On $K_{p,q}$ -FACTORIZATION OF COMPLETE BIPARTITE MULTIGRAPHS¹

Mingchao Li* and Jian Wang**

*Department of Mathematics Soochow University, Suzhou 215006, P.R. China **Nantong Vocational University, Nantong 226007, P.R. China e-mails: ntzdwangjian@163.com; limch@hotmail.com

(Received 10 January 2014; after final revision 8 October 2016; accepted 28 October 2016)

Let $\lambda K_{m,n}$ be a complete bipartite multigraph with two partite sets having m and n vertices, respectively. A $K_{p,q}$ -factorization of $\lambda K_{m,n}$ is a set of edge-disjoint $K_{p,q}$ -factors of $\lambda K_{m,n}$ which partition the set of edges of $\lambda K_{m,n}$. When p = 1 and q is a prime number, Wang, in his paper [On $K_{1,q}$ -factorization of complete bipartite graph, *Discrete Math.*, **126**: (1994), 359-364], investigated the $K_{1,q}$ -factorization of $K_{m,n}$ and gave a sufficient condition for such a factorization to exist. In papers [$K_{1,k}$ -factorization of complete bipartite graphs, *Discrete Math.*, **259**: 301-306 (2002), ; $K_{p,q}$ -factorization of complete bipartite graphs, *Sci. China Ser. A-Math.*, **47**: (2004), 473-479], Du and Wang extended Wang's result to the case that p and q are any positive integers. In this paper, we give a sufficient condition for the $K_{p,q}$ -factorization. As a special case, it is shown that the necessary condition for the $K_{p,q}$ -factorization of $\lambda K_{m,n}$ is always sufficient when p : q = k : (k + 1) for any positive integer k.

Key words : Complete bipartite multigraph; factor; factorization.

1. INTRODUCTION

Let $K_{m,n}$ be a complete bipartite graph with two partite sets having m and n vertices, respectively. $\lambda K_{m,n}$ is the complete bipartite multigraph formed by replacing each edge of $K_{m,n}$ with λ edges. A subgraph F of $\lambda K_{m,n}$ is called a spanning subgraph of $\lambda K_{m,n}$ if F contains all the vertices of $\lambda K_{m,n}$. A G-factor of $\lambda K_{m,n}$ is a spanning subgraph F of $\lambda K_{m,n}$ such that every component of Fis isomorphic to G. A G-factorization of $\lambda K_{m,n}$ is a set of edge-disjoint G-factors of $\lambda K_{m,n}$ which is a partition of the set of edges of $\lambda K_{m,n}$. The graph $\lambda K_{m,n}$ is called G-factorizable whenever it has

¹This work was supported by the National Natural Science Foundation of China (Grants Nos. 11571251, 11371207).

a *G*-factorization. In paper [1] a *G*-factorization of $\lambda K_{m,n}$ is defined as a resolvable $(m, n, p + q, \lambda)$ *G*-design. For graph theoretical terms, see [2].

The $K_{p,q}$ -factorizations and P_v -factorizations of $\lambda K_{m,n}$ have been studied by many researchers and found to have a number of applications. Especially, Yamamoto *et al.* [3, 4] have given some applications in $HUBFS_2$ and $HUBMFS_2$ schemes of database systems. There are also some known results on the existence of the $K_{p,q}$ -factorizations and P_v -factorizations of $\lambda K_{m,n}$. In 1988, the existence of P_3 -factorizations of $K_{m,n}$ has been completely solved by Ushio [5]. Notice that a P_3 is also $K_{1,2}$. Since then Ushio, Martin, Du, Wang *et al.* have some further researches in $K_{p,q}$ factorizations and P_v -factorizations of $\lambda K_{m,n}$. When v is an even number, Ushio [1], Wang [6] and Du [7] gave a necessary and sufficient condition for their existence. When v is an odd number, we in a series of papers [8-11] gave a necessary and sufficient condition for such factorizations to exist and completely solved the spectrum for existence of P_v -factorizations of $\lambda K_{m,n}$. For the $K_{p,q}$ factorizations of $\lambda K_{m,n}$, when p = 1 and q = 3, Martin in paper [12, 13] gave the necessary and sufficient condition for $K_{m,n}$ to have a $K_{1,3}$ -factorization. When p = 1 and q is a prime number, Wang in [14] investigated the $K_{1,q}$ -factorization of $K_{m,n}$ and gave a sufficient condition for such a factorization to exist. In papers [15-17], Du and Wang extended Wang's result to the case that p and q are any positive integers.

Theorem 1 — Let p, q, m and n be positive integers with p < q. Assume (1) $pn \le qm$, (2) $pm \le qn$, (3) $qm - pn \equiv qn - pm \equiv 0 \pmod{(q^2 - p^2)}$, (4) $(qm - pn)(qn - pm) \equiv 0 \pmod{pq(q-p)(q^2-p^2)(m+n)}$. Then $K_{m,n}$ has a $K_{p,q}$ -factorization.

In this paper, we pay attention to the existence for the $K_{p,q}$ -factorization of a complete bipartite multigraph $\lambda K_{m,n}$. For any positive integers p and q (q > p), gcd(p,q) denote the greatest common divisor of p and q. We will give a sufficient condition for $\lambda K_{m,n}$ to have a $K_{p,q}$ -factorization. As a special case, it is shown that the necessary conditions for the $K_{p,q}$ -factorization of $\lambda K_{m,n}$ are always sufficient when p : q = k : (k + 1) for any positive integer k. That is, we shall prove.

Theorem 2 — Let m, n, p and q (p < q) be positive integers with pq > 1. If $\lambda K_{m,n}$ has a $K_{p,q}$ -factorization, then (1) $pn \leq qm$, (2) $pm \leq qn$, (3) $qm - pn \equiv qn - pm \equiv 0 \pmod{(q^2 - p^2)}$, (4) $\lambda(qm - pn)(qn - pm) \equiv 0 \pmod{pq(q^2 - p^2)(m + n)/d}$, where $d = \gcd(p, q)$.

Theorem 3 — Let p, q, m and n be positive integers with p < q. Assume (1) $pn \le qm$, (2) $pm \le qn$, (3) $qm - pn \equiv qn - pm \equiv 0 \pmod{(q^2 - p^2)}$, (4) $\lambda(qm - pn)(qn - pm) \equiv 0 \pmod{pq}$ $(q - p)(q^2 - p^2)(m + n)/d)$, where $d = \gcd(p, q)$. Then $\lambda K_{m,n}$ has a $K_{p,q}$ -factorization.

Theorem 4 — The necessary conditions for $\lambda K_{m,n}$ to have a $K_{p,q}$ -factorization is always sufficient when p : q = k : (k + 1) for any positive integer k.

2. PROOF OF THE NECESSARY CONDITION

We first give the proof of the necessary condition for $\lambda K_{m,n}$ to have a $K_{p,q}$ -factorization.

Theorem 2 — Let m, n, p and q (p < q) be positive integers with pq > 1. If $\lambda K_{m,n}$ has a $K_{p,q}$ -factorization, then (1) $pn \leq qm$, (2) $pm \leq qn$, (3) $qm - pn \equiv qn - pm \equiv 0 \pmod{(q^2 - p^2)}$, (4) $\lambda(qm - pn)(qn - pm) \equiv 0 \pmod{pq(q^2 - p^2)(m + n)/d}$, where d=gcd(p,q).

PROOF : Let X and Y be the two partite sets of $\lambda K_{m,n}$ with |X| = m and |Y| = n. Let $\{F_1, F_2, \dots, F_r\}$ be a $K_{p,q}$ -factorization of $\lambda K_{m,n}$. In a particular $K_{p,q}$ -factor, let a copies of $K_{p,q}$ with its partite set of size p in X and b copies with it in Y. Then we have ap+bq = m and aq+bp = n. Thus,

$$a = \frac{qn - pm}{q^2 - p^2}, \ b = \frac{qm - pn}{q^2 - p^2}.$$

Since q > p and a and b are nonnegative integers, conditions (1), (2) and (3) are necessary. Let

$$c = \frac{\lambda(qm - pn)(qn - pm)}{pq(p+q)(m+n)}$$

Then

$$r = \frac{\lambda(p+q)mn}{pq(m+n)} = \lambda(a+b) + c.$$

Thus c is an integer. Let $u \in X$. Suppose that there are only $r' F_i$'s, each of which contains u contributing q edges. Then $qr' + p(r - r') = \lambda n$, i.e. $(q - p)r' + p(\lambda a + \lambda b + c) = (\lambda aq + \lambda bp)$. Therefore $c \equiv 0 \pmod{(q - p)/d}$, where $d = \gcd(p, q)$, i.e. $\lambda(qm - pn)(qn - pm) \equiv 0 \pmod{pq} (q^2 - p^2)(m + n)/d)$. Therefore the condition (4) is necessary. This proves Theorem 2.

When p and q are coprime, we have the following condition.

Corollary 1 — Let p and q (q > p) be a coprime pair of positive integers. If $\lambda K_{m,n}$ has a $K_{p,q}$ -factorization, then (1) $pn \leq qm$, (2) $pm \leq qn$, (3) $qm - pn \equiv qn - pm \equiv 0 \pmod{(q^2 - p^2)}$, (4) $\lambda(qm - pn)(qn - pm) \equiv 0 \pmod{pq(q^2 - p^2)(m + n)}$.

3. MAIN RESULT

In this section, we prove the following main result.

Theorem 5 — Let p and q (q > p) be a coprime pair of positive integers. Assume (1) $pn \le qm$, (2) $pm \le qn$, (3) $qm - pn \equiv qn - pm \equiv 0 \pmod{(q^2 - p^2)}$, (4) $\lambda(qm - pn)(qn - pm) \equiv 0 \pmod{(q^2 - p^2)(m + n)}$. Then $\lambda K_{m,n}$ has a $K_{p,q}$ -factorization.

The proof of Theorem 5 consists of some lemmas. The following two lemmas are obvious.

Lemma 1 — Let u, v, x and y be positive integers. If gcd(ux, vy) = 1, then gcd(uv, ux + vy) = 1.

Lemma 2 — If $\lambda K_{m,n}$ has a $K_{p,q}$ -factorization, then $s\lambda K_{m,n}$ has a $K_{p,q}$ -factorization for any positive integer s.

Lemma 3 — If $\lambda K_{m,n}$ has a $K_{p,q}$ -factorization, then $\lambda K_{ms,ns}$ has a $K_{p,q}$ -factorization for any positive integer s.

PROOF : Let $\{F_i : 1 \le i \le s\}$ be a 1-factorization of $K_{s,s}$ (whose existence see [2]). For each $1 \le i \le s$, replace every edge of F_i by a $\lambda K_{m,n}$ to get a factor G_i of $\lambda K_{ms,ns}$ such that the graph G_i are pairwise edge-disjoint and their union is $\lambda K_{ms,ns}$. Since $\lambda K_{m,n}$ has a $K_{p,q}$ -factorization, it is clear that the graph G_i , too, has a $K_{p,q}$ -factorization. Consequently, $\lambda K_{ms,ns}$ has a $K_{p,q}$ -factorization.

A corollary of Lemma 3 is as follows.

Corollary 2 — $\lambda K_{ps,qs}$ has a $K_{p,q}$ -factorization for any positive integer s.

Corollary 2 implies that we only need to treat the case qn > pm and qm > pn. Let

$$a = \frac{qn - pm}{q^2 - p^2}, \ b = \frac{qm - pn}{q^2 - p^2}, \ = \frac{\lambda(qm - pn)(qn - pm)}{pq(p+q)(m+n)}, \ r = \frac{\lambda(p+q)mn}{pq(m+n)}$$

From conditions (1)-(4) in Theorem 5, a, b, r are positive integers. Note that ap + bq = m, aq + bp = n and $r = \lambda(a + b) + c$. This implies that a < m, b < n and r is an integer. And let gcd(ap, bq) = d with ap = de, bq = dk and gcd(e, k) = 1. Since $c \equiv 0 \pmod{(q - p)^2}$. Let $z = c/(q - p)^2$. Then these equalities imply the following equalities:

$$d = \frac{pq(qe+pk)z}{\lambda ek}, \quad r = \frac{(e+k)(q^2e+p^2k)z}{ek}, \quad m = \frac{pq(e+k)(qe+pk)z}{\lambda ek}$$
$$n = \frac{(q^2e+p^2k)(qe+pk)z}{\lambda ek}, \quad a = \frac{qe(qe+pk)z}{\lambda ek}, \quad b = \frac{pk(qe+pk)z}{\lambda ek}.$$

Let $q = q_1^{k_1} q_2^{k_2} \cdots q_{\gamma}^{k_{\gamma}}$, where $q_1, q_2, \cdots, q_{\gamma}$ are distinct prime numbers and $k_1, k_2, \cdots, k_{\gamma}$ are positive integers, and $p = p_1^{h_1} p_2^{h_2} \cdots p_{\omega}^{h_{\omega}}$, where $p_1, p_2, \cdots, p_{\omega}$ are distinct prime numbers and $h_1, h_2, \cdots, h_{\omega}$ are positive integers.

If $\gcd(k,q^2) = q_1^{i_1}q_2^{i_2}\cdots q_{\alpha}^{i_{\alpha}}q_{\alpha+1}^{2k_{\alpha+1}-i_{\alpha+1}}q_{\alpha+2}^{2k_{\alpha+2}-i_{\alpha+2}}\cdots q_{\beta}^{2k_{\beta}-i_{\beta}}q_{\beta+1}^{2k_{\beta+1}}$ $q_{\beta+2}^{2k_{\beta+2}}\cdots q_{\gamma}^{2k_{\gamma}}$, where $1 \le \alpha \le \beta \le \gamma$, $0 \le i_j \le k_j$ (when $1 \le j \le \alpha$) or $0 < i_j < k_j$ (when $\alpha + 1 \le j \le \beta$). And $\gcd(e,p^2) = p_1^{j_1}p_2^{j_2}\cdots p_{\mu}^{j_{\mu}}p_{\mu+1}^{2h_{\mu+1}-j_{\mu+1}}p_{\mu+2}^{2h_{\mu+2}-j_{\mu+2}}\cdots p_{\nu}^{2h_{\nu}-j_{\nu}}$ $p_{\nu+1}^{2h_{\nu+1}}p_{\nu+2}^{2h_{\nu+2}}\cdots p_{\omega}^{2h_{\omega}}$, where $1 \leq \mu \leq \nu \leq \omega$, $0 \leq j_i \leq h_i$ (when $1 \leq i \leq \mu$) or $0 < j_i < h_i$ (when $\mu + 1 \leq i \leq \nu$). Let

$$s = q_1^{i_1} q_2^{i_2} \cdots q_{\alpha}^{i_{\alpha}}, \quad t = q_1^{k_1 - i_1} q_2^{k_2 - i_2} \cdots q_{\alpha}^{k_{\alpha} - i_{\alpha}}, \quad u = q_{\alpha+1}^{i_{\alpha+1}} q_{\alpha+2}^{i_{\alpha+2}} \cdots q_{\beta}^{i_{\beta}},$$

$$v = q_{\alpha+1}^{k_{\alpha+1} - i_{\alpha+1}} q_{\alpha+2}^{k_{\alpha+2} - i_{\alpha+2}} \cdots q_{\beta}^{k_{\beta} - i_{\beta}}, \quad w = q_{\beta+1}^{k_{\beta+1}} q_{\beta+2}^{k_{\beta+2}} \cdots q_{\gamma}^{k_{\gamma}}.$$

$$s' = p_1^{j_1} p_2^{j_2} \cdots p_{\mu}^{j_{\mu}}, \quad t' = p_1^{h_1 - j_1} p_2^{h_2 - j_2} \cdots p_{\mu}^{h_{\mu} - j_{\mu}}, \quad u' = p_{\mu+1}^{j_{\mu+1}} p_{\mu+2}^{j_{\mu+2}} \cdots p_{\nu}^{j_{\nu}}$$

$$v' = p_{\mu+1}^{h_{\mu+1} - j_{\mu+1}} p_{\mu+2}^{h_{\mu+2} - j_{\mu+2}} \cdots p_{\nu}^{h_{\nu} - j_{\nu}}, \quad w' = p_{\nu+1}^{h_{\nu+1}} p_{\nu+2}^{h_{\nu+2}} \cdots p_{\omega}^{h_{\omega}}.$$

Then $\gcd(k,q^2)=suv^2w^2$ and $\gcd(e,p^2)=s'u'v'^2w'^2.$

Recall p and q are coprime, we can establish the following lemma.

Lemma 4 — If $gcd(k,q^2) = suv^2w^2$, and $gcd(e,p^2) = s'u'v'^2w'^2$. Let $k = suv^2w^2k'$, $e = s'u'v'^2w'^2e'$ and $gcd(sus'u'(tv'w'e' + vwt'k'), \lambda) = \lambda'$. Then

$$m = \frac{stus't'u'(s'u'v'^{2}w'^{2}e' + suv^{2}w^{2}k')(tv'w'e' + vwt'k')z'}{\lambda'},$$

$$n = \frac{suvws'u'v'w'(st^{2}ue' + s't'^{2}u'k')(tv'w'e' + vwt'k')z'}{\lambda'},$$

$$a = \frac{stus'u'v'w'e'(tv'w'e' + vwt'k')z'}{\lambda'}, \quad b = \frac{suvws't'u'k'(tv'w'e' + vwt'k')z'}{\lambda'},$$

$$r = \frac{(s'u'v'^{2}w'^{2}e' + suv^{2}w^{2}k')(st^{2}ue' + s't'^{2}u'k')z'\lambda}{\lambda'}, \quad d = \frac{stus't'u'(tv'w'e' + vwt'k')z'}{\lambda'},$$

for some positive integer z'.

PROOF : We assume that the $gcd(k, q^2) = suv^2w^2$, $gcd(e, p^2) = s'u'v'^2w'^2$ and $k = suv^2w^2k'$, $e = s'u'v'^2w'^2e'$ hold. Since gcd(e, k) = 1, we have gcd(e', k') = 1, $gcd(s'u'v'^2w'^2e', suv^2w^2k') = 1$, $gcd(st^2ue', s't'^2u'k') = 1$. It is easy to see that

$$r = \frac{(s'u'v'^2w'^2e' + suv^2w^2k')(st^2ue' + s't'^2u'k')z}{e'k'}.$$

By Lemma 1, we see that $gcd(e'k', s'u'v'^2w'^2e' + suv^2w^2k') = 1$ and $gcd(e'k', st^2ue' + s't'^2u'k') = 1$. Since r is an integer, therefore,

$$\frac{z}{e'k'}$$

must be an integer. Let

$$z_1 = \frac{z}{e'k'}$$

and let $\lambda_1 = \gcd(\lambda, stus'u'v'w'e'(tv'w'e'+vwt'k'))$ and $\lambda_2 = \gcd(\lambda, suvws't'u'k'(tv'w'e'+vwt'k'))$. By

$$a = \frac{stus'u'v'w'e'(tv'w'e' + vwt'k')z_1}{\lambda}$$

and

$$b = \frac{suvws't'u'k'(tv'w'e' + vwt'k')z_1}{\lambda},$$

we see that

$$\frac{\lambda_1 z_1}{\lambda}$$

and

$$\frac{\lambda_2 z_1}{\lambda}$$

must be integers. Since gcd (tv'w'e', vwt'k') = 1, so we have

$$\frac{z_1\lambda'}{\lambda}$$

must be an integer, where $gcd(sus'u'(tv'w'e' + vwt'k'), \lambda) = \lambda'$. Let

$$z' = \frac{z_1 \lambda'}{\lambda},$$

then the equalities hold.

To complete the proof of Theorem 5, we need the following direct construction.

Lemma 5 — For any positive integers s, t, u, v, w, s', t', u', v', w', e, k and λ , if

$$\frac{sus'u'(tv'w'e'+vwt'k')}{\lambda}$$

is an integer and

$$m = \frac{stus't'u'(s'u'v'^2w'^2e + suv^2w^2k)(tv'w'e + vwt'k)}{\lambda},$$
$$n = \frac{suvws'u'v'w'(st^2ue + s't'^2u'k)(tv'w'e + vwt'k)}{\lambda},$$

226

then $\lambda K_{m,n}$ has a $K_{s't'u'v'w',stuvw}$ -factorization.

PROOF : Let

$$a = \frac{stus'u'v'w'e(tv'w'e + vwt'k)}{\lambda}, \ b = \frac{suvws't'u'k(tv'w'e + vwt'k)}{\lambda}$$

 $r = (s'u'v'^2w'^2e + suv^2w^2k)(st^2ue + s't'^2u'k), r_1 = s'u'v'^2w'^2e + suv^2w^2k$ and $r_2 = st^2ue + s't'^2u'k$. Let X and Y be two partite sets of $\lambda K_{m,n}$,

$$X = \{x_{i,j} : 1 \le i \le r_1; 1 \le j \le \frac{stus't'u'(tv'w'e+vwt'k)}{\lambda}\},\$$
$$Y = \{y_{i,j} : 1 \le i \le r_2; 1 \le j \le \frac{suvws'u'v'w'(tv'w'e+vwt'k)}{\lambda}\}.$$

We will construct a $K_{s't'u'v'w',stuvw}$ -factorization of $\lambda K_{m,n}$. We remark in advance that the additions in the first subscripts of $x_{i,j}$ and $y_{i,j}$ are taken modulo r_1 and r_2 in $\{1, 2, \dots, r_1\}$ and $\{1, 2, \dots, r_2\}$, respectively, and the additions in the second subscripts of $x_{i,j}$'s and $y_{i,j}$'s are taken modulo

$$\frac{stus't'u'(tv'w'e + vwt'k)}{\lambda}$$

and

$$\frac{suvws'u'v'w'(tv'w'e+vwt'k)}{\lambda}$$

in

$$\{1, 2, \cdots, \frac{stus't'u'(tv'w'e+vwt'k)}{\lambda}\}$$

and

$$\{1, 2, \cdots, \frac{suvws'u'v'w'(tv'w'e+vwt'k)}{\lambda}\},\$$

respectively.

For each i, x, x', y, y', z and $z', 1 \le i \le e, 1 \le x \le stu, 1 \le x' \le s'u'v'w', 1 \le y \le vw, 1 \le y' \le v'w', 1 \le z \le t$ and $1 \le z' \le t'$, let

$$\begin{split} f(z,z') &= \frac{sus'u'(tv'w'e + vwt'k)(z'-1)}{\lambda} + \frac{sus't'u'(tv'w'e + vwt'k)(z-1)}{\lambda}, \\ g(i,x,z) &= st^2u(i-1) + t(x-1) + z \text{ and } h(i,x,x',y,y') = stu(i-1) + z \end{split}$$

MINGCHAO LI AND JIAN WANG

$$stu(x'-1)e + \frac{suvws'u'(tv'w'e + vwt'k)(y'-1)}{\lambda} + \frac{sus'u'(tv'w'e + vwt'k)(y-1)}{\lambda} + x,$$

and let

$$E_{i} = \{x_{s'u'v'^{2}w'^{2}(i-1)+s'u'v'w'(y'-1)+x',f(z,z')+j}y_{g(i,x,z),h(i,x,x',y,y')+j} : 1 \le j \le \frac{sus'u'(tv'w'e+vwt'k)}{\lambda}, \ 1 \le x \le stu, \ 1 \le x' \le s'u'v'w', 1 \le y \le vw, \ 1 \le y' \le v'w', \ 1 \le z \le t, \ 1 \le z' \le t'\}.$$

For each i, x, x', y, y' and $z, 1 \le i \le k, 1 \le x \le suvw, 1 \le x' \le v'w', 1 \le y \le vw, 1 \le y' \le s't'u'$ and $1 \le z \le t'$, let $\varphi(i, x, y) = s'u'v'^2w'^2e + suv^2w^2(i-1) + vw(x-1) + y, \theta(i, y', z) = st^2ue + s't'^2u'(i-1) + s't'u'(z-1) + y'$ and $\psi(i, x, x', y, y') = stus'u'v'w'e + s't'u'(z-1) + s't'u'(z-1) + y'$ and $\psi(i, x, x', y, y') = stus'u'v'w'e + s't'u'(z-1) + s't'u'(z-1) + y'$

$$\frac{suvws'u'(tv'w'e + vwt'k)(x'-1)}{\lambda} + \frac{sus'u'(tv'w'e + vwt'k)(y-1)}{\lambda} + suvwk(y'-1) + suvwk(y'-$$

and let

$$E_{e+i} = \{x_{\varphi(i,x,y),\frac{stus'u'(tv'w'e+vwt'k)(z-1)}{\lambda}+j}y_{\theta(i,y',z),\psi(i,x,x',y,y')+j}:$$

$$1 \le j \le \frac{stus'u'(tv'w'e+vwt'k)}{\lambda}, \ 1 \le x \le suvw, \ 1 \le x' \le v'w',$$

$$1 \le y \le vw, \ 1 \le y' \le s't'u', \ 1 \le z \le t'\}.$$

Let $F = \bigcup_{1 \le i \le e+k} E_i$. Then the graph F is a $K_{s't'u'v'w',stuvw}$ -factor of $\lambda K_{m,n}$. Define a bijection σ from $X \cup Y$ onto $X \cup Y$ in such a way that $\sigma(x_{i,j}) = x_{i+1,j}, \sigma(y_{i,j}) = y_{i+1,j}$. For each $i \in \{1, 2, \dots, r_1\}$ and each $j \in \{1, 2, \dots, r_2\}$, let

$$F_{i,j} = \{\sigma^i(x)\sigma^j(y) \mid x \in X, y \in Y, xy \in F\}.$$

It is easy to show that the graphs $F_{i,j}$ $(1 \le i \le r_1, 1 \le j \le r_2)$ are $K_{s't'u'v'w',stuvw}$ -factors of $\lambda K_{m,n}$ and their union is $\lambda K_{m,n}$. Thus, $\{F_{i,j} | 1 \le i \le r_1, 1 \le j \le r_2\}$ is a $K_{s't'u'v'w',stuvw}$ -factorization of $\lambda K_{m,n}$.

PROOF OF THEOREM 5 : Applying Lemma 2 to Lemma 5, we see that for the parameters m and n satisfying the conditions in Theorem 5, $\lambda K_{m,n}$ has a $K_{p,q}$ -factorization.

4. PROOF OF THE SUFFICIENT CONDITION

In this section, we shall give the proof of the sufficient condition for $\lambda K_{m,n}$ to have a $K_{p,q}$ -factorization. We first give the following lemmas.

Lemma 6 — If $\lambda K_{m,n}$ has a $K_{p,q}$ -factorization, then $\lambda K_{ms,ns}$ has a $K_{ps,qs}$ -factorization for any positive integer s.

PROOF : Let $\{F_i : 1 \le i \le r\}$ be a $K_{p,q}$ -factorization of $\lambda K_{m,n}$. For each $i \in \{1, 2, \dots, r\}$, replace every vertex of F_i by s vertices and every edge of F_i by a $K_{s,s}$. Then we get a factor G_i of $\lambda K_{ms,ns}$ such that the graph G_i is pairwise edge-disjoint and their union is $\lambda K_{ms,ns}$. Therefore, $\lambda K_{ms,ns}$ has a $K_{ps,qs}$ -factorization.

Lemma 7 — For any positive integer s, if m and n satisfy the necessary condition in Theorem 2 with $p = p_0 s$ and $q = q_0 s$, then there are positive integers m_0 and n_0 which satisfy the necessary condition in Theorem 2 with $p = p_0$ and $q = q_0$, such that $m = m_0 s$ and $n = n_0 s$.

PROOF : Suppose m and n satisfy the necessary condition in Theorem 2 with $p = p_0 s$ and $q = q_0 s$. Then we have

$$\frac{qn-pm}{q^2-p^2} = \frac{q_0sn-p_0sm}{(q_0^2-p_0^2)s^2} = \frac{q_0(m+n)/[(q_0+p_0)s]-m/s}{q_0-p_0},$$
$$\frac{qm-pn}{q^2-p^2} = \frac{q_0sm-p_0sn}{(q_0^2-p_0^2)s^2} = \frac{q_0(m+n)/[(q_0+p_0)s]-n/s}{q_0-p_0},$$
$$\frac{m+n}{(q_0+p_0)s} = \frac{qn-pm}{q^2-p^2} + \frac{qm-pn}{q^2-p^2}$$

are all integers. Hence m/s, n/s are integers. Let $m_0 = m/s$ and $n_0 = n/s$. It is easy to see that m_0 and n_0 satisfy the necessary conditions in Theorem 2 with $p = p_0$ and $q = q_0$.

The proof of the following lemma is similar as that of Lemma 7.

Lemma 8 — For any positive integer s, if m and n satisfy the sufficient conditions in Theorem 3 with $p = p_0 s$ and $q = q_0 s$, then there are positive integers m_0 and n_0 which satisfy the sufficient conditions in Theorem 3 with $p = p_0$ and $q = q_0$, such that $m = m_0 s$ and $n = n_0 s$.

PROOF OF THEOREM 3 : Applying Lemma 6, Lemma 8 and Theorem 5, we see that for the parameters m and n satisfying conditions in Theorem 3, $\lambda K_{m,n}$ has a $K_{p,q}$ -factorization.

In the following, we give the proof of Theorem 4. When p = k and q = k + 1, by Theorem 2, we have the following necessary condition for the $K_{k,k+1}$ -factorization of $\lambda K_{m,n}$.

MINGCHAO LI AND JIAN WANG

Lemma 9 — Let λ , m, n and k be positive integers. If $\lambda K_{m,n}$ has a $K_{k,k+1}$ -factorization, then (1) $kn \leq (k+1)m$, (2) $km \leq (k+1)n$, (3) $(k+1)m - kn \equiv (k+1)n - km \equiv 0 \pmod{2k+1}$, (4) $\lambda((k+1)m - kn)((k+1)n - km) \equiv 0 \pmod{k(k+1)(2k+1)(m+n)}$.

When p = k and q = k + 1, by Theorem 3, the sufficient condition for $\lambda K_{m,n}$ to have a $K_{k,k+1}$ -factorization as follows.

Lemma 10 — Let λ , m, n and k be positive integers. Assume (1) $kn \leq (k+1)m$, (2) $km \leq (k+1)n$, (3) $(k+1)m - kn \equiv (k+1)n - km \equiv 0 \pmod{2k+1}$, (4) $\lambda((k+1)m - kn)((k+1)n - km) \equiv 0 \pmod{k(k+1)(2k+1)(m+n)}$, then $\lambda K_{m,n}$ has a $K_{k,k+1}$ -factorization.

PROOF OF THEOREM 4 : Combining the Lemma 6 to Lemma 10, we get the proof of Theorem 4.

ACKNOWLEDGEMENT

The authors would like to thank the referees for many helpful comments. This research was supported by the National Natural Science Foundation of China (Grants Nos. 11571251, 11371207).

REFERENCES

- 1. K. Ushio, G-designs and related designs, Discrete Math., 116 (1993), 299-311.
- 2. J. A. Bondy and U. S. R. Murty, *Graph theory with applications*, Macmillan Press, London and Basingstoke, 1976.
- 3. S. Yamamoto, H. Ikeda, S. Shige-eda, K. Ushio and N. Hamada, Design of a new balanced file organization scheme with the least redundancy, *Information and Control*, **28** (1975), 156-175.
- 4. S. Yamamoto, S. Tazawa, K. Ushio and H. Ikeda, Design of a generalized balanced multiple-valued file organization scheme with the least redundancy, *ACM Trans. Database Systems*, **4** (1979), 361-366.
- 5. K. Ushio, P₃-factorisation of complete bipartite graphs, *Discrete Math.*, **72** (1988), 361-366.
- 6. H. Wang, P_{2k} -factorizations of a complete bipartite graph, *Disctete Math.*, **120** (1993), 307-308.
- 7. B. L. Du, P_{2k}-factorization of complete bipartite multigraphs, Austral J. Combin., **21** (2000), 197-199.
- B. L. Du and J. Wang, P_{4k-1}-factorization of complete bipartite graphs, *Sci. China Ser. A-Math.*, 48 (2005), 539-547.
- B. L. Du and J. Wang, The proof of Ushio's conjecture concerning path factorization of complete bipartite graphs, *Sci. China Ser. A-Math.*, 49 (2006), 289-299.
- 10. J. Wang and B. L. Du, P_{4k-1} -factorization of complete bipartite multigraphs, *Sci. China Ser. A-Math.*, **49** (2006), 961-970.

- 11. J. Wang and B. L. Du, The spectrum of path factorization of bipartite multigraphs, *Sci. China Ser. A-Math.*, **50** (2007), 1045-1054.
- 12. N. Martin, Complete bipartite factorisations by complete bipartite graphs, *Discrete Math.*, **167/168** (1997), 461-480.
- 13. N. Martin, Unbalanced star-factorisations of complete bipartite graphs, *Discrete Math.*, **283** (2004), 159-165.
- 14. H. Wang, On $K_{1,k}$ -factorizations of a complete bipartite graph, *Discrete Math.*, **126** (1994), 359-364.
- 15. B. L. Du, K_{1,p^2} -factorization of complete bipartite graphs, *Discrete Math.*, **187** (1998), 273-279.
- 16. B. L. Du and J. Wang, $K_{1,k}$ -factorization of complete bipartite graphs, *Discrete Math.*, **259** (2002), 301-306.
- B. L. Du and J. Wang, K_{p,q}-factorization of complete bipartite graphs, Sci. China Ser. A-Math., 47 (2004), 473-479.