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In this paper we consider a second-order Sturm-Liouville operator of the form

L) =—[p®y* 0] +a®)y ()

on bounded time scales. In this study, we construct a space of boundary values of the minimal op-
erator and describe all maximal dissipative, maximal accretive, self-adjoint and other extensions
of the dissipative Sturm-Liouville operators in terms of boundary conditions. Using Krein's the-
orem, we proved a theorem on completeness of the system of eigenvectors and associated vectors

of the dissipative Sturm-Liouville operators on bounded time scales.
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1. INTRODUCTION

The study of dynamic equations on time scales is a new area of theoretical exploration in mathemat-
ics. The first fundamental results in this area were obtained by Hilger [15]. Time scale calculus unites
the study of differential and difference equations. The study of time scales has led to several impor-
tant applications, e.g., in the study of neural networks, heat transfer, and insect population models,
epidemic models [1]. We refer the reader to consult the reference [2, 3, 6, 7, 14, 19] for some basic

definitions.

The completeness theorems are important for solving various problems in mathematical physics

by the Fourier method, and also for the spectral theory itself. Dissipative operator is important part



536 HUSEYIN TUNA

of non self adjoint operators. In the spectral analysis of a dissipative operator, we should answer the
guestion that whether all eigenvectors and associated vectors of a dissipative operator span the whole

space or not.

The organization of this document is as follows: In Section 2, some time scale essentials are
included for the convenience of the reader. In Section 3, we construct a space of boundary values of
the minimal operator and describe all maximal dissipative, maximal accretive, self-adjoint and other
extensions of the dissipative Sturm-Liouville operators in terms of boundary conditions. Finally, we
proved a theorem on completeness of the system of eigenvectors and associated vectors of dissipative
operators under consideration. A similar way was employed earlier in the differential and difference
operators case in [4, 5, 11, 12, 13]. In this paper, we unite the study of differential and difference

operators.

2. PRELIMINARIES
Let T be a time scale. The forward jump operadgor T — T is defined by
o(t)=inf{seT:s>t},teT
and the backward jump operater T — T is defined by
p(t)=sup{seT:s<t},teT.

It is convenient to have graininess operatoys: T — [0, 00) andyu, : T — (—oo, 0] defined by
Lo (t) = o (t)—tandu, (t) = p (t) —t, respectively. A point € T is left scattered if:, (¢) # 0 and
left dense ifu, (t) = 0. A pointt € T is right scattered if:, () # 0 and right dense ifi, (t) = 0.
We introduce the sef8*, T, T* which are derived form the time scéleas follows. IfT has a left
scattered maximurty, thenT* = T — {¢;}, otherwiseT* = T. If T has a right scattered minimum
ta, thenTy, = T — {to} , otherwiseT, = T. Finally, T* = T* N T,.

Some functionf on T is said to beA-differentiable at some poirit € T if there is a number

f2(t) such that for every > 0 there is a neighborhodd c T of ¢ such that

[f(0() = f(s) = FAO)(o(t) = 8)| < elo(t) —s|, seU.

Analogously one may define the notion Gtdifferentiability of some function using the back-

ward jumpp. One can show [14]

AU =rYew), Y= r~200)
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for continuously differentiable functions.

Let f : T — R be a function, and, b € T. If there exists a functiodF : T — R, such that
F2(t) = f(t) forall t € T*, thenF is a A-antiderivative off. In this case the integral is given by
the formula ,

/ F(t) At = F (b) — F(a) fora,b e T.

Analogously one may define the notion\Gfantiderivative of some function.

Let L% (T*) be the space of all functions defined Bhsuch that

nm:(fﬁqufm<w

The spacd.} (T*) is a Hilbert space with the inner product [21]

b
(F9) = [ £O50AL f.g9€ A(T).
Leta < b be fixed points iflT anda € T}, b € T*. We will consider the Sturm-Liouville equation

Ly) =~ [py™> 0] +a@)y(t), t € [a,b], (2.1)

whereq : T — Cis continuous functionp : T — R is V-differentiable onT*, p(¢t) # 0 for all

t € T, andpV : T;,— R is continuous. The Wronskian gf z is defined to be [14]

W (y,z)(t):=p)[y(t) 2B —yP (b) 2 )], teT"

Let Ly denote the closure of the minimal operator generated2by) and by D, its domain.
Besides, we denote by the set of all functiong (¢) from L% (T*) such that (y) € L% (T*); Dis
the domain of the maximal operatdr Furthermorel = L [20]. Suppose that the operatbs has
defect index (2,2).

For everyy, z € D we have Lagrange’s identity [14]

(Lyaz) - (vaz) = [yvz]b - [ya Z]UL

wherely, 2], := p (t) |y () 22 (t) =y (£) 2 () -

For arbitraryy, z € D, one has the equality

[y, 2]t = [y, ul[z, v]r — [y, v]e[z, ul:. (2.2)
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Denoteu (¢, \), v (t, A) the solutions of the equatidriy) = Ay satisfying the initial conditions

u(a,\) = cosa, p(a)u®(a,\)=sina,

v(a,\) = —sina p(a)v™ (a,\) = cosa,

wherea € R. The solutions: (¢, A\) andv (¢, A) form a fundamental system of solutiond df)) = \y
and they are entire functions af[8]. Letwu (t) = u(¢,0) andwv (t) = v (¢,0) the solutions of the

equatior/ (y) = 0 satisfying the initial conditions

w(a) = cosa, p(a)u® (a) =sina,

v(a) = —sina p(a)v™ (a) = cosa.

Let’s define byl"1, I's the linear maps fromD to C2 by the formula

— a a A a
Iy y (a) oy — p(a)y= (a) yeD. 2.3)
[y’u]b [yav]b

We recall that a triplg§H, I'1,I'2) is called a space of boundary values of a closed symmetric
operatorA on a Hilbert spacéd if I'1, 'y are linear maps fronb (A4*) to H with equal deficiency

numbers and such that:

(i) forevery f,g € D (A¥)
(A f,9)y — (f, A9y = (T1f, T2g)y — (T2f . T1g)ys
(i) any Iy, F> € H thereis avectof € D (A*) such thal’, f = Fy, I'sf = F5 [10].
3. MAIN RESULTS

Theoreml — The triple (C?,T';,T'2) defined by (2.3) is a boundary spaces of the operétor

PROOF: For anyy, z € D, we have

(T1y,T92)ce — (Tay, T12)ce. = —y(a)p(a) 22 (a) + p(a) y*™ (a) 2 (a)
+[y7 u]b[zv U]b - [Zv u]b[y7 'U}b
= [yv Z]b - [ya Z]a = (Lya Z) - (yv LZ) )

i.e., the first condition in the definition of the space of boundary values holds. It is easy to see that the

second condition of the boundary value space holds. O



DISSIRATIVE STURM-LIOUVILLE OPERATOR ON BOUNDED TIME SCALES 539

Recall that a linear operatdr (with dense domairD (7)) acting on some Hilbert spadé is
called dissipative (accretive) Iin (T'f, f) > 0 (Im (T'f, f) < 0) for all f € D (T") and maximal

dissipative (maximal accretive) if it does not have a proper dissipative (accretive) extension.
From [10, 17], following theorem is obtained.

Theorem2 — For any contractionk” in C? the restriction of the operatak to the set of functions
y € D satisfying either
(K-DTy+i(K+ 1)y =0 (3.1)
or

(K—ITiy—i(K+1)Tyy=0 (3.2)

is respectively the maximal dissipative and accretive extension of the opérat@onversely, ev-

ery maximal dissipative (accretive) extension of the operatpis the restriction ofL to the set of
functionsy € D satisfying (3.1) (3.2), and the extension uniquely determines the contragtion
Conditions (3.1) (3.2), in whiclk is an isometry describe the maximal symmetric extensiotig of

in C2. If K is unitary, these conditions define self-adjoint extensions. In particular, the boundary

conditions
cosa y(a) +sinap(a)y> (a) =0 (3.3)
[ya u]b + h[y7 v]b =0 (34)

with Im A > 0, describe the maximal dissipative extensionsLgfwith separated boundary

conditions.
It follows from Theorem 2, all the eigenvalues biie in the closed upper half pladenA > 0.
Theorem3 — The operatorl. has not any real eigenvalue.

PROOF : Suppose that the operatérhas a real eigenvalug,. Let ny (z) = n(z, Ao) be the

corresponding eigenfunction. Since

I (Lno, no) = Im (Ao [o]*) = T ([ v}s)?.

we get[no, v], = 0. By the boundary condition (3.4), we hajg, u], = 0. Thus

[10 (¢, Ao) , ulo = [mo (£, Ao) , v]p = 0. (3.5)
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Let&y (t) =0 (t, )\0) . Then

1 = [no, §olo = [10, uls (€0, V)b — M0, v]b[€0, ulb-
By the equality (3.5), the right -hand side is equaltd his contradiction proves the theorem.
Lemmal — Zero is not an eigenvaluk.

PROOF: Lety € D (L) andLy = 0. Then

Wy O] +a()y(t) =0,

andy (t) = ciu (t) + cov (t) . Substituting this in the boundary conditions (3.3)-(3.4) we find that

cp=c2=0; 1.e,y=0. O
Let's remind the Krein's theorem.

Definition1 — Let f be an entire function. If for each> 0 there exists a finite consta@t > 0,
such that
If(V] < Ce? xeC (3.6)

thenf is called an entire function of ordet 1 of growth and minimal type [9].

Let A denote the linear non-selfadjoint operator in the Hilbert space with dolbgid). A
complex number\q is called an eigenvalue of the operatdrif there exists a non-zero element
yo € D (A) such thatAyy = Agyo; in this case,y, is called the eigenvector ofl for \g. The

eigenvectors foh, span a subspace &f (A) , called the eigenspace fap.

The elemeny € D (A), y # 0 is called a root vector ofi corresponding to the eigenvalug
if (T'—X\oI)"y = 0 for somen € N. The root vectors fon, span a linear subspace bf(A) , is
called the root lineal fohy. The algebraic multiplicity o\, is the dimension of its root lineal. A root
vector is called an associated vector if it is not an eigenvector. The completeness of the system of all
eigenvectors and associated vectorsidé equivalent to the completeness of the system of all root

vectors of this operator.

Theorem4 [9] — The system of root vectors of a compact dissipative opei@tavith nuclear
imaginary component is complete in the Hilbert spafso long as at least one of the following two
conditions is fulfilled

lim " BR) oo iy (22 BR)
p—00 P p—00 P

=0,
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wheren. (p, Bg) andn_ (p, Br) denote the numbers of the characteristic values of the real compo-

nentBp of the operatorB in the intervals0, p] and[—p, 0], respectively.
Theorem5 [18] — If the entire functionf satisfies the condition (3.6), then

poop pooe

=0

wheren, (p, f) andn_ (p, f) denote the numbers of the zeros of the funcfigmthe intervalg0, p]

and[—p, 0], respectively.

From Lemma 1, there exist the inverse operdiot. In order to describe the operatbr! we
use the Green'’s function method. We consider the functigng andf (z) = u (x) + hv (z) . These
functions belong to the spadé (T*). Their WronskianlV’ (v, ) = —1.

Let
v(@)0(t), a<z<t<b
G (z,t) = : (3.7)
v(t)f(z), a< x<b
The integral operatoK™ defined by the formula
b S
Kf= [ G T@a (7 e1i(r) (38)

is a compact linear operator in the spack(T*). K is a Hilbert Schmidth operator. It is evident
that K = L~!. Consequently the root lineals of the operafoand I coincide and, therefore, the
completeness i3 (T*) of the system of all eigenvectors and associated vectofsisfequivalent

to the completeness of those far. Since the algebraic multiplicity of nonzero eigenvalues of a
compact operator is finite, each eigenvectof.ohay have only a finite number of linear independent

associated vectors.

Lety (x, \) is the single linearly independent solution of the equati@) = \y, and

(A =[e(zA),u(@),
T2 (A) L= [90 (1}, )‘) U (x)]b;
T(A) =11 (A\)+hre ().

It is clear that

op(L)={A:AeC, 7(\) =0}
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whereo), (L) denotes the set of all eigenvaluesiofSince for arbitrary: (a < ¢ < b), the functions
¢ (¢, \) andp® (c, \) are entire functions ok of order< 1 (see [8), consequentlyr (\) have the

same property. Then () is entire functions of the ordet 1 of growth, and of minimal type.
Theorem6 — The system of all root vectors of the dissipative operafas complete inL3 (T*).

PrROOF: It will be sufficient to prove that the system of all root vectors of the opetites L~
in (3.8) is complete inLA (T*). Sinced (z) = u (z) + hv (x), settingh = hy + ihs (h1, hy € R),
we get from (3.8) in view of (3.7) thak’ = K; + iK», where

Kif = (Gl (z,t) 7f(t))L2A(T*)7 Kof = (G2 (2, 1) ’f(t)>L2A(T*)
and
Gt { v(@) [u(t) +hiv(t)], a<t<z<b,
v(t)[u(x)+ hv(x)], a<t<z<b,

Ga(z,t) = —hgv(x)v(t), ha =Imh > 0.

The operatorK; is the self-adjoint Hilbert-Schmidt operator I (T*), and K is the self-
adjoint one dimensional operator I} (T*). Let L; denote the operator ih% (T*) generated by the

differential expressiohand the boundary conditions
cosay(a)+sinap(a)y™ (a) = 0,
[yau]b—l_hl[yav]b = Oa

whereh; = Reh. Itis easy to verify that(; is the inverse.,. Further

op (L) ={A: A€ C, T(\) =0} (3.9)
where
UA):=71(A)+hima (V). (3.10)
Then we find
W\ <CefPl waec. (3.11)

LetT = —K andT = T3 + iT>, whereT; = — K, T = —K>. The characteristic values of the
operatorK; coincide with the eigenvalues of the operaigr From (3.9), (3.11) and Theorem 5, we

have
im M) g o gy =0T
p—00 P p—00 P

=0,
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wherem (p,T1) andm_ (p, T1) denote the numbers of the characteristic values of the real compo-

nentTr = T3 in the intervald0, p] and[—p, 0], respectively. Thus the dissipative operafofalso of

K) carries out all the conditions of Krein’s theorem on completeness. The theorem is proved.
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