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Let AK,, , be a complete bipartite multigraph with two partite sets havingndn vertices, re-
spectively. AK,, ,-factorization ofAK,, ,, is a set of edge-disjoink, ,-factors ofAK,, ,, which
partition the set of edges ofK,,, ,. Whenp = 1 andq is a prime number, Wang, in his paper
[On K, ,-factorization of complete bipartite grapBjscrete Math, 126 (1994), 359-364], in-
vestigated the(; ,-factorization ofK,, ,, and gave a sufficient condition for such a factorization
to exist. In papersi; ;-factorization of complete bipartite grapiiscrete Math, 259 301-306
(2002), ; K, ,-factorization of complete bipartite graplsci. China Ser. A-Math47: (2004),
473-479], Du and Wang extended Wang's result to the case tuadq are any positive integers.
In this paper, we give a sufficient condition faf<,, ,, to have ak, ,-factorization. As a spe-
cial case, it is shown that the necessary condition fothg-factorization ofAK,, ,, is always
sufficient wherp : ¢ = k : (k + 1) for any positive integek.

Key words : Complete bipartite multigraph; factor; factorization.

1. INTRODUCTION

Let K,,,, be a complete bipartite graph with two partite sets havingndn vertices, respectively.
MK, n is the complete bipartite multigraph formed by replacing each edde,of, with A edges.
A subgraphF of AK,, , is called a spanning subgraph »k,, ,, if ' contains all the vertices of
MK n. A G-factor of AK,,, ,, is a spanning subgraph of AK,, , such that every component &t
is isomorphic toG. A G-factorization ofAK,, ,, is a set of edge-disjoirt-factors ofAK,, ,, which
is a partition of the set of edges df,, ,. The graph\K,, ,, is calledG-factorizable whenever it has
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aG-factorization. In paper [1] &-factorization ofAK,, ,, is defined as a resolvablex(n,p + g, )
G-design. For graph theoretical terms, see [2].

The K, ,-factorizations and’,-factorizations of\ K, ,, have been studied by many researchers
and found to have a number of applications. Especially, Yamamio#&d [3, 4] have given some
applications inHUBF'S, and HUBM F'S, schemes of database systems. There are also some
known results on the existence of thg, ,-factorizations and’,-factorizations ofA K, ,,. In 1988,
the existence of;-factorizations ofk,, , has been completely solved by Ushio [5]. Notice that a
P5 is also K 5. Since then Ushio, Martin, Du, Wareg al. have some further researcheshp -
factorizations andP,-factorizations ofAK,, ,. Whenv is an even number, Ushio [1], Wang [6]
and Du [7] gave a necessary and sufficient condition for their existence. Wisean odd number,
we in a series of papers [8-11] gave a necessary and sufficient condition for such factorizations to
exist and completely solved the spectrum for existencg,efctorizations o\ K, ,,. For thek, ;-
factorizations ofAK,, ,, whenp = 1 andg = 3, Martin in paper [12, 13] gave the necessary and
sufficient condition fork,, ,, to have ak; 3-factorization. Wherp = 1 andgq is a prime number,
Wang in [14] investigated th&; ,-factorization ofK,, , and gave a sufficient condition for such a
factorization to exist. In papers [15-17], Du and Wang extended Wang’s result to the cgsalat
g are any positive integers.

Theorem1 — Let p,q,m and n be positive integers withh < ¢. Assume(l) pn < gm,
(2) pm < qn, (3) gm — pn = qn —pm = 0 (mod (¢* — p)), (4) (gm — pn)(gn — pm) =
0 (mod pq(q — p)(¢*> — p?)(m + n)). Thenk,, , has aK, ,-factorization.

In this paper, we pay attention to the existence forAhg, -factorization of a complete bipartite
multigraphA K, ,,. For any positive integersandq (¢ > p), gcdp, ¢) denote the greatest common
divisor of p andg. We will give a sufficient condition foh K, ,, to have ak, ,-factorization. As a
special case, it is shown that the necessary conditions fdk thefactorization ofAK,, ,, are always
sufficient wherp : ¢ = k : (k + 1) for any positive integek. That is, we shall prove.

Theorem2 — Letm,n,p andg (p < q) be positive integers withg > 1. If AK,,,, has a
K, ,-factorization, then(1) pn < gm, (2) pm < qn, (3) gm —pn = gn — pm = 0 (mod (¢
—p%), (4) Xgm — pn)(gn — pm) = 0 (mod pq(¢* — p*)(m + n)/d), whered =gcd(p, q).

Theorem3 — Letp, ¢, m andn be positive integers with < ¢. Assumé1l) pn < gm, (2) pm
< gn, (3) gm —pn = qn —pm = 0 (mod (¢° — p*)), (4) AM(gm — pn)(gn — pm) = 0 (mod pq
(¢ —p)(q® — p*)(m + n)/d), whered =gcd(p, q). Then\K,, , has aK, ,-factorization.

Theorem4 — The necessary conditions fai«,, ,, to have ak), ,-factorization is always suffi-
cientwherp : ¢ = k : (k + 1) for any positive integek.
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2. PROOF OF THENECESSARYCONDITION

We first give the proof of the necessary condition fdf,, ,, to have ak, ,-factorization.

Theorem2 — Letm,n,p andgq (p < q) be positive integers withg > 1. If AK,,, has a
K, ,-factorization, then(1) pn < ¢m, (2) pm < gn, (3) gm —pn = gn — pm = 0 (mod
(¢* = p?)), (4) Mgm — pn)(gn — pm) = 0 (mod pg(¢* — p*)(m + n)/d), whered=ged(p, q).

PROOF: Let X andY be the two partite sets ofK,,, with | X| = m and|Y| = n. Let
{F1, F,--- , F,} be aK, ,-factorization ofAK,, ,. In a particulark, ,-factor, leta copies ofK, ,
with its partite set of sizg in X andb copies with itinY". Then we havep+bq = m andag+bp = n.
Thus,
_gqn—pm . qgm—pn
_q2_p2’ _q2_p2'
Sinceq > p anda andb are nonnegative integers, conditions (1), (2) and (3) are necessary. Let

_ AMgm —pn)(gn — pm)
pa(p+q)(m+n)

Then

AMp+gmn

pg(m +n) Ma+d)te

Thusc is an integer. Letu € X. Suppose that there are onty F;'s, each of which contains
contributingg edges. Theqr’ + p(r — ') = An, i.e. (¢ — p)r’ + p(Aa + \b + ¢) = (Aag + Abp).
Thereforec = 0 (mod (¢ — p)/d), whered =gcdp, q), i.e. A(gm — pn)(gn — pm) = 0 (mod pq
(¢*> — p*)(m + n)/d). Therefore the condition (4) is necessary. This proves Theorem 2.

Whenp andq are coprime, we have the following condition.

Corollary 1 — Letp andq (¢ > p) be a coprime pair of positive integers. Af<,, , has a
K, ,-factorization, then1) pn < ¢gm, (2) pm < gn, (3) gm —pn = gn — pm = 0 (mod
(¢* = p?)), (4) Mgm — pn)(gn — pm) = 0 (mod pg(¢* — p*)(m +n)).

3. MAIN RESULT

In this section, we prove the following main result.

Theorem 5 — Letp andq (¢ > p) be a coprime pair of positive integers. Assufg pn
< gm, (2)pm < qn, (3) gm—pn = gn—pm =0 (mod (¢* - p?)), (4) Mgm —pn)(qn —pm) =
0 (mod pq(q — p)(¢*> — p?)(m + n)). Then\K,, , has aK, ,-factorization.
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The proof of Theorem 5 consists of some lemmas. The following two lemmas are obvious.

Lemmal — Letu, v, z andy be positive integers. If g¢dz, vy) = 1, then gcduv, ux + vy)
=1
Lemma2 — If \K,,,, has akK, ,-factorization, thersA\K,, ,, has ak, ,-factorization for any

positive integes.

Lemma3 — If AK,, ,, has akK, ,-factorization, them K, s has ak, ,-factorization for any
positive integes.

PROOF: Let{F; : 1 < i < s} be a 1-factorization of( ; (whose existence see [2]). For each
1 < i < s, replace every edge df; by a\K,, , to get a factoiG; of AK,,,, s such that the graph
G; are pairwise edge-disjoint and their uniomi&’,,,; ,,s. SinceAK,, ,, has ak, ,-factorization, it is
clear that the grap&';, too, has &, ,-factorization. Consequently kK, s has ak, ,-factorization.

A corollary of Lemma 3 is as follows.
Corollary 2 — \K,,s 45 has ak, ,-factorization for any positive integer
Corollary 2 implies that we only need to treat the cage> pm andgm > pn. Let

_an—pm . gm—pn _Agm—pn)(gn —pm) _ Aptgmn

¢ —p*’ ¢?—p 7 palp+a)(m+n) " palmin)

From conditions (1)-(4) in Theorem &, b, r are positive integers. Note thap + bq = m,
aq + bp = nandr = A(a + b) + ¢. This implies thata < m, b < n andr is an integer. And
let ged(ap, bq) = d with ap = de, bg = dk andged(e, k) = 1. Sincec = 0 (mod (¢ — p)?). Let
z = ¢/(q — p)?. Then these equalities imply the following equalities:

g palge+pk)z (e k)(q%e + p*k)z o = Pale +k)(ge + pk)z

ek ’ ek ’ ek ’
L (@etp’R)(ge+pk)z _ ge(ge+pk)z , _ pklge+pk)z
ek ’ ek ’ ek ’
Letg = ¢1*1qo*2 - ¢, %, whereqy, ga, - -+, g, are distinct prime numbers aig, ks, - -, k,
are positive integers, and= p;" py"2 - - p, ", wherep,, ps, ---, p, are distinct prime numbers
andhq, he, ---, h are positive integers.

If ng(kZ, q2) = qlil q2i2 R qaiaqa+12ka+1_ia+1 qa+22ka+2_ia+2 - q52kﬁ_iﬁqﬂ+12kﬂ+l
qaa?Fo+2 - g2 wherel < a <3<+, 0<i; <kj(whenl <j<a)or0<i; <k;j (when
a+1 < j < pB). And gcde, p?) = pr/ipe’2 - ’Puj”pu-irl%“ﬂ_jwl pu+22hu+2_ju+2 B
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Pyt viip, o2 oop 2he wherel < p < v < w, 0 < j; < h; (Whenl < i < p)or

0 < ji < h;(wWhenpu+1<1i<v). Let
s=qlge? - qule, t =gk g ReTia gy = g latig, plat qﬂiﬁu

— ka _‘04 ka _‘a k? —1 J— k? k‘ k}
V= Qat1 +1—1 +1Qa+2 +2—1 *2"'(1,8 IE] Zﬁ’ W = gg4+1 ﬂ+1Qﬂ+2 6+2...q,y v,

;L . . . ;L By —i o — i ho—i ;L . . .
S _p1]1p2]2...p#]#’ t =n1 1 ]1p2 2 JQp# 1% j,tt’ u _p#+lju+1p“+2ju+2...py]l”

! h —j h —j hy—j ! h h h
v = putt p41 ]u+1pu+2 42 Ju+2...py v Ju7 W =Py V+1py+2 "*2"']% w

Then gedk, ¢2) = suv?w? and gede, p?) = s'v/v"*w'>.

Recallp andg are coprime, we can establish the following lemma.
Lemma4 — If ged(k,¢?) = suwv?w?, and gedé, p?) = s'u/v*w'”. Let k = suvw?k/,

e = s'wv*we and gedfus'u/ (tv'w'e’ + vwt'k’),\) = . Then

2 2
stus't'u’ (s'u'v' w' e’ + suv?w?k') (tv'w'e’ + vwt'k') 2’

N ’
_ suvws'uv'w! (stPue’ + S2E) (' w'e + vwt'K) 2
- N 7
_ stus'uvw'e (tv'w'e +owt’K)2 | suvws W E (to'w'e’ + vwt'k') 2
‘= Y 0= Y !
(s'u'v*w'?e + suv w?k')(st2ue’ + s't"*u'k )2\ d stus't'u/ (tv'w'e’ + vwt'k") 2’
T = =
N ’ N ’

for some positive integer’.

PROOF: We assume that the g@d ¢2) = suv?w?, ged(e, p?) = s'v/v"*w'? andk = suv2w?k/,
e = s'u'v*w'®e’ hold. Since getk, k) = 1, we have gett’, k') = 1, ged(s'u/v'? w'?e, suv?w?k!) =
1, ged(st2ue’, s't*u'k') = 1. Itis easy to see that

212 2
(s'u'v" w'“e’ + suv?w?k')(st>ue’ + s't" u'k')z
e'k’! '

r =

By Lemma 1, we see that gedk’, s'u/v'*w'?e’ + suv?w?k’) = 1 and gede'k, st2ue’ + s't*u'k)

= 1. Sincer is an integer, therefore,

e’k
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must be an integer. Let

z
ST
andlet\; =gcd(\, stus'u/v'w'e (tv'w' e’ +vwt’'k')) anddy =ged A, suvws't' vk (tv'w'e’ +owt'k')).

By

stus'u'v'w'e’ (tv'w'e’ + vwt'k') 2

A
and
_ suvws't 'K (tv'w'e’ + vwt'k) 2
= 3 ,
we see that
/\12’1
A
and
Aoz
A

must be integers. Since ged/{w’e’, vwt'k’) = 1, so we have

2’1)\,
A

must be an integer, whered(sus'v' (tv'w'e’ + vwt’'k’), \) = X. Let

!
/_21>\
2 =—,

A
then the equalities hold.
To complete the proof of Theorem 5, we need the following direct construction.
Lemmab — For any positive integers ¢, u, v, w, s, t', u/, v/, v, e, k and), if

sus'u/ (tv'w'e’ + vwt'k’)

A

is an integer and

stus't'u! (s'u/v"*w'?e + suvw?k) (tv'w'e + vwt'k)
m = ,

A

n— suvws’u/v'w’ (st2ue+s't' 20 k) (tv' w’ e+vwt'k)
= X ,
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then\ K, ,, has al g1/ stuvw-factorization.

PROOF: Let

stus'u'v'w'e(tv'w'e + vwt'k) b suvws't'u' k(tv'w'e + vwt'k)
a = 5 - )

A A

r = (su'v*we + suv w?k)(st?ue + st W'k), r = su'v*we + suv w?k andry = st2ue +

s't"*u'k. Let X andY be two partite sets of K, ,.,

1401 /i ’
X ={z;: 1<i<r;1<j< dutv@uetonlh)y

Ford oy oy oy /
Y:{yi,j: 1<i<ry1<j< suvwsuvw(;vwe—i—thk)}.

We will construct ak g/ yw stuvw-factorization of A\K,, ,. We remark in advance that the

additions in the first subscripts af ; andy; ; are taken module; andrs in {1, 2, ---, ri} and
{1, 2, ---, ra}, respectively, and the additions in the second subscripts 6 andy; ;'s are taken
modulo

stus't'u/ (tv'w'e + vwt'k)

A
and
suvws'u'v'w' (tv'w'e + vwt'k)
A
in
stus't'u/ (tv'w'e + vwt'k)
{17 2, -, 3 }
and
suvws'u'v'w' (tv'w'e + vwt'k)
{17 27 T Y }7

respectively.

Foreachi, =, 2/, y, ¢/, zandz’, 1 < i <e, 1 <z <stu, 1 <2’ < s, 1<y <
vw, 1 <y <V, 1<z<tandl <z <, let
sus'u'(tv'w'e + vwt'k) (2 — 1) sus't'v/(tv'w'e + vwt'k)(z — 1)

f(Z7Z/): >\ —"_ A )

g(i,x,2) = st?u(i — 1) + t(x — 1) + z andh(i, z, 2, y,y') = stu(i — 1)+
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" (o' w' YV — 1 i (o' ke 1
Stu(x,_l)e+suvwsu(vwe}\—i—vw )y )_i_susu(vwe—i)—\vw )y )—f—x,

and let

FE;, = {$S/u/U/2w/2(7;_1)+S/u/v/w/(y/_1)+z/7f(z7z/)+jyg(i71',z),h(i,x,wl,y,y/)-i-j :

sus'u/ (tv'w'e + vwt'k)
A

1<5< , 1<z <stu, 1 <2’ <V,

I<y<ow, 1<y <vw, 1<2<t 1< <}

Foreachi, z, 2/, y, v/ andz, 1 <i <k, 1 <z <suvw, 1 <2/ <Jvw, 1<y <ovw, 1<
y < st/ andl < z <t leto(i,z,y) = suv w e+ suv w?(i—1)+ow(z—1)+y, 0(i,y, 2) =

oo,

st2ue + s (i — 1) + st (z — 1) + o andep(i, z, 2, y,y) = stus’u/v'w'e+

suvws'u (tv'w'e + vwt'k) (z' — 1) N sus'v/ (tv'w'e + vwt'k) (y — 1)

A A
suvw(i — 1) + z,

+ suvwk(y' — 1) +

and let

Ee+i = {m stus’u/ (tv’ w’etvwt’k)(2—1) yQ(z y',2),0(i,z,2 Y,y )+i :
<P( 5 +j Y %) s LY,

i,3,),

1<j< stus/u/(tv';f)/eJrth’k), 1< < suvw, 1< z < o',

I1<y<ow, 1<y <st/, 1<z<t}

Let F' = Ui<j<etr . Then the grapll is a Ky yuy stuvw-factor of AK,, ,,. Define a bijec-
tion o from X UY onto X UY in such a way that(z; ;) = i1, 0(vij) = vi+1,5- For each
ie{l,2 -, ri}andeacly € {1, 2, -, ro}, let

Fij= {o'(z)oi(y)|z € X, y €Y, zy € F}.

It is easy to show that the grapth$; (1 < i < r1, 1 < j < o) are Ky stuvw-factors
of AK,,» and their union iS\K,, ,,. Thus,{F; ;| 1 < i <y, 1 < j < m}isaKypyw stuvw-
factorization ofA K, ,,.

PROOF OFTHEOREM5 : Applying Lemma 2 to Lemma 5, we see that for the parameteasnd
n satisfying the conditions in Theorem bk, ,, has ak, ,-factorization.
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4. PROOF OF THESUFFICIENT CONDITION

In this section, we shall give the proof of the sufficient conditionft,, ,, to have &, ,-factorization.
We first give the following lemmas.

Lemma6 — If AK,, ,, has akK, ,-factorization, ther\K,, . has ak,, 4s-factorization for any
positive integes.

ProoOF: Let{F; : 1 < i < r} be aK, ,-factorization ofAK, ,. For eachi € {1,2,--- 7},
replace every vertex aof; by s vertices and every edge &% by a K, ;. Then we get a factof;
of AK,,sns Such that the grapty’; is pairwise edge-disjoint and their unionXs¢,, .. Therefore,
MK s.ns has ak,s 4s-factorization.

Lemma? — For any positive integey, if m andn satisfy the necessary condition in Theorem 2
with p = pgs andq = qqs, then there are positive integerg) andny which satisfy the necessary
condition in Theorem 2 withh = pg andg = qg, such thatn = mgs andn = ngs.

PrROOF : Supposen andn satisfy the necessary condition in Theorem 2 with= pgs and
q = qos. Then we have

qn—pm _ qosn —posm __ qo(m +n)/[(qo + po)s] —m/s

@ —p% (g2 —po?)s: 9 — Do ’

gm —pn _ qosm —posn _ qo(m +n)/[(qo + po)s] —n/s

?—p*  (qo® —po?)s? qo — Po ’
m+n  qgn—pm qm—pn

(g0 +po)s  ¢*—p*  ¢*—p?
are all integers. Hence/s, n/s are integers. Letg = m/s andng = n/s. Itis easy to see that,
andng satisfy the necessary conditions in Theorem 2 with po andg = qq.

The proof of the following lemma is similar as that of Lemma 7.

Lemma8 — For any positive integet, if m andn satisfy the sufficient conditions in Theorem
3 with p = pgs andq = qqs, then there are positive integers, andng which satisfy the sufficient
conditions in Theorem 3 with = py andq = ¢o, such thatn = mys andn = ngs.

PROOF OF THEOREM 3 : Applying Lemma 6, Lemma 8 and Theorem 5, we see that for the
parametersn andn satisfying conditions in Theorem 3K, ,, has ak, ,-factorization.

In the following, we give the proof of Theorem 4. Whenr= k£ andq = k + 1, by Theorem 2, we
have the following necessary condition for the ;. -factorization ofA K, ,,.
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Lemma9 — Let A\, m, n andk be positive integers. KK, ,, has aKj}, ;;-factorization, then
(Dkn<(k+1)m, 2)km < (k+1)n, 3) (k+1)m —kn = (k+ 1)n —km = 0 (mod 2k +
1), () A(kE+1)m —Ekn)((k+ 1)n—km) =0 (mod k(k + 1)(2k + 1)(m + n)).

Whenp = k andq = k + 1, by Theorem 3, the sufficient condition fa¥<,, ,, to have aKy, ;. 1-
factorization as follows.

Lemmal0O — Let\, m, n andk be positive integers. Assunte) kn < (k + 1)m, (2) km <
(k+1n, ) (k+1)m—kn=(k+ 1)n—km =0 (mod 2k + 1), (4) M((k+ 1)m — kn)((k +
1)n —km) =0 (mod k(k + 1)(2k + 1)(m + n)), then\K,, ,, has akKj}, ;1 -factorization.

PROOF OFTHEOREM4 : Combining the Lemma 6 to Lemma 10, we get the proof of Theorem 4.
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