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1. INTRODUCTION

The uncertainty principles in harmonic analysis state that a nonzero functionf and its Fourier trans-

form f̂ cannot be at the same time simultaneously and sharply localized, that is, it’s impossible for a

nonzero function and its Fourier transform to be simultaneously small. There are many formulations

of this general fact where the smallness and the localization have been interpreted differently and by

several ways. For more details about uncertainty principles, we refer the reader to [4, 8]. For an

arbitrary functionf ∈ L2(Rd) and a nonzero functiong ∈ L2(Rd) called a window function, the

short time Fourier transform (STFT) off with respect tog is defined onRd × R̂d by [6]

Vg(f)(x, ω) =
∫

Rd

f(z)g(z − x)ei〈z|ω〉dµd(z), (1.1)
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where〈. | .〉 is the classical inner product onRd defined by〈z|ω〉 =
d∑

i=1

ziωi anddµd(z) =
dz

(2π)
d
2

is

the normalized Lebesgue measure.

The STFT plays an important role in time-frequency analysis namely by providing an interesting

way to study the local frequency spectrum of signals. Relation (1.1) shows that unlike the classical

Fourier transform, the STFT gives a simultaneous representation of the space and the frequency vari-

ables. In signal analysis, the short time Fourier transform is closely related to other common and

known time frequency distributions as the radar ambiguity function defined onRd × R̂d, by [6]

A(f)(x, ω) =
∫

Rd

f
(
z +

x

2

)
f

(
z − x

2

)
e−i〈z|ω〉dµd(z). (1.2)

The radar ambiguity function occurs naturally in many radar applications, for more details about

its physical aspect, we refer the reader to [6]. In fact, a standard change of variables shows that

A(f)(x, ω) = e
i
2
〈x|ω〉Vf (f)(x, ω). (1.3)

Roughly speaking, the uncertainty principles for the STFT say that for a given functionf ∈
L2(Rd), the STFTVg(f) cannot be concentrated in the time-frequency plane. In this context, Lieb

[14] proved an analogue of Donoho-Strak uncertainty principle for the STFT and the radar ambiguity

function. We cite Fernandez, Galbis and Wilczok [5, 13] who studied the annihilating sets for the

STFT. Other uncertainty principles have been also showed for the STFT namely by Grochening and

Zimmerman [7] who established an analogue of Hardy and Benedick’s theorem for the STFT. Heisen-

berg inequality, Cowling-price theorem as well as Gelfand-Shilov theorem have been also showed for

the STFT and the radar ambiguity function by Bonami, Demange, and Jaming [1]. Recently Lam-

ouchi and Omri [10] proved a quantitative version of Shapiro’s and the umbrella theorems for the

STFT.

Our purpose in this work is to prove two logarithmic uncertainty principles due to Beckner for

both of the STFT and the radar ambiguity function. We also generalize the Heisenberg inequality

proved by Bonami, Demange and Jaming [1] and we prove Price’s local uncertainty principle for

these two transforms.

More precisely, our first main result will be the logarithmic Beckner’s uncertainty principle for

the radar ambiguity function. Indeed for every nonzero functionf ∈ S(Rd), we haveA(f) ∈ S(R2d)
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and
∫ ∫

Rd×bRd

ln |(x, ω)||A(f)(x, ω)|4dµ2d(x, ω)

> 1
2

(
ψ

(
d

2

)
+ ln 2

) ∫ ∫

Rd×bRd

|A(f)(x, ω)|4dµ2d(x, ω), (1.4)

whereψ denotes the logarithmic derivative of Euler’s functionΓ. Next, we will prove an analogue of

logarithmic Beckner’s uncertainty principle in terms of entropy for the STFT and the radar ambiguity

function, that is for everyf, g ∈ L2(Rd) such thatg is nonzero, we have

E(|Vg(f)|2) > ‖f‖2
2,Rd‖g‖2

2,Rd

(
d− ln

(
‖f‖2

2,Rd‖g‖2
2,Rd

))
.

As consequence of the uncertainty principle in terms of entropy, we will prove a Heisenberg type

inequality for generalized dispersion by showing that for every positive real numbersp, q, there is a

nonnegative constantDp,q such that for everyf, g ∈ L2(Rd), we have

(∫ ∫

Rd×bRd

|x|p|Vg(f)(x, ω)|2dµ2d(x, ω)
) q

p+q
(∫ ∫

Rd×bRd

|ω|q|Vg(f)(x, ω)|2dµ2d(x, ω)
) p

p+q

> Dp,q‖f‖2
2,Rd‖g‖2

2,Rd .

Finally, we will prove Price’s uncertainty principle for the STFT and the radar ambiguity function,

that is for every finite measurable subsetΣ of Rd × R̂d and for everyξ, p ∈ R, 0 < ξ < d, p > 1,

there is a nonnegative constantMξ,p such that for everyf, g ∈ L2(Rd) such thatg is nonzero, we

have
∫ ∫

Σ
|Vg(f)(x, ω)|pdµ2d(x, ω)

6 Mξ,p (µ2d(Σ))
1

(p+1) ‖|(x, ω)|ξVg(f)‖
2pd

(d+ξ)(p+1)

2,Rd×bRd
‖f‖p− 2pd

(d+ξ)(p+1)

2,Rd ‖g‖p− 2pd
(d+ξ)(p+1)

2,Rd .

2. THE SHORT TIME FOURIER TRANSFORM

According to relation (1.1), fix a window functiong ∈ L2(Rd), for everyf ∈ L2(Rd) the short time

Fourier transform off with respect tog, is defined on the time-frequency planeRd × R̂d by [6]

Vg(f)(x, ω) =
∫

Rd

f(z)g(z − x)ei〈z|ω〉dµd(z).

For everyx, ω ∈ Rd, we denote byMω andTx the modulation and the translation operators

defined respectively onL2(Rd) by

∀z ∈ Rd, Mωh(z) = ei〈z|ω〉h(z), (2.1)
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and

∀z ∈ Rd, Txh(z) = h(z − x). (2.2)

Then by relations (2.1) and (2.2), we deduce that

∀z ∈ Rd, Mω(Txh)(z) = ei〈z|ω〉h(z − x), (2.3)

and

∀z ∈ Rd, Tx(Mωh)(z) = e−i〈x|ω〉ei〈z|ω〉h(z − x). (2.4)

Again by relation (2.2), the STFT may be expressed as

Vg(f)(x, ω) = f̂Txg(ω). (2.5)

and by relations (1.1) and (2.1), we have

Vg(f)(x, ω) =
∫

Rd

f(z)ei〈z|ω〉g(z − x)dµd(z)

= Mωf ∗ g(x),

where∗ denotes the usual convolution product onRd.

It’s known [6] that for everyf, g ∈ L2(Rd) the STFTVg(f) is uniformly continuous and bounded

on the time-frequency planeRd × R̂d and satisfies

‖Vg(f)‖∞,Rd×bRd 6 ‖f‖2,Rd‖g‖2,Rd . (2.6)

Moreover according to [6], for allf1, f2, g1, g2 ∈ L2(Rd) the functionsVg1(f1) andVg2(f2)

belong toL2(Rd × R̂d) and we have the following orthogonality relation

〈Vg1(f1)|Vg2(f2)〉Rd×bRd = 〈f1|f2〉Rd〈g1|g2〉Rd . (2.7)

In particular, for everyf, g ∈ L2(Rd) we get

‖Vg(f)‖
2,Rd×bRd = ‖f‖2,Rd‖g‖2,Rd . (2.8)

Givenf, g ∈ L2(Rd) andξ, λ, y, z ∈ Rd, then by relations (2.3) and (2.4) we have

VMξTzg(MλTyf)(x, ω) =
∫

Rd

(MλTyf)(u)Tx (MξTzg) (u)e−i〈ω|u〉dµd(u)

= ei〈x|ξ〉
∫

Rd

f(u− y)g(u− (x + z))e−i〈u|ω−λ+ξ〉dµd(u)

= ei〈x|ξ〉e−i〈y|ω−λ+ξ〉
∫

Rd

f(t)g(t− (x− y + z))e−i〈t|ω−λ+ξ〉dµd(t)

= ei〈x|ξ〉e−i〈y|ω−λ+ξ〉Vg(f)(x− y + z, ω − λ + ξ). (2.9)
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Relation (2.9) shows in particular that for every(y, λ), (x, ω) ∈ Rd × R̂d

VMλTyg(MλTyf)(x, ω) = ei〈x|λ〉e−i〈y|ω〉Vg(f)(x, ω). (2.10)

We have also the following switching property

Vf (g)(x, ω) =
∫

Rd

g(z)f(z − x)e−i〈z|ω〉dµd(z)

= e−i〈x|ω〉
∫

Rd

f(y)g(y + x)e−i〈y|−ω〉dµd(z)

= e−i〈x|ω〉Vg(f)(−x,−ω). (2.11)

Let λ be a positive real number, for every measurable functionf , we denote byfλ the dilate of

f defined byfλ(x) = f(λx), then for everyf ∈ L2(Rd), fλ belongs toL2(Rd) and by a standard

computation we deduce thatVg(fλ) is given by

Vg(fλ)(x, ω) =
1
λd
Vg 1

λ

(f)(λx,
ω

λ
). (2.12)

Finally given two positive real numbersa, b and letf andg be the gaussian functions defined

respectively byf(x) = (4a)
d
4 e−a|x|2 andg(x) = (4b)

d
4 e−b|x|2 , then by a standard calculus we have

‖f‖2,Rd = ‖g‖2,Rd = 1 and for every(x, ω) ∈ Rd × R̂d

Vg(f)(x, ω) = (16ab)
d
4

∫

Rd

e−a|z|2e−b|z−x|2e−i〈ω|z〉dµd(z)

= (16ab)
d
4 e−b|x|2

∫

Rd

e−(a+b)|z|2e2b〈z|x〉e−i〈ω|z〉dµd(z)

= (16ab)
d
4 e−b|x|2e

b2

a+b
|x|2

∫

Rd

e−(a+b)(|z|2−2〈z| b
a+b

x〉+| b
a+b

x|2)e−i〈ω|z〉dµd(z)

= (16ab)
d
4 e

−ab
a+b

|x|2
∫

Rd

e−(a+b)|z− b
a+b

x|2e−i〈ω|z〉dµd(z)

= (16ab)
d
4 e

−ab
a+b

|x|2e−i〈ω| b
a+b

x〉
∫

Rd

e−(a+b)|y|2e−i〈ω|y〉dµd(z).

Hence,

Vg(f)(x, ω) =
(4ab)

d
4

(a + b)
d
2

e
−ab
a+b

|x|2e−i〈ω| b
a+b

x〉e−
|ω|2

4(a+b) . (2.13)



152 H. LAMOUCHI AND S. OMRI

In particular by relation (2.13) we get

|Vg(f)(x, ω)|2 =
(4ab)

d
2

(a + b)d
e
−2ab
a+b

|x|2e−
|ω|2

2(a+b) . (2.14)

3. UNCERTAINTY PRINCIPLES FOR THESTFT

In [2] Beckner used Stein-Weiss and Pitt’s inequalities to obtain a logarithmic estimate of the uncer-

tainty, he showed that for everyf ∈ S(Rd) we have

∫

Rd

ln |x||f(x)|2dx +
∫

Rd

ln |y||f̂(y)|2dy >
(

ψ

(
d

4

)
+ ln 2

)∫

Rd

|f(x)|2dx, (3.1)

wheref̂ is the classical Fourier transform defined onRd by

∀y ∈ Rd, f̂(y) =
∫

Rd

f(x)e−i〈x|y〉dµd(x),

andψ is the logarithmic derivative ofΓ function defined byψ(x) =
Γ′(x)
Γ(x)

.

The previous inequality is known as Beckner’s logarithmic uncertainty principle. In the following

we are interested to generalize inequality (3.1) to the radar ambiguity functionA(f) for f ∈ S(Rd).

Theorem3.1— Letf ∈ S(Rd) be a nonzero function, thenA(f) ∈ S(R2d), and we have

∫ ∫

Rd×bRd

ln |(x, ω)||A(f)(x, ω)|4dµ2d(x, ω)

> 1
2

(
ψ

(
d

2

)
+ ln 2

) ∫ ∫

Rd×bRd

|A(f)(x, ω)|4dµ2d(x, ω), (3.2)

whereψ denotes the logarithmic derivative of Euler’s functionΓ.

PROOF : Let f, g ∈ S(Rd), then the functionh(x, z) = f(z)g(z − x) belongs toS(Rd × R̂d).

SinceS(Rd × R̂d) is invariant under partial Fourier transform then by relation (2.5) we deduce that

Vg(f) ∈ S(Rd × R̂d). Let φ be the function defined onRd × R̂d by

φ(x, ω) = Vg(f)(x, ω)Vf (g)(x, ω),
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thenφ ∈ S(Rd × R̂d) and according to relations (2.7), (2.10) and (2.11), we have

φ̂(y, λ) =
∫

Rd

∫
bRd

Vf (g)(x, ω)Vg(f)(x, ω)e−i〈x|y〉e−i〈ω|λ〉dµ2d(x, ω)

=
∫

Rd

∫
bRd

Vf (g)(x, ω)Vg(f)(x, ω)ei(〈x|−y〉−〈ω|λ〉)dµ2d(x, ω)

=
∫

Rd

∫
bRd

VM−yTλg(M−yTλf)(x, ω)Vf (g)(x, ω)dµ2d(x, ω)

= 〈VM−yTλg(M−yTλf)|Vf (g)〉Rd×bRd

= 〈M−yTλf |g〉R̂d〈M−yTλg|f〉Rd

=
(∫

Rd

g(z)f(z − λ)e−i〈y|z〉dµd(z)
) (∫

Rd

f(z)g(z − λ)e−i〈y|z〉dµd(z)
)

=
(∫

Rd

g(z)f(z − λ)e−i〈−y|z〉dµd(z)
)(∫

Rd

f(z)g(z − λ)e−i〈−y|z〉dµd(z)
)

= Vg(f)(λ,−y)Vf (g)(λ,−y),

and therefore

φ̂(y, λ) = φ(−λ, y). (3.3)

Now, assume that‖f‖2,Rd = ‖g‖2,Rd = 1, then by combining relations (2.8), (3.1) and (3.3), we

deduce that
∫ ∫

Rd×bRd

ln |(x, ω)||Vg(f)(x, ω)|2|Vf (g)(x, ω)|2dµ2d(x, ω)

> 1
2

(
ψ

(
d

2

)
+ ln 2

)∫ ∫

Rd×bRd

|Vg(f)(x, ω)|2|Vf (g)(x, ω)|2dµ2d(x, ω).

Hence by relation (1.3), we get
∫ ∫

Rd×bRd

ln |(x, ω)||A(f)(x, ω)|4dµ2d(x, ω)

> 1
2

(
ψ

(
d

2

)
+ ln 2

) ∫ ∫

Rd×bRd

|A(f)(x, ω)|4dµ2d(x, ω). 2

According to Shannon [12], the entropy of a probability density functionρ onRd× R̂d is defined

by

E(ρ) = −
∫ ∫

Rd×bRd

ln(ρ(x, ω))ρ(x, ω)dµ2d(x, ω),

whenever the integral on the right hand side is well defined. The entropy plays an important role

in quantum mechanics and in signal theory, for a better understanding of its physical’s signification

we refer the reader to [3]. Clearly the entropy represents an advantageous way to measure the decay



154 H. LAMOUCHI AND S. OMRI

of a functionf , so that it was very interesting to localize the entropy of a probability measure and

its Fourier transform. In this context, the first estimation has been given by Hirschman [9] and has

been improved by Beckner [2] who used the Hausdorff-Young inequality to derive the following

uncertainty inequality that is for everyf ∈ L2(Rd) with ‖f‖2,Rd = 1, we have

E(|f |2) + E(|f̂ |2) > d(1− ln 2),

whenever the left side is well defined. The aim of the following is to generalize the localization of the

entropy to the STFT over the time-frequency plane and also to the radar ambiguity function.

Theorem3.2— Letg be a window function andf ∈ L2(Rd), then

E(|Vg(f)|2) > ‖f‖2
2,Rd‖g‖2

2,Rd

(
d− ln

(
‖f‖2

2,Rd‖g‖2
2,Rd

))
, (3.4)

and the inequality (3.4) is sharp.

PROOF : Assume that‖f‖2,Rd = ‖g‖2,Rd = 1 and following the idea of Lieb [11], then by

relation (2.6) we deduce that

∀(x, ω) ∈ Rd × R̂d, |Vg(f)(x, ω)| 6 ‖Vg(f)‖∞,Rd×bRd 6 ‖f‖2,Rd‖g‖2,Rd = 1. (3.5)

In particularE(Vg(f)) > 0 and therefore if the entropyE(Vg(f)) is infinite then the inequality

(3.4) holds trivially. Suppose now that the entropyE(Vg(f)) is finite and let0 < x < 1 andh be the

function defined on]2, 3] by

h(p) =
xp − x2

p− 2
,

then

∀p ∈]2, 3[, h′(p) =
(p− 2)xp ln(x)− (xp − x2)

(p− 2)2
> 0,

and thereforeh is increasing on]2, 3], in particular

∀p ∈]2, 3], x2 ln(x) = lim
p→2+

xp − x2

p− 2
6 xp − x2

p− 2
,

hence

0 6 x2 − xp

p− 2
6 −x2 ln(x), (3.6)

and by combining relations (3.5) and (3.6) we get, for every(x, ω) ∈ Rd × R̂d

0 6 |Vg(f)(x, ω)|2 − |Vg(f)(x, ω)|p
p− 2

6 −|Vg(f)(x, ω)|2 ln(|Vg(f)(x, ω)|). (3.7)
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Let ϕ be the function defined on[2,+∞[ by

ϕ(p) =
(∫ ∫

Rd×bRd

|Vg(f)(x, ω)|p dµ2d(x, ω)
)
−

(
2
p

)d

.

According to Lieb [11], we know that for every2 6 p < +∞ the STFTVg(f) belongs to

Lp(Rd × R̂d) and we have

∫ ∫

Rd×bRd

|Vg(f)(x, ω)|p dµ2d(x, ω) 6
(

2
p

)d

‖f‖p
2,Rd‖g‖p

2,Rd . (3.8)

Then, relation (3.8) implies thatϕ(p) 6 0 for everyp ∈ [2, +∞[ and by Plancherel theorem (2.8)

we haveϕ(2) = 0. Therefore

(
dϕ

dp

)

p=2+

6 0 whenever this derivative is well defined. However, by

using relation (3.7) and Lebesgue’s dominated convergence theorem we have
(

d

dp

∫

Rd×bRd

|Vg(f)(x, ω)|p dµ2d(x, ω)
)

p=2+

= −
∫ ∫

Rd×bRd

lim
p→2+

|Vg(f)(x, ω)|2 − |Vg(f)(x, ω)|p
p− 2

dµ2d(x, ω)

= −1
2
E(|Vg(f)|2)

and consequently (
dϕ

dp

)

p=2−
= −1

2
E(|Vg(f)|2) +

d

2
,

which gives

E(|Vg(f)|2) > d.

Let f(x) = (4a)
d
4 e−a|x|2 andg(x) = (4b)

d
4 e−b|x|2 with a, b > 0 then‖f‖2,Rd = ‖g‖2,Rd = 1 and

according to relation (2.14) we have for every(x, ω) ∈ Rd × R̂d

|Vg(f)(x, ω)|2 =
(4ab)

d
2

(a + b)d
e
−2ab
a+b

|x|2e−
|ω|2

2(a+b) .

Therefore by a standard calculus and using relation (2.14), we get

E(|Vg(f)|2) = d

(
1− ln

(
2
√

ab

a + b

))
.

In particularE(|Vg(f)|2) = d if, and only if a = b. 2

Corollaire 3.3 — Letf ∈ L2(Rd), then

E(|A(f)|2) > ‖f‖4
2,Rd

(
d− ln

(
‖f‖4

2,Rd

))
, (3.9)
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and the inequality (3.4) is sharp.

In [1] Bonami, Demange and Jaming showed a Heisenberg type inequality for the radar ambi-

guity function with respect to the second dispersion and as noticed above the same inequality holds

obviously for the STFT. The authors showed that given a window functiong ∈ L2(Rd) then for every

f ∈ L2(Rd) we have
∫ ∫

Rd×bRd

|x|2|Vg(f)(x, ω)|2dµ2d(x, ω)
∫ ∫

Rd×bRd

|ω|2|Vg(f)(x, ω)|2dµ2d(x, ω)

> d2‖f‖4
2,Rd‖g‖4

2,Rd

In what follows we shall use Theorem 3.2 to generalize the previous Heisenberg uncertainty

principle for generalized dispersions.

Theorem3.4 — Let p and q be two positive real numbers. Then there exists a nonnegative

constantDp,q such that for every window functiong and for every functionf ∈ L2(Rd) we have

(∫ ∫

Rd×bRd

|x|p|Vg(f)(x, ω)|2dµ2d(x, ω)
) q

p+q
(∫ ∫

Rd×bRd

|ω|q|Vg(f)(x, ω)|2dµ2d(x, ω)
) p

p+q

> Dp,q‖f‖2
2,Rd‖g‖2

2,Rd , (3.10)

whereDp,q =
d

p
q

p+q q
p

p+q

e

pq

0
@d+ln

0
@ 2d−2pqΓ( d

2 )2

Γ( d
p )Γ( d

q )

1
A
1
A

d(p+q)
−1.

Moreover, forp = q = 2 inequality (3.10) is sharp.

PROOF : Assume that‖f‖2,Rd = ‖g‖2,Rd = 1 and letξt,p,q be the function defined onRd × R̂d

by ξt,p,q(x, ω) =
2d−2pqΓ(d

2)2

Γ(d
p)Γ(d

q )
e−

|x|p+|ω|q
t

t
d
p
+ d

q

, so by basic calculus we see that

∫

Rd×bRd

ξt,p,q(x, ω)dµ2d(x, ω) = 1,

in particulardσt,p,q(x, ω) = ξt,p,q(x, ω)dµ2d(x, ω) is a probability measure onRd × R̂d. Since the

functionϕ(t) = t ln(t) is convex over]0, +∞[, hence according to Jensen’s inequality

∫ ∫

Rd×bRd

|Vg(f)(x, ω)|2
ξt,p,q(x, ω)

ln
( |Vg(f)(x, ω)|2

ξt,p,q(x, ω)

)
dσt,p,q(x, ω) > 0,

which implies in terms of entropy that for every positive real numbert

E(|Vg(f)|2)+ln

(
2d−2pqΓ(d

2)2

Γ(d
p)Γ(d

q )

)
6 ln(t

d
p
+ d

q )+
1
t

∫ ∫

Rd×bRd

(|x|p+|ω|q)|Vg(f)(x, ω)|2dµ2d(x, ω),
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and by means of Theorem 3.2

∫ ∫

Rd×bRd

(|x|p + |ω|q)|Vg(f)(x, ω)|2dµ2d(x, ω) > t

(
d + ln

(
2d−2pqΓ(d

2)2

Γ(d
p)Γ(d

q )

)
− ln(t

d
p
+ d

q )

)
.

However the expressiont(d + ln

(
2d−2pqΓ(d

2)2

Γ(d
p)Γ(d

q )

)
− ln(t

d
p
+ d

q )) attains its upper bound at

t0 = e

pq

0
@d+ln

0
@ 2d−2pqΓ( d

2 )2

Γ( d
p )Γ( d

q )

1
A
1
A

d(p+q)
−1, and consequently

∫ ∫

Rd×bRd

(|x|p + |ω|q)|Vg(f)(x, ω)|2dµ2d(x, ω) > Cp,q,

where

Cp,q =
d(p + q)

pq
e

pq

0
@d+ln

0
@ 2d−2pqΓ( d

2 )2

Γ( d
p )Γ( d

q )

1
A
1
A

d(p+q)
−1

.

Therefore for every window functiong and for every functionf ∈ L2(Rd), we get

∫ ∫

Rd×bRd

|x|p|Vg(f)(x, ω)|2dµ2d(x, ω)+
∫ ∫

Rd×bRd

|ω|q|Vg(f)(x, ω)|2dµ2d(x, ω)

> Cp,q‖f‖2
2,Rd‖g‖2

2,Rd . (3.11)

Now for every positive real numberλ the dilatesfλ andgλ belong toL2(Rd) andgλ is nonzero,

then by relation (3.11), we have

∫ ∫

Rd×bRd

|x|p|Vgλ
(fλ)(x, ω)|2dµ2d(x, ω) +

∫ ∫

Rd×bRd

|ω|q|Vgλ
(fλ)(x, ω)|2dµ2d(x, ω)

> Cp,q‖fλ‖2
2,Rd‖gλ‖2

2,Rd

hence for every positive real numberλ

λ−p

∫ ∫

Rd×bRd

|x|p|Vg(f)(x, ω)|2dµ2d(x, ω) + λq

∫ ∫

Rd×bRd

|ω|q|Vg(f)(x, ω)|2dµ2d(x, ω)

> Cp,q‖f‖2
2,Rd‖g‖2

2,Rd .

In particular, the inequality holds at the critical point

λ =

(
p

∫
Rd×bRd |x|p|Vg(f)(x, ω)|2dµ2d(x, ω)

q
∫
Rd×bRd |ω|q|Vg(f)(x, ω)|2dµ2d(x, ω)

) 1
p+q

,
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which implies that

(∫ ∫

Rd×bRd

|x|p|Vg(f)(x, ω)|2dµ2d(x, ω)
) q

p+q
(∫ ∫

Rd×bRd

|ω|q|Vg(f)(x, ω)|2dµ2d(x, ω)
) p

p+q

> Dp,q‖f‖2
2,Rd‖g‖2

2,Rd ,

where

Dp,q = Cp,q
p

p
p+q q

q
p+q

p + q
=

d

p
q

p+q q
p

p+q

e

pq

0
@d+ln

0
@ 2d−2pqΓ( d

2 )2

Γ( d
p )Γ( d

q )

1
A
1
A

d(p+q)
−1

.

In the particular case whenp = q = 2, we get

‖xVg(f)(x, ω)‖
2,Rd×bRd‖ωVg(f)(x, ω)‖

2,Rd×bRd > d‖f‖2
2,Rd‖g‖2

2,Rd . (3.12)

We will show now that relation (3.12) is sharp, indeed letf(x) = 2
d
4 e−

|x|2
2 then, according to

relation (2.14) we have
∫ ∫

Rd×bRd

|x|2|Vf (f)(x, ω)|2dµ2d(x, ω) =
1

(2π)d

∫

Rd

|x|pe−2ab
a+b

|x|2dx

∫
bRd

e
− |ω|2

2(a+b) dω

= d

and
∫ ∫

Rd×bRd

|ω|2|Vg(f)(x, ω)|2dµ2d(x, ω) =
1

(2π)d

∫

Rd

e
−2ab
a+b

|x|2dx

∫
bRd

|ω|qe−
|ω|2

2(a+b) dω

= d

knowing that‖f‖2,Rd = 1, we deduce that

‖xVf (f)‖
2,Rd×bRd‖ωVf (f)‖

2,Rd×bRd = d‖f‖4
2,Rd .2

Corollary 3.5 — Letp andq be two positive real numbers then there exists a nonnegative constant

Dp,q such that for every functionf ∈ L2(Rd), we have

(∫ ∫

Rd×bRd

|x|p|A(f)(x, ω)|2dµ2d(x, ω)
) q

p+q
(∫ ∫

Rd×bRd

|ω|q|A(f)(x, ω)|2dµ2d(x, ω)
) p

p+q

> Dp,q‖f‖4
2,Rd . (3.13)

Moreover, forp = q = 2 inequality (3.10) is sharp.

The Heisenberg uncertainty principle proved above says that the STFT and the radar ambiguity

function cannot be concentrated near the origin in the time-frequency plane but it does not claim
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whether the result remains true near several given points or more generally into a subset of the time-

frequency plane with finite measure. In the following, we will prove through the local Price’s inequal-

ity, that in fact the so called property remains true.

Theorem3.6— Let ξ, p be two positive real numbers such that0 < ξ < d andp > 1, then there

is a nonnegative constantMξ,p such that for every window functiong, for every functionf ∈ L2(Rd)

and for every finite measurable subsetΣ ofRd × R̂d, we have
∫ ∫

Σ
|Vg(f)(x, ω)|pdµ2d(x, ω)

6 Mξ,p (µ2d(Σ))
1

(p+1) ‖|(x, ω)|ξVg(f)‖
2pd

(d+ξ)(p+1)

2,Rd×bRd
‖f‖p− 2pd

(d+ξ)(p+1)

2,Rd ‖g‖p− 2pd
(d+ξ)(p+1)

2,Rd .

PROOF : Without loss of generality we can assume that‖f‖2,Rd = ‖g‖2,Rd = 1, then for every

positive real numbers, we have

‖Vg(f)‖p,Σ 6 ‖Vg(f)1Bs‖p,Σ + ‖Vg(f)1Bc
s
‖p,Σ,

whereBs denotes the ball ofRd× R̂d of radiuss. However, by Ḧolder’s inequality and relation (2.6)

we get for every0 < ξ < d

‖Vg(f)1Bs‖p,Σ =
(∫ ∫

Rd×bRd

|Vg(f)(x, ω)|p1Bs(x, ω)1Σ(x, ω)dµ2d(x, ω)
) 1

p

6 ‖Vg(f)‖
p

p+1

∞,Rd×bRd

(∫ ∫

Rd×bRd

|Vg(f)(x, ω)| p
p+1 1Bs(x, ω)1Σ(x, ω)dµ2d(x, ω)

) 1
p

6 µ2d(Σ)
1

p(p+1) ‖Vg(f)1Bs‖
1

p+1

1,Rd×bRd

6 µ2d(Σ)
1

p(p+1) ‖|(x, ω)|ξVg(f)‖
1

p+1

2,Rd×bRd
‖|(x, ω)|−ξ1Bs‖

1
p+1

2,Rd×bRd

6 µ2d(Σ)
1

p(p+1)

(2dΓ(d)(d− ξ))
1

2(p+1)

‖|(x, ω)|ξVg(f)‖
1

p+1

2,Rd×bRd
s

d−ξ
p+1 .

On the other hand, and again by Hölder’s inequality and relation (2.6), we deduce that

‖Vg(f)1Bc
s
‖p,Σ 6 ‖Vg(f)‖

p−1
p+1

∞,Rd×bRd

(∫ ∫

Rd×bRd

|Vg(f)(x, ω)| 2p
p+1 1Bc

s
(x, ω)1Σ(x, ω)dµ2d(x, ω)

) 1
p

6 (µ2d(Σ))
1

p(p+1)

(∫ ∫

Rd×bRd

|Vg(f)(x, ω)|21Bc
s
(x, ω)dµ2d(x, ω)

) 1
p+1

6 (µ2d(Σ))
1

p(p+1) ‖|(x, ω)|ξVg(f)‖
2

p+1

2,Rd×bRd
s
− 2ξ

p+1



160 H. LAMOUCHI AND S. OMRI

Hence,

(∫ ∫

Σ
|Vg(f)(x, ω)|pdµ2d(x, ω)

) 1
p

6 (µ2d(Σ))
1

p(p+1) ‖|(x, ω)|ξVg(f)‖
1

p+1

2,Rd×bRd

×
(

s
d−ξ
p+1

(2dΓ(d)(d− ξ))
1

2(p+1)

+ ‖|(x, ω)|ξVg(f)‖
1

p+1

2,Rd×bRd
s
− 2ξ

p+1

)

In particular the inequality holds for

s0 =




2ξ‖|(x, ω)|ξVg(f)‖
1

p+1

2,Rd×bRd
(2dΓ(d)(d− ξ))

1
2(p+1)

d− ξ




p+1
d+ξ

,

and therefore

(∫ ∫

Σ
|Vg(f)(x, ω)|pdµ2d(x, ω)

) 1
p

6 (µ2d(Σ))
1

p(p+1) ‖|(x, ω)|ξVg(f)‖
2d

(d+ξ)(p+1)

2,Rd×bRd

×

 d + ξ

2
ξ(d+2p+2)
(d+ξ)(p+1) ξ

2ξ
d+ξ Γ(d)

ξ
(d+ξ)(p+1) (d− ξ)

d−ξ
d+ξ

+ ξ
(d+ξ)(p+1)




The proof is complete by applying the previous inequality to
f

‖f‖2,Rd

and
g

‖g‖2,Rd

for every

nonzero functionsf, g ∈ L2(Rd). 2

Corollary 3.7 — Let ξ, p be two positive real numbers such that0 < ξ < d andp > 1, then

there is a nonnegative constantMξ,p such that for every functionf ∈ L2(Rd) and for every finite

measurable subsetΣ of Rd × R̂d, we have
∫ ∫

Σ
|A(f)(x, ω)|pdµ2d(x, ω)

6 Mξ,p (µ2d(Σ))
1

(p+1) ‖|(x, ω)|ξA(f)‖
2pd

(d+ξ)(p+1)

2,Rd×bRd
‖f‖2p− 4pd

(d+ξ)(p+1)

2,Rd .
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