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1. INTRODUCTION

The uncertainty principles in harmonic analysis state that a nonzero furfctiad its Fourier trans-

form fcannot be at the same time simultaneously and sharply localized, that is, it's impossible for a

nonzero function and its Fourier transform to be simultaneously small. There are many formulations

of this general fact where the smallness and the localization have been interpreted differently and by
several ways. For more details about uncertainty principles, we refer the reader to [4, 8]. For an

arbitrary functionf € L?(R%) and a nonzero function € L?(R%) called a window function, the

short time Fourier transform (STFT) ¢fwith respect tg; is defined orR¢ x R? by [6]

(z,w) / F(2)g(z — 2)el9) dpg(2), (1.2)
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d

where(. | .) is the classical inner product ®f defined by(z|w) = Z ziw; anddpg(z) = )
i=1 2

the normalized Lebesgue measure.

The STFT plays an important role in time-frequency analysis namely by providing an interesting
way to study the local frequency spectrum of signals. Relation (1.1) shows that unlike the classical
Fourier transform, the STFT gives a simultaneous representation of the space and the frequency vari-
ables. In signal analysis, the short time Fourier transform is closely related to other common and
known time frequency distributions as the radar ambiguity function definé&fon R, by [6]

f (z + f) f (z - g)e_i<z‘“>dud(z). 1.2)

A = [ 1 (245

Rd

The radar ambiguity function occurs naturally in many radar applications, for more details about
its physical aspect, we refer the reader to [6]. In fact, a standard change of variables shows that

A(f) (@, w) = e3 @DV ) (2, 0). (1.3)

Roughly speaking, the uncertainty principles for the STFT say that for a given fungttien
L%(RY), the STFTV,(f) cannot be concentrated in the time-frequency plane. In this context, Lieb
[14] proved an analogue of Donoho-Strak uncertainty principle for the STFT and the radar ambiguity
function. We cite Fernandez, Galbis and Wilczok [5, 13] who studied the annihilating sets for the
STFT. Other uncertainty principles have been also showed for the STFT namely by Grochening and
Zimmerman [7] who established an analogue of Hardy and Benedick’s theorem for the STFT. Heisen-
berg inequality, Cowling-price theorem as well as Gelfand-Shilov theorem have been also showed for
the STFT and the radar ambiguity function by Bonami, Demange, and Jaming [1]. Recently Lam-
ouchi and Omri [10] proved a quantitative version of Shapiro’s and the umbrella theorems for the
STFT.

Our purpose in this work is to prove two logarithmic uncertainty principles due to Beckner for
both of the STFT and the radar ambiguity function. We also generalize the Heisenberg inequality
proved by Bonami, Demange and Jaming [1] and we prove Price’s local uncertainty principle for
these two transforms.

More precisely, our first main result will be the logarithmic Beckner’s uncertainty principle for
the radar ambiguity function. Indeed for every nonzero funcfienS(R%), we haveA(f) € S(R??)



UNCERTAINTY PRINCIPLES 149

and

[ L w40 o) due,o)
RdxRd

; (1/’ @ +1n 2) / /R e M@ d(aw), 8

wheret) denotes the logarithmic derivative of Euler’s functionNext, we will prove an analogue of
logarithmic Beckner’s uncertainty principle in terms of entropy for the STFT and the radar ambiguity
function, that is for every, g € L?(R?) such thay is nonzero, we have

B(Vy(£)P) > £ allgl s (d = (115 rallgl3re) ) -

As consequence of the uncertainty principle in terms of entropy, we will prove a Heisenberg type
inequality for generalized dispersion by showing that for every positive real numbgrthere is a
nonnegative constai?, , such that for every, g € L2(R%), we have

<//Rdxh |2lP Vs (f) (2, w) [P dpza(a w) <//Rd><h W9\ Vy () (z, w)[Pdpga(, w)) -

>D

Finally, we will prove Price’s uncertainty principle for the STFT and the radar ambiguity function,
that is for every finite measurable sub&eof R? x R9 and for eveng,.p e R, 0<€<d, p>1,
there is a nonnegative constai , such that for every,g € L?(R%) such thaty is nonzero, we
have

//2|Vg(f)(%W)\pdmd(x,w)

1 2pd
< Mg, (p24(%)) @+ |||(a, W)|§Vg(f) H;;;i;ﬁ;zl) ”]cH2 R(d+£)(p+1) g H2 R(d+§)(p+1)

2. THE SHORT TIME FOURIER TRANSFORM

According to relation (1.1), fix a window functione L?(R%), for every f € L*(R?) the short time
Fourier transform off with respect tay, is defined on the time-frequency plaRé x R4 by [6]

Vy(f)(2,w) = f( )9(z — x)ellldpg(2).

For everyz,w € R% we denote byM,, and7, the modulation and the translation operators
defined respectively oh?(R?) by

Vz e RY, Myh(z) = 90n(2), (2.1)
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and
Vz € RY, T,h(z) = h(z — z). (2.2)

Then by relations (2.1) and (2.2), we deduce that
Vz e R, My (Th)(2) = €90 n(z — 2), (2.3)

and
Vz e RY, T,(Myh)(z) = e " @@leilelolpz — g), (2.4)

Again by relation (2.2), the STFT may be expressed as

—

Vy(f) (2, w) = fTog(w). (2.5)

and by relations (1.1) and (2.1), we have

V()ew) = [ TR 2)dal)
= My * g(x),
wherex denotes the usual convolution product®h

It's known [6] that for everyf, g € L?(RY) the STFTV,(f) is uniformly continuous and bounded
on the time-frequency plar®? x R? and satisfies

Vo(N)llo paxka < [fll2rellgll2,ra- (2.6)

Moreover according to [6], for alf1, fa, 91,92 € L%*(R?) the functionsV,, (f1) andV,, (f2)
belong toL?(R? x ]@d) and we have the following orthogonality relation

Vor (1) [Vgs (f2)) payka = (f1lf2)ra{91192)Ra- (2.7)

In particular, for everyf, g € L?*(R%) we get

Vg (N)lly garcke = Ifll2,rellgll2ra- (2.8)

Givenf,g € L*(R?) and¢, A, y, z € RY, then by relations (2.3) and (2.4) we have
Vutcr g (M T, ) ) = [ (T, 0T OFT-g) (e )

_ €i<x|§>/ Flu = y)glu— (@ + 2))e o0 gy ()
Rd

— oi(@l€) p—ilylw—A+€) 5 fglt—(z—y+ Z))efi<t|wf)\+€)dlud(t)

— ei<w|£>e*i<y\w%+€>yg(f)(x —y+z,w— A+ E). (2.9)
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Relation (2.9) shows in particular that for evegy \), (z,w) € RY x R¢
Vin 1,0 (MAT, f) (2, w) = e WV, () (2, w). (2.10)
We have also the following switching property

Vi (g)(@,w) = / 9(2)F (= 2)e ) dpg(2)

Rd

_ pmifal) / F@)gly + 2)e— i) dpg(z)
Rd

= e @Y () (~z, —w). (2.11)

Let A be a positive real number, for every measurable funcfiowe denote byf, the dilate of
f defined byfy(z) = f(A\z), then for everyf € L*(RY), f\ belongs toL?(R%) and by a standard
computation we deduce thd( fy) is given by

1

Vg(f)\)(x’w) = ﬁvg% (f)()‘$’ X)

(2.12)
Finally given two positive real numbers b and letf andg be the gaussian functions defined
respectively byf(z) = (4a)1e*” andg(z) = (4b)1e """, then by a standard calculus we have

I/

ot = ||gllore = 1 and for every(z, w) € RY x R

Vy()w) = (6an)] [ ettty )

— (16ab)teblF /R (el Ll gl g 2

2
— (16ab)4 bl carslel® / d e~ @) (1521 s )+ s al®) =itwl2) gy )
R

— (16ab)Text I /R e el g )

b

— (16ab) % e 19 il a5a) /R d e~ (@D =ily) gy ().

Hence,
d 2
Vg(f) (z,w) = (4ab) 4d egj‘ll’j\mIZSJ(w\%ﬁw)e*u‘aJ‘rb) ) (2.13)

(a+b)?




152 H. LAMOUCHI AND S. OMRI

In particular by relation (2.13) we get

e atb 1E1" T 2(atby | (2.14)

(a+b)d

|Vg(f)(l’,w)’2 _ WI —20b),2 _ ]2

3. UNCERTAINTY PRINCIPLES FOR THESTFT

In [2] Beckner used Stein-Weiss and Pitt’s inequalities to obtain a logarithmic estimate of the uncer-
tainty, he showed that for everyc S(RY) we have

[ malis@Pas+ [ mlifoPay > (o (§) +me) [ 1@ @

wherefis the classical Fourier transform defined®hby

vy e R, Fly) = L F@e @) dyiy(z),

andq) is the logarithmic derivative df function defined by)(z) =

The previous inequality is known as Beckner’s logarithmic uncertainty principle. In the following
we are interested to generalize inequality (3.1) to the radar ambiguity fundtipnfor f € S(R9).

Theorem3.1— Let f € S(R%) be a nonzero function, thed(f) € S(R?*?), and we have

J L A @) .

>;(¢ (;l) +1n2) [ A ), @2

wherey denotes the logarithmic derivative of Euler’s function

PROOF: Let f,g € S(R?), then the functiorh(z, z) = f(2)g(z — z) belongs taS(R¢ x R?).
SinceS(R? x f@d) is invariant under partial Fourier transform then by relation (2.5) we deduce that
Vy(f) € S(R? x RY). Let ¢ be the function defined oR? x R® by

¢($7w) = Vg(f)(a:,w)Vf(g)(x,w),
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theng € S(RY x R?) and according to relations (2.7), (2.10) and (2.11), we have
By ) = / V@@V @) W (2, )
= [ @y ) g 0,
_ / Vg (Mg ) (0,0 Vi (0) (@ ) daaa(, )

= <VM—yTxg(M—yT>\f) |Vf(9)>Rdth
= (M_y T, f19) ga{M—yTrg| f)Ra

_ </Rdg(z)f(z_ Ne= 1) duy(2) ) (/ —i912) dpug (2 ))
= ([ o7 ana(z)) [ etz i<—yz>dud<z>)

=Vy(H) N —)Vr(9) (A —v),

and therefore

o(y, ) = p(—\, y). (3.3)

Now, assume thatf||; re = [lgll2re = 1, then by combining relations (2.8), (3.1) and (3.3), we
deduce that

[ [ b e ) e

> ;( < > +1ﬂ2> //Rdxhd (@, )]V (9) (2, ) Pduga(, w).

Hence by relation (1.3), we get

/ / In |z, )| A(f) (& )| dpiza(, )
Rd xRd

% <¢ (;i) +in 2) / /R " LA (@, w) [ dpaa(z, w). 0

According to Shannon [12], the entropy of a probability density function R¢ x R? is defined

by
—_// In(p(z,w))p(z,w)dpsq(z,w),
Rd x Rd

whenever the integral on the right hand side is well defined. The entropy plays an important role
in quantum mechanics and in signal theory, for a better understanding of its physical’s signification
we refer the reader to [3]. Clearly the entropy represents an advantageous way to measure the decay
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of a function f, so that it was very interesting to localize the entropy of a probability measure and
its Fourier transform. In this context, the first estimation has been given by Hirschman [9] and has
been improved by Beckner [2] who used the Hausdorff-Young inequality to derive the following
uncertainty inequality that is for eveye L?(R) with || f||, g = 1, we have

E(If1?) + E(|f?) = d(1 — In2),

whenever the left side is well defined. The aim of the following is to generalize the localization of the
entropy to the STFT over the time-frequency plane and also to the radar ambiguity function.

Theorem3.2— Let g be a window function and € L2(R¢), then

B(Vo(D)?) 2 115 gallgl} ga (d = 10 (113 rallol ) ) (3.4)

and the inequality (3.4) is sharp.

PROOF : Assume that|f[|;re = |lg|lore = 1 and following the idea of Lieb [11], then by
relation (2.6) we deduce that

V(z,w) € RYx RY, Vy(f) (@, w)] < Vo(Nlloo piske < Ifllzrallgllogs =1 (3.5)

In particularE(V,(f)) > 0 and therefore if the entropi (V,(f)) is infinite then the inequality
(3.4) holds trivially. Suppose now that the entrapyV, (f)) is finite and let) < = < 1 andh be the
function defined o2, 3] by

2P — 22
then ,
—2)aPIn(z) — (P — x*)
p G] 73[7 (p) (p _ 2)2 O’
and thereforé is increasing o2, 3], in particular
9 2P — 2 aP —a?
Vp €]2,3], *In(x) —plir;1+ " < P
hence
z? — zP
0< 5 < -2 In(z), (3.6)
p—

and by combining relations (3.5) and (3.6) we get, for everyw) € R? x R4

0< Vo (£)(z,w) 12 = Vy(f)(z,w)|P
p—2

< =V (@ ) P In(Vy(£) (2, )])- 3.7)
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Let  be the function defined o2, +oo[ by

o(p) = (/ /Rdth Wg(f)(x,W)!Pdmd(a:,w)) _ (;)d.

According to Lieb [11], we know that for every < p < +oo the STFTV,(f) belongs to
LP(R? x R?) and we have

2\ @
[ [ D0 disato) < (2) 1518 ol e 38)
Then, relation (3.8) implies that(p) < 0 for everyp € [2, +oo[ and by Plancherel theorem (2.8)
we havep(2) = 0. Therefore Z—(‘D < 0 whenever this derivative is well defined. However, by
p=2F

using relation (3.7) and Lebesgue’s dominated convergence theorem we have

(i o o0 i)
Ry T
o

p
d x,
R pop D=2 poa(w, w)

1
= —SE(V,(HP)
and consequently
de _ 1 2y @
(%), =—5mvnP g,
which gives
E([Vy(NH?) = d.

Let f(z) = (4a)ieal* andg(z) = (4b)5e b1 with a,b > 0 then|| f|lopa = |lg]lore = 1 and
according to relation (2.14) we have for evéryw) € R? x R¢

d
2

_ (4ab)
‘Vg(f)($7w)|2 - (a—l—b)d

Therefore by a standard calculus and using relation (2.14), we get

2 2v/ab
S e\

In particularE(|V,(f)|?) = d if, and only ifa = b. O
Corollaire 3.3 — Let f € L2(R?), then

72ab|x‘2 _ \W|2
e atb e 2(atd) |

BIAW)P) 2 1l e (d = (1 l3ge) ) (3.9)
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and the inequality (3.4) is sharp.

In [1] Bonami, Demange and Jaming showed a Heisenberg type inequality for the radar ambi-
guity function with respect to the second dispersion and as noticed above the same inequality holds
obviously for the STFT. The authors showed that given a window fungtier’.?(R%) then for every
f € L*(R?) we have

//Rdxhd |x’2|vg(f)(x7w)‘2du2d(x,w)//Rdth’wPVg(f)(x’w”zdﬂzd(%w)

> &I fII5 gallglls g

In what follows we shall use Theorem 3.2 to generalize the previous Heisenberg uncertainty
principle for generalized dispersions.

Theorem 3.4 — Let p and ¢ be two positive real numbers. Then there exists a nonnegative
constantD,, , such that for every window functignand for every functiorf € L?(R%) we have

<//Rdxh 2P Vo () @ ) ol w) (//Rdxp w2 Vy () (2, w)|Pdpoa(z, “’)> -

z p7Q||f||27RngH27R47 (3.10)
© O d-2 a2t
2d=2,,1(4)
d pq@dHn@47T§%7§T7AA
—1
whereD, , = ———e€ d(p+a) )
p+a g prta

Moreover, forp = ¢ = 2 inequality (3.10) is sharp.

PROOF: Assume that| f||y re = ||g]lore = 1 and leté; , , be the function defined oR? x R
o [P+ ||
24-2pgl(4)2 e~

NENO I

, SO by basic calculus we see that

by &ipg(z,w) =

/ gt,p,q(l‘» w)dpog(x,w) =1,
RdxRd

in particulardoy , 4 (7,w) = & 4(z,w)dpgq(r,w) is a probability measure oR? x R<. Since the
functionp(t) = ¢ In(t) is convex ovelf0, +oo], hence according to Jensen'’s inequality

w)|? (Vg(f)(ﬂfvwﬂ?) "
//Rdxhd ft,pq x w) = &t pg(T,w) dotpq(7,0) 20,

which implies in terms of entropy that for every positive real nuntber

24-2pqr(4)? apa 1 bl g
<W%UWHM(F@W6))émﬁQHE/AMWWMWWWMﬁ@wWWM%M,
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and by means of Theorem 3.2

T 24-2pqr(4)? aya
//Rdxhd(|x| + [w]D)Vy () (2, w)|Pdpoa(z, w) >t (d—H (W) —In(¢ )) )

However the expression(d + In

<2d‘2qu(§)2

d d
— In(tr"4)) attains its upper bound at
RORD > (tr 7)) pp
(o) o 11 p q
qu( )2AA
r(Hr(d)

to=¢€ d(p+q)

pq@cH»ln@
—1

, and consequently

//Rdxhd(|$|p + |W\q)’Vg(f)(:c,w)|2d,u2d(x7w) > Cp,Qa

where o o 11
d—2 d\2
pq@d+ln@%%
d p’"\q _
7(1) + Q) d(p+q) 1‘

C. =
p,q g

Therefore for every window functiomand for every functiorf € L?(R?), we get
|| P [ [ 0w Pdue.o)
Rd x Rd
= p,q|’f”2,RdH9H2,Rd- (3.11)

Now for every positive real numbevrthe dilatesf, andgy belong toL?(R?) andg, is nonzero,
then by relation (3.11), we have

L () )P, ) // TV () ) Ppza, )

= C,

hence for every positive real number
wr [ V)Pt + X0 [ ] iV ) P, o)
RaxRd RdxRd
> Cp gl f113 Rallgll3 ga-

In particular, the inequality holds at the critical point

(P ok PV ) P, ) | 7
@ Sk [TV (1) () Pl () |
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which implies that

<//Rdxh [PV (f) (@, w) [P dpiza(a, w) (//Rdxp ]2 Vy () (2, w)|Pdpoa(z, w)> -

pr”sz RngHQ Rd>

where o o 11
ﬂAA
F( )F< )
€ d(p+q)

pP+q _pﬁqm

p q pq@d«Hn@

prtagrta d

-1

Dpq = Cp,q

In the particular case when= ¢ = 2, we get
12V () (2, 0)lly gascrallwVe (1) (W)l parha = dllF1I5 rallll ra- (3.12)

. 2
We will show now that relation (3.12) is sharp, indeed fét) = 2%6*% then, according to

2
/ |z|Pea+e o 7] da:/ e 2<a+b>du)
Rd

relation (2.14) we have
d
[ L o) st ) =
=d

an

. |w]?
/ Lo WD) Pl = o [ P [ jopre 5
RdxRd ( ) Rd
=d

knowing that|| f||o g« = 1, we deduce that
12V5 ()l gasre 0V (Pl gaxie = dll fllz ga-0

Corollary 3.5 — Letp andq be two positive real numbers then there exists a nonnegative constant
D,,, such that for every functiofi € L?(R%), we have

(/... |x|p|A<f><x,w>|2du2d<m,w>)’)‘q” ([ [, WA ) Pdisata, ) "

2 Dp,q”f“%,Rd‘ (3.13)
Moreover, forp = ¢ = 2 inequality (3.10) is sharp.

The Heisenberg uncertainty principle proved above says that the STFT and the radar ambiguity
function cannot be concentrated near the origin in the time-frequency plane but it does not claim
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whether the result remains true near several given points or more generally into a subset of the time-
frequency plane with finite measure. In the following, we will prove through the local Price’s inequal-
ity, that in fact the so called property remains true.

Theorem3.6— Let¢, p be two positive real numbers such tllat ¢ < d andp > 1, then there
is a nonnegative constant, , such that for every window functign for every functiory € L*(R%)
and for every finite measurable sub&6fR? x R?, we have

//2 Vo (f)(,w)[Pdpga(z, w)

1 2pd p— p—
< My ()50 1, 0) V(I T 1 7 gl

PROOF: Without loss of generality we can assume théli, ra = [|g/loge = 1, then for every
positive real numbeg, we have

Vo (Dllps < IVe(NLB, s + Ve () 1Bellpss

whereB, denotes the ball dR? x R? of radiuss. However, by Hlder’s inequality and relation (2.6)
we get foreverny) < £ < d

SaL

Wolialos = ([ [, WP La (i whdide)

<UD s ([ ] o (1)) 7L, o s )

< MQd(E)p(PH) 1Vy(f)1B,] i

hSA

lexhd
1 _ 4
< (D) @) VDIl 0) L, 17
1
M2d(2)p(p+1) 1 d—¢
1) V(P s

" (U0(d)(d - ©)T

On the other hand, and again bylder’s inequality and relation (2.6), we deduce that

S =

2p
Vo) gl < IVl “;W (/ /R eV xw>|p+l1Bg<x,w>12<x,w>du2d<x,w>)
X

_1

1
< (p2q(2 p(p+1) <// (x w)|2135(az,w)du2d(m,w)> -
Rdxhd

26

< (2 ()75 || (2, )|V (f )Hgﬁdxhds o
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Hence,

(f Lot auaste.)” < (st 1) Vol g

spt+1 1 e
. 1 +W@MWVUﬂ”zdSH)
((ZdF(d)(d — £)) %D IVl RaxR

In particular the inequality holds for

2611z, )|V (F)II] 1, a (2T () (d — S ECCAN

d—¢ ’

So —

and therefore

(//ﬂwﬂ@wwmw@wﬁp<mmmwﬁmmwwqun$$@”
E 9

d+¢§
X £(d+2p+2)  2¢ £ a-¢ £
2@+ (p+1) §d+§ F(d) @+ (p+1) (d — g) dte T [@re)(p+1)
The proof is complete by applying the previous inequalityfﬂif— and —7 for every
2,Rd ,
nonzero functiong, g € L*(R%). o

Corollary 3.7 — Let¢, p be two positive real numbers such tllakc £ < d andp > 1, then
there is a nonnegative constank ,, such that for every functioff € L?(R¢) and for every finite
measurable subsgtof R? x R¢, we have

//g |A(f)(z,w)[Pdpza(z, w)

- op——dpd
<MMW@W”WWWNM$%WW2MWW
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