T∗.

Let L0 denote the closure of the minimal operator generated by(2.1) and byD0 its domain.

Besides, we denote byD the set of all functionsy (t) from L2
∆ (T∗) such thatl (y) ∈ L2

∆ (T∗); D is

the domain of the maximal operatorL. FurthermoreL = L∗0 [20]. Suppose that the operatorL0 has

defect index (2,2).

For everyy, z ∈ D we have Lagrange’s identity [14]

(Ly, z)− (y, Lz) = [y, z]b − [y, z]a

where[y, z]t := p (t)
[
y (t) z∆ (t)− y∆ (t) z (t)

]
.

For arbitraryy, z ∈ D, one has the equality

[y, z]t = [y, u]t[z, v]t − [y, v]t[z, u]t. (2.2)
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Denoteu (t, λ) , v (t, λ) the solutions of the equationl (y) = λy satisfying the initial conditions

u (a, λ) = cosα, p (a) u∆ (a, λ) = sinα,

v (a, λ) = − sinα p (a) v∆ (a, λ) = cosα,

whereα ∈ R. The solutionsu (t, λ) andv (t, λ) form a fundamental system of solutions ofl (y) = λy

and they are entire functions ofλ [8]. Let u (t) = u (t, 0) andv (t) = v (t, 0) the solutions of the

equationl (y) = 0 satisfying the initial conditions

u (a) = cosα, p (a) u∆ (a) = sinα,

v (a) = − sinα p (a) v∆ (a) = cos α.

Let’s define byΓ1,Γ2 the linear maps fromD toC2 by the formula

Γ1y =


 −y (a)

[y, u]b


 , Γ2y =


 p (a) y∆ (a)

[y, v]b


 , y ∈ D. (2.3)

We recall that a triple(H, Γ1, Γ2) is called a space of boundary values of a closed symmetric

operatorA on a Hilbert spaceH if Γ1, Γ2 are linear maps fromD (A∗) to H with equal deficiency

numbers and such that:

(i) for everyf, g ∈ D (A∗)

(A∗f, g)H − (f, A∗g)H = (Γ1f, Γ2g)H − (Γ2f, Γ1g)H ;

(ii) any F1, F2 ∈ H there is a vectorf ∈ D (A∗) such thatΓ1f = F1, Γ2f = F2 [10].

3. MAIN RESULTS

Theorem1 — The triple
(
C2, Γ1, Γ2

)
defined by (2.3) is a boundary spaces of the operatorL0.

PROOF : For anyy, z ∈ D, we have

(Γ1y, Γ2z)C2 − (Γ2y, Γ1z)C2 = −y (a) p (a) z∆ (a) + p (a) y∆ (a) z (a)

+[y, u]b[z, v]b − [z, u]b[y, v]b

= [y, z]b − [y, z]a = (Ly, z)− (y, Lz) ,

i.e., the first condition in the definition of the space of boundary values holds. It is easy to see that the

second condition of the boundary value space holds. 2
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Recall that a linear operatorT (with dense domainD (T )) acting on some Hilbert spaceH is

called dissipative (accretive) ifIm (Tf, f) ≥ 0 (Im (Tf, f) ≤ 0) for all f ∈ D (T ) and maximal

dissipative (maximal accretive) if it does not have a proper dissipative (accretive) extension.

From [10, 17], following theorem is obtained.

Theorem2 — For any contractionK in C2 the restriction of the operatorL to the set of functions

y ∈ D satisfying either

(K − I) Γ1y + i (K + I) Γ2y = 0 (3.1)

or

(K − I) Γ1y − i (K + I) Γ2y = 0 (3.2)

is respectively the maximal dissipative and accretive extension of the operatorL0. Conversely, ev-

ery maximal dissipative (accretive) extension of the operatorL0 is the restriction ofL to the set of

functionsy ∈ D satisfying (3.1) (3.2), and the extension uniquely determines the contractionK.

Conditions (3.1) (3.2), in whichK is an isometry describe the maximal symmetric extensions ofL0

in C2. If K is unitary, these conditions define self-adjoint extensions. In particular, the boundary

conditions

cosα y (a) + sinα p (a) y∆ (a) = 0 (3.3)

[y, u]b + h[y, v]b = 0 (3.4)

with Im h ≥ 0, describe the maximal dissipative extensions ofL0 with separated boundary

conditions.

It follows from Theorem 2, all the eigenvalues ofL lie in the closed upper half planeImλ ≥ 0.

Theorem3 — The operatorL has not any real eigenvalue.

PROOF : Suppose that the operatorL has a real eigenvalueλ0. Let η0 (x) = η (x, λ0) be the

corresponding eigenfunction. Since

Im (Lη0, η0) = Im
(
λ0 ‖η0‖2

)
= Imh ([η0, v]b)

2 ,

we get[η0, v]b = 0. By the boundary condition (3.4), we have[η0, u]b = 0. Thus

[η0 (t, λ0) , u]b = [η0 (t, λ0) , v]b = 0. (3.5)
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Let ξ0 (t) = v (t, λ0) . Then

1 = [η0, ξ0]b = [η0, u]b[ξ0, v]b − [η0, v]b[ξ0, u]b.

By the equality (3.5), the right -hand side is equal to0. This contradiction proves the theorem.2

Lemma1 — Zero is not an eigenvalueL.

PROOF : Let y ∈ D (L) andLy = 0. Then

− [
p (t) y∆ (t)

]∇
+ q (t) y (t) = 0,

andy (t) = c1u (t) + c2v (t) . Substituting this in the boundary conditions (3.3)-(3.4) we find that

c1 = c2 = 0; i.e., y = 0. 2

Let’s remind the Krein’s theorem.

Definition1 — Letf be an entire function. If for eachε > 0 there exists a finite constantCε > 0,

such that

|f (λ) | ≤ Cεe
ε|λ|, λ ∈ C (3.6)

thenf is called an entire function of order≤ 1 of growth and minimal type [9].

Let A denote the linear non-selfadjoint operator in the Hilbert space with domainD (A) . A

complex numberλ0 is called an eigenvalue of the operatorA if there exists a non-zero element

y0 ∈ D (A) such thatAy0 = λ0y0; in this case,y0 is called the eigenvector ofA for λ0. The

eigenvectors forλ0 span a subspace ofD (A) , called the eigenspace forλ0.

The elementy ∈ D (A) , y 6= 0 is called a root vector ofA corresponding to the eigenvalueλ0

if (T − λ0I)n y = 0 for somen ∈ N. The root vectors forλ0 span a linear subspace ofD (A) , is

called the root lineal forλ0. The algebraic multiplicity ofλ0 is the dimension of its root lineal. A root

vector is called an associated vector if it is not an eigenvector. The completeness of the system of all

eigenvectors and associated vectors ofA is equivalent to the completeness of the system of all root

vectors of this operator.

Theorem4 [9] — The system of root vectors of a compact dissipative operatorB with nuclear

imaginary component is complete in the Hilbert spaceH so long as at least one of the following two

conditions is fulfilled:

lim
ρ→∞

n+ (ρ,BR)
ρ

= 0, or lim
ρ→∞

n− (ρ,BR)
ρ

= 0,
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wheren+ (ρ,BR) andn− (ρ,BR) denote the numbers of the characteristic values of the real compo-

nentBR of the operatorB in the intervals[0, ρ] and[−ρ, 0], respectively.

Theorem5 [18] — If the entire functionf satisfies the condition (3.6), then

lim
ρ→∞

n+ (ρ, f)
ρ

lim
ρ→∞

n− (ρ, f)
ρ

= 0

wheren+ (ρ, f) andn− (ρ, f) denote the numbers of the zeros of the functionf in the intervals[0, ρ]

and[−ρ, 0], respectively.

From Lemma 1, there exist the inverse operatorL−1. In order to describe the operatorL−1 we

use the Green’s function method. We consider the functionsv (x) andθ (x) = u (x) + hv (x) . These

functions belong to the spaceL2
∆(T∗). Their WronskianW (v, θ) = −1.

Let

G (x, t) =





v (x) θ (t) , a ≤ x ≤ t ≤ b

v (t) θ (x) , a ≤ t ≤ x ≤ b
. (3.7)

The integral operatorK defined by the formula

Kf =
∫ b

a
G (x, t) f (t)∆t

(
f ∈ L2

∆(T∗)
)

(3.8)

is a compact linear operator in the spaceL2
∆(T∗). K is a Hilbert Schmidth operator. It is evident

thatK = L−1. Consequently the root lineals of the operatorL andK coincide and, therefore, the

completeness inL2
∆(T∗) of the system of all eigenvectors and associated vectors ofL is equivalent

to the completeness of those forK. Since the algebraic multiplicity of nonzero eigenvalues of a

compact operator is finite, each eigenvector ofL may have only a finite number of linear independent

associated vectors.

Let ϕ (x, λ) is the single linearly independent solution of the equationl (y) = λy, and

τ1 (λ) : = [ϕ (x, λ) , u (x)]b,

τ2 (λ) : = [ϕ (x, λ) , v (x)]b,

τ (λ) : = τ1 (λ) + hτ2 (λ) .

It is clear that

σp (L) = {λ : λ ∈ C, τ (λ) = 0}
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whereσp (L) denotes the set of all eigenvalues ofL. Since for arbitraryc (a ≤ c < b) , the functions

ϕ (c, λ) andϕ4 (c, λ) are entire functions ofλ of order≤ 1 (see [8]), consequently,τ (λ) have the

same property. Thenτ (λ) is entire functions of the order≤ 1 of growth, and of minimal type.

Theorem6 — The system of all root vectors of the dissipative operatorK is complete inL2
∆(T∗).

PROOF : It will be sufficient to prove that the system of all root vectors of the operatorK = L−1

in (3.8) is complete inL2
∆(T∗). Sinceθ (x) = u (x) + hv (x) , settingh = h1 + ih2 (h1, h2 ∈ R),

we get from (3.8) in view of (3.7) thatK = K1 + iK2, where

K1f =
(
G1 (x, t) , f (t)

)
L2

∆(T∗)
, K2f =

(
G2 (x, t) , f (t)

)
L2

∆(T∗)

and

G1 (x, t) =





v (x) [u (t) + h1v (t)], a ≤ t ≤ x ≤ b,

v (t) [u (x) + h1v (x)], a ≤ t ≤ x ≤ b,

G2 (x, t) = −h2v (x) v (t) , h2 = Imh > 0.

The operatorK1 is the self-adjoint Hilbert–Schmidt operator inL2
∆(T∗), andK2 is the self-

adjoint one dimensional operator inL2
∆(T∗). Let L1 denote the operator inL2

∆(T∗) generated by the

differential expressionl and the boundary conditions

cosα y (a) + sinα p (a) y∆ (a) = 0,

[y, u]b + h1[y, v]b = 0,

whereh1 = Reh. It is easy to verify thatK1 is the inverseL1. Further

σp (L1) = {λ : λ ∈ C, Ψ(λ) = 0} (3.9)

where

Ψ(λ) := τ1 (λ) + h1τ2 (λ) . (3.10)

Then we find

|Ψ(λ) | ≤ Cεe
ε|λ|, ∀λ ∈ C. (3.11)

Let T = −K andT = T1 + iT2, whereT1 = −K1, T2 = −K2. The characteristic values of the

operatorK1 coincide with the eigenvalues of the operatorL1. From (3.9), (3.11) and Theorem 5, we

have

lim
ρ→∞

m+ (ρ, T1)
ρ

= 0, or lim
ρ→∞

m− (ρ, T1)
ρ

= 0,
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wherem+ (ρ, T1) andm− (ρ, T1) denote the numbers of the characteristic values of the real compo-

nentTR = T1 in the intervals[0, ρ] and[−ρ, 0], respectively. Thus the dissipative operatorT (also of

K) carries out all the conditions of Krein’s theorem on completeness. The theorem is proved.2
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