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Let λKm,n be a complete bipartite multigraph with two partite sets havingm andn vertices, re-

spectively. AKp,q-factorization ofλKm,n is a set of edge-disjointKp,q-factors ofλKm,n which

partition the set of edges ofλKm,n. Whenp = 1 andq is a prime number, Wang, in his paper

[On K1,q-factorization of complete bipartite graph,Discrete Math., 126: (1994), 359-364], in-

vestigated theK1,q-factorization ofKm,n and gave a sufficient condition for such a factorization

to exist. In papers [K1,k-factorization of complete bipartite graphs,Discrete Math., 259: 301-306

(2002), ;Kp,q-factorization of complete bipartite graphs,Sci. China Ser. A-Math., 47: (2004),

473-479], Du and Wang extended Wang’s result to the case thatp andq are any positive integers.

In this paper, we give a sufficient condition forλKm,n to have aKp,q-factorization. As a spe-

cial case, it is shown that the necessary condition for theKp,q-factorization ofλKm,n is always

sufficient whenp : q = k : (k + 1) for any positive integerk.

Key words : Complete bipartite multigraph; factor; factorization.

1. INTRODUCTION

Let Km,n be a complete bipartite graph with two partite sets havingm andn vertices, respectively.

λKm,n is the complete bipartite multigraph formed by replacing each edge ofKm,n with λ edges.

A subgraphF of λKm,n is called a spanning subgraph ofλKm,n if F contains all the vertices of

λKm,n. A G-factor ofλKm,n is a spanning subgraphF of λKm,n such that every component ofF

is isomorphic toG. A G-factorization ofλKm,n is a set of edge-disjointG-factors ofλKm,n which

is a partition of the set of edges ofλKm,n. The graphλKm,n is calledG-factorizable whenever it has

1This work was supported by the National Natural Science Foundation of China (Grants Nos. 11571251, 11371207).
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aG-factorization. In paper [1] aG-factorization ofλKm,n is defined as a resolvable (m,n, p + q, λ)

G-design. For graph theoretical terms, see [2].

TheKp,q-factorizations andPv-factorizations ofλKm,n have been studied by many researchers

and found to have a number of applications. Especially, Yamamotoet al. [3, 4] have given some

applications inHUBFS2 and HUBMFS2 schemes of database systems. There are also some

known results on the existence of theKp,q-factorizations andPv-factorizations ofλKm,n. In 1988,

the existence ofP3-factorizations ofKm,n has been completely solved by Ushio [5]. Notice that a

P3 is alsoK1,2. Since then Ushio, Martin, Du, Wanget al. have some further researches inKp,q-

factorizations andPv-factorizations ofλKm,n. Whenv is an even number, Ushio [1], Wang [6]

and Du [7] gave a necessary and sufficient condition for their existence. Whenv is an odd number,

we in a series of papers [8-11] gave a necessary and sufficient condition for such factorizations to

exist and completely solved the spectrum for existence ofPv-factorizations ofλKm,n. For theKp,q-

factorizations ofλKm,n, whenp = 1 andq = 3, Martin in paper [12, 13] gave the necessary and

sufficient condition forKm,n to have aK1,3-factorization. Whenp = 1 andq is a prime number,

Wang in [14] investigated theK1,q-factorization ofKm,n and gave a sufficient condition for such a

factorization to exist. In papers [15-17], Du and Wang extended Wang’s result to the case thatp and

q are any positive integers.

Theorem1 — Let p, q, m and n be positive integers withp < q. Assume(1) pn ≤ qm,

(2) pm ≤ qn, (3) qm − pn ≡ qn − pm ≡ 0 (mod (q2 − p2)), (4) (qm − pn)(qn − pm) ≡
0 (mod pq(q − p)(q2 − p2)(m + n)). ThenKm,n has aKp,q-factorization.

In this paper, we pay attention to the existence for theKp,q-factorization of a complete bipartite

multigraphλKm,n. For any positive integersp andq (q > p), gcd(p, q) denote the greatest common

divisor of p andq. We will give a sufficient condition forλKm,n to have aKp,q-factorization. As a

special case, it is shown that the necessary conditions for theKp,q-factorization ofλKm,n are always

sufficient whenp : q = k : (k + 1) for any positive integerk. That is, we shall prove.

Theorem2 — Let m, n, p and q (p < q) be positive integers withpq > 1. If λKm,n has a

Kp,q-factorization, then(1) pn ≤ qm, (2) pm ≤ qn, (3) qm − pn ≡ qn − pm ≡ 0 (mod (q2

− p2)), (4) λ(qm− pn)(qn− pm) ≡ 0 (mod pq(q2 − p2)(m + n)/d), whered =gcd(p, q).

Theorem3 — Let p, q, m andn be positive integers withp < q. Assume(1) pn ≤ qm, (2) pm

≤ qn, (3) qm − pn ≡ qn − pm ≡ 0 (mod (q2 − p2)), (4) λ(qm − pn)(qn − pm) ≡ 0 (mod pq

(q − p)(q2 − p2)(m + n)/d), whered =gcd(p, q). ThenλKm,n has aKp,q-factorization.

Theorem4 — The necessary conditions forλKm,n to have aKp,q-factorization is always suffi-

cient whenp : q = k : (k + 1) for any positive integerk.
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2. PROOF OF THENECESSARYCONDITION

We first give the proof of the necessary condition forλKm,n to have aKp,q-factorization.

Theorem2 — Let m,n, p and q (p < q) be positive integers withpq > 1. If λKm,n has a

Kp,q-factorization, then(1) pn ≤ qm, (2) pm ≤ qn, (3) qm − pn ≡ qn − pm ≡ 0 (mod

(q2 − p2)), (4) λ(qm− pn)(qn− pm) ≡ 0 (mod pq(q2 − p2)(m + n)/d), whered=gcd(p, q).

PROOF : Let X and Y be the two partite sets ofλKm,n with |X| = m and |Y | = n. Let

{F1, F2, · · · , Fr} be aKp,q-factorization ofλKm,n. In a particularKp,q-factor, leta copies ofKp,q

with its partite set of sizep in X andb copies with it inY . Then we haveap+bq = m andaq+bp = n.

Thus,

a =
qn− pm

q2 − p2
, b =

qm− pn

q2 − p2
.

Sinceq > p anda andb are nonnegative integers, conditions (1), (2) and (3) are necessary. Let

c =
λ(qm− pn)(qn− pm)

pq(p + q)(m + n)
.

Then

r =
λ(p + q)mn

pq(m + n)
= λ(a + b) + c.

Thus c is an integer. Letu ∈ X. Suppose that there are onlyr′ Fi’s, each of which containsu

contributingq edges. Thenqr′ + p(r − r′) = λn, i.e. (q − p)r′ + p(λa + λb + c) = (λaq + λbp).

Thereforec ≡ 0 (mod (q − p)/d), whered =gcd(p, q), i.e. λ(qm − pn)(qn − pm) ≡ 0 (mod pq

(q2 − p2)(m + n)/d). Therefore the condition (4) is necessary. This proves Theorem 2.

Whenp andq are coprime, we have the following condition.

Corollary 1 — Let p and q (q > p) be a coprime pair of positive integers. IfλKm,n has a

Kp,q-factorization, then(1) pn ≤ qm, (2) pm ≤ qn, (3) qm − pn ≡ qn − pm ≡ 0 (mod

(q2 − p2)), (4) λ(qm− pn)(qn− pm) ≡ 0 (mod pq(q2 − p2)(m + n)).

3. MAIN RESULT

In this section, we prove the following main result.

Theorem 5 — Let p and q (q > p) be a coprime pair of positive integers. Assume(1) pn

≤ qm, (2) pm ≤ qn, (3) qm− pn ≡ qn− pm ≡ 0 (mod (q2− p2)), (4) λ(qm− pn)(qn− pm) ≡
0 (mod pq(q − p)(q2 − p2)(m + n)). ThenλKm,n has aKp,q-factorization.
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The proof of Theorem 5 consists of some lemmas. The following two lemmas are obvious.

Lemma1 — Let u, v, x andy be positive integers. If gcd(ux, vy) = 1, then gcd(uv, ux + vy)

= 1.

Lemma2 — If λKm,n has aKp,q-factorization, thensλKm,n has aKp,q-factorization for any

positive integers.

Lemma3 — If λKm,n has aKp,q-factorization, thenλKms,ns has aKp,q-factorization for any

positive integers.

PROOF : Let {Fi : 1 ≤ i ≤ s} be a 1-factorization ofKs,s (whose existence see [2]). For each

1 ≤ i ≤ s, replace every edge ofFi by aλKm,n to get a factorGi of λKms,ns such that the graph

Gi are pairwise edge-disjoint and their union isλKms,ns. SinceλKm,n has aKp,q-factorization, it is

clear that the graphGi, too, has aKp,q-factorization. Consequently,λKms,ns has aKp,q-factorization.

A corollary of Lemma 3 is as follows.

Corollary 2 — λKps,qs has aKp,q-factorization for any positive integers.

Corollary 2 implies that we only need to treat the caseqn > pm andqm > pn. Let

a =
qn− pm

q2 − p2
, b =

qm− pn

q2 − p2
, =̧

λ(qm− pn)(qn− pm)
pq(p + q)(m + n)

, r = λ(p+q)mn
pq(m+n) .

From conditions (1)-(4) in Theorem 5,a, b, r are positive integers. Note thatap + bq = m,

aq + bp = n andr = λ(a + b) + c. This implies thata < m, b < n andr is an integer. And

let gcd(ap, bq) = d with ap = de, bq = dk andgcd(e, k) = 1. Sincec ≡ 0 (mod (q − p)2). Let

z = c/(q − p)2. Then these equalities imply the following equalities:

d =
pq(qe + pk)z

λek
, r =

(e + k)(q2e + p2k)z
ek

, m =
pq(e + k)(qe + pk)z

λek
,

n =
(q2e + p2k)(qe + pk)z

λek
, a =

qe(qe + pk)z
λek

, b =
pk(qe + pk)z

λek
.

Let q = q1
k1q2

k2 · · · qγ
kγ , whereq1, q2, · · · , qγ are distinct prime numbers andk1, k2, · · · , kγ

are positive integers, andp = p1
h1p2

h2 · · · pω
hω , wherep1, p2, · · · , pω are distinct prime numbers

andh1, h2, · · · , hω are positive integers.

If gcd(k, q2) = q1
i1q2

i2 · · · qα
iαqα+1

2kα+1−iα+1 qα+2
2kα+2−iα+2 · · · qβ

2kβ−iβqβ+1
2kβ+1

qβ+2
2kβ+2 · · · qγ

2kγ , where1 ≤ α ≤ β ≤ γ, 0 ≤ ij ≤ kj (when1 ≤ j ≤ α) or 0 < ij < kj (when

α + 1 ≤ j ≤ β). And gcd(e, p2) = p1
j1p2

j2 · · · pµ
jµpµ+1

2hµ+1−jµ+1 pµ+2
2hµ+2−jµ+2 · · · pν

2hν−jν
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pν+1
2hν+1pν+2

2hν+2 · · · pω
2hω , where1 ≤ µ ≤ ν ≤ ω, 0 ≤ ji ≤ hi (when 1 ≤ i ≤ µ) or

0 < ji < hi (whenµ + 1 ≤ i ≤ ν). Let

s = q1
i1q2

i2 · · · qα
iα , t = q1

k1−i1q2
k2−i2 · · · qα

kα−iα , u = qα+1
iα+1qα+2

iα+2 · · · qβ
iβ ,

v = qα+1
kα+1−iα+1qα+2

kα+2−iα+2 · · · qβ
kβ−iβ , w = qβ+1

kβ+1qβ+2
kβ+2 · · · qγ

kγ .

s′ = p1
j1p2

j2 · · · pµ
jµ , t′ = p1

h1−j1p2
h2−j2 · · · pµ

hµ−jµ , u′ = pµ+1
jµ+1pµ+2

jµ+2 · · · pν
jν ,

v′ = pµ+1
hµ+1−jµ+1pµ+2

hµ+2−jµ+2 · · · pν
hν−jν , w′ = pν+1

hν+1pν+2
hν+2 · · · pω

hω .

Then gcd(k, q2) = suv2w2 and gcd(e, p2) = s′u′v′2w′2.

Recallp andq are coprime, we can establish the following lemma.

Lemma4 — If gcd(k, q2) = suv2w2, and gcd(e, p2) = s′u′v′2w′2. Let k = suv2w2k′,

e = s′u′v′2w′2e′ and gcd(sus′u′(tv′w′e′ + vwt′k′), λ) = λ′. Then

m =
stus′t′u′(s′u′v′2w′2e′ + suv2w2k′)(tv′w′e′ + vwt′k′)z′

λ′
,

n =
suvws′u′v′w′(st2ue′ + s′t′2u′k′)(tv′w′e′ + vwt′k′)z′

λ′
,

a =
stus′u′v′w′e′(tv′w′e′ + vwt′k′)z′

λ′
, b =

suvws′t′u′k′(tv′w′e′ + vwt′k′)z′

λ′
,

r =
(s′u′v′2w′2e′ + suv2w2k′)(st2ue′ + s′t′2u′k′)z′λ

λ′
, d =

stus′t′u′(tv′w′e′ + vwt′k′)z′

λ′
,

for some positive integerz′.

PROOF : We assume that the gcd(k, q2) = suv2w2, gcd(e, p2) = s′u′v′2w′2 andk = suv2w2k′,

e = s′u′v′2w′2e′ hold. Since gcd(e, k) = 1, we have gcd(e′, k′) = 1, gcd(s′u′v′2 w′2e′, suv2w2k′) =

1, gcd(st2ue′, s′t′2u′k′) = 1. It is easy to see that

r =
(s′u′v′2w′2e′ + suv2w2k′)(st2ue′ + s′t′2u′k′)z

e′k′
.

By Lemma 1, we see that gcd(e′k′, s′u′v′2w′2e′ + suv2w2k′) = 1 and gcd(e′k′, st2ue′ + s′t′2u′k′)

= 1. Sincer is an integer, therefore,

z

e′k′
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must be an integer. Let

z1 =
z

e′k′
,

and letλ1 =gcd(λ, stus′u′v′w′e′(tv′w′e′+vwt′k′)) andλ2 =gcd(λ, suvws′t′u′k′(tv′w′e′+vwt′k′)).

By

a =
stus′u′v′w′e′(tv′w′e′ + vwt′k′)z1

λ

and

b =
suvws′t′u′k′(tv′w′e′ + vwt′k′)z1

λ
,

we see that

λ1z1

λ

and

λ2z1

λ

must be integers. Since gcd (tv′w′e′, vwt′k′) = 1, so we have

z1λ
′

λ

must be an integer, wheregcd(sus′u′(tv′w′e′ + vwt′k′), λ) = λ′. Let

z′ =
z1λ

′

λ
,

then the equalities hold.

To complete the proof of Theorem 5, we need the following direct construction.

Lemma5 — For any positive integerss, t, u, v, w, s′, t′, u′, v′, w′, e, k andλ, if

sus′u′(tv′w′e′ + vwt′k′)
λ

is an integer and

m =
stus′t′u′(s′u′v′2w′2e + suv2w2k)(tv′w′e + vwt′k)

λ
,

n = suvws′u′v′w′(st2ue+s′t′2u′k)(tv′w′e+vwt′k)
λ ,
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thenλKm,n has aKs′t′u′v′w′,stuvw-factorization.

PROOF : Let

a =
stus′u′v′w′e(tv′w′e + vwt′k)

λ
, b =

suvws′t′u′k(tv′w′e + vwt′k)
λ

,

r = (s′u′v′2w′2e + suv2w2k)(st2ue + s′t′2u′k), r1 = s′u′v′2w′2e + suv2w2k andr2 = st2ue +

s′t′2u′k. Let X andY be two partite sets ofλKm,n,

X = {xi,j : 1 ≤ i ≤ r1; 1 ≤ j ≤ stus′t′u′(tv′w′e+vwt′k)
λ },

Y = {yi,j : 1 ≤ i ≤ r2; 1 ≤ j ≤ suvws′u′v′w′(tv′w′e+vwt′k)
λ }.

We will construct aKs′t′u′v′w′,stuvw-factorization ofλKm,n. We remark in advance that the

additions in the first subscripts ofxi,j andyi,j are taken modulor1 andr2 in {1, 2, · · · , r1} and

{1, 2, · · · , r2}, respectively, and the additions in the second subscripts ofxi,j ’s andyi,j ’s are taken

modulo

stus′t′u′(tv′w′e + vwt′k)
λ

and

suvws′u′v′w′(tv′w′e + vwt′k)
λ

in

{1, 2, · · · ,
stus′t′u′(tv′w′e + vwt′k)

λ
}

and

{1, 2, · · · ,
suvws′u′v′w′(tv′w′e + vwt′k)

λ
},

respectively.

For eachi, x, x′, y, y′, z andz′, 1 ≤ i ≤ e, 1 ≤ x ≤ stu, 1 ≤ x′ ≤ s′u′v′w′, 1 ≤ y ≤
vw, 1 ≤ y′ ≤ v′w′, 1 ≤ z ≤ t and1 ≤ z′ ≤ t′, let

f(z, z′) =
sus′u′(tv′w′e + vwt′k)(z′ − 1)

λ
+

sus′t′u′(tv′w′e + vwt′k)(z − 1)
λ

,

g(i, x, z) = st2u(i− 1) + t(x− 1) + z andh(i, x, x′, y, y′) = stu(i− 1)+
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stu(x′ − 1)e +
suvws′u′(tv′w′e + vwt′k)(y′ − 1)

λ
+

sus′u′(tv′w′e + vwt′k)(y − 1)
λ

+ x,

and let

Ei = {xs′u′v′2w′2(i−1)+s′u′v′w′(y′−1)+x′,f(z,z′)+jyg(i,x,z),h(i,x,x′,y,y′)+j :

1 ≤ j ≤ sus′u′(tv′w′e + vwt′k)
λ

, 1 ≤ x ≤ stu, 1 ≤ x′ ≤ s′u′v′w′,

1 ≤ y ≤ vw, 1 ≤ y′ ≤ v′w′, 1 ≤ z ≤ t, 1 ≤ z′ ≤ t′}.

For eachi, x, x′, y, y′ andz, 1 ≤ i ≤ k, 1 ≤ x ≤ suvw, 1 ≤ x′ ≤ v′w′, 1 ≤ y ≤ vw, 1 ≤
y′ ≤ s′t′u′ and1 ≤ z ≤ t′, letϕ(i, x, y) = s′u′v′2w′2e+suv2w2(i−1)+vw(x−1)+y, θ(i, y′, z) =

st2ue + s′t′2u′(i− 1) + s′t′u′(z − 1) + y′ andψ(i, x, x′, y, y′) = stus′u′v′w′e+

suvws′u′(tv′w′e + vwt′k)(x′ − 1)
λ

+
sus′u′(tv′w′e + vwt′k)(y − 1)

λ
+ suvwk(y′ − 1) +

suvw(i− 1) + x,

and let

Ee+i = {x
ϕ(i,x,y),

stus′u′(tv′w′e+vwt′k)(z−1)
λ

+j
yθ(i,y′,z),ψ(i,x,x′,y,y′)+j :

1 ≤ j ≤ stus′u′(tv′w′e+vwt′k)
λ , 1 ≤ x ≤ suvw, 1 ≤ x′ ≤ v′w′,

1 ≤ y ≤ vw, 1 ≤ y′ ≤ s′t′u′, 1 ≤ z ≤ t′}.

Let F = ∪1≤i≤e+kEi. Then the graphF is aKs′t′u′v′w′,stuvw-factor ofλKm,n. Define a bijec-

tion σ from X ∪ Y onto X ∪ Y in such a way thatσ(xi,j) = xi+1,j , σ(yi,j) = yi+1,j . For each

i ∈ {1, 2, · · · , r1} and eachj ∈ {1, 2, · · · , r2}, let

Fi,j = {σi(x)σj(y)| x ∈ X, y ∈ Y, xy ∈ F}.

It is easy to show that the graphsFi,j (1 ≤ i ≤ r1, 1 ≤ j ≤ r2) areKs′t′u′v′w′,stuvw-factors

of λKm,n and their union isλKm,n. Thus,{Fi,j | 1 ≤ i ≤ r1, 1 ≤ j ≤ r2} is aKs′t′u′v′w′,stuvw-

factorization ofλKm,n.

PROOF OFTHEOREM 5 : Applying Lemma 2 to Lemma 5, we see that for the parametersm and

n satisfying the conditions in Theorem 5,λKm,n has aKp,q-factorization.
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4. PROOF OF THESUFFICIENT CONDITION

In this section, we shall give the proof of the sufficient condition forλKm,n to have aKp,q-factorization.

We first give the following lemmas.

Lemma6 — If λKm,n has aKp,q-factorization, thenλKms,ns has aKps,qs-factorization for any

positive integers.

PROOF : Let {Fi : 1 ≤ i ≤ r} be aKp,q-factorization ofλKm,n. For eachi ∈ {1, 2, · · · , r},
replace every vertex ofFi by s vertices and every edge ofFi by a Ks,s. Then we get a factorGi

of λKms,ns such that the graphGi is pairwise edge-disjoint and their union isλKms,ns. Therefore,

λKms,ns has aKps,qs-factorization.

Lemma7 — For any positive integers, if m andn satisfy the necessary condition in Theorem 2

with p = p0s andq = q0s, then there are positive integersm0 andn0 which satisfy the necessary

condition in Theorem 2 withp = p0 andq = q0, such thatm = m0s andn = n0s.

PROOF : Supposem and n satisfy the necessary condition in Theorem 2 withp = p0s and

q = q0s. Then we have

qn− pm

q2 − p2
=

q0sn− p0sm

(q0
2 − p0

2)s2
=

q0(m + n)/[(q0 + p0)s]−m/s

q0 − p0
,

qm− pn

q2 − p2
=

q0sm− p0sn

(q0
2 − p0

2)s2
=

q0(m + n)/[(q0 + p0)s]− n/s

q0 − p0
,

m + n

(q0 + p0)s
=

qn− pm

q2 − p2
+

qm− pn

q2 − p2

are all integers. Hencem/s, n/s are integers. Letm0 = m/s andn0 = n/s. It is easy to see thatm0

andn0 satisfy the necessary conditions in Theorem 2 withp = p0 andq = q0.

The proof of the following lemma is similar as that of Lemma 7.

Lemma8 — For any positive integers, if m andn satisfy the sufficient conditions in Theorem

3 with p = p0s andq = q0s, then there are positive integersm0 andn0 which satisfy the sufficient

conditions in Theorem 3 withp = p0 andq = q0, such thatm = m0s andn = n0s.

PROOF OF THEOREM 3 : Applying Lemma 6, Lemma 8 and Theorem 5, we see that for the

parametersm andn satisfying conditions in Theorem 3,λKm,n has aKp,q-factorization.

In the following, we give the proof of Theorem 4. Whenp = k andq = k + 1, by Theorem 2, we

have the following necessary condition for theKk,k+1-factorization ofλKm,n.
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Lemma9 — Let λ, m, n andk be positive integers. IfλKm,n has aKk,k+1-factorization, then

(1) kn ≤ (k + 1)m, (2) km ≤ (k + 1)n, (3) (k + 1)m − kn ≡ (k + 1)n − km ≡ 0 (mod 2k +

1), (4) λ((k + 1)m− kn)((k + 1)n− km) ≡ 0 (mod k(k + 1)(2k + 1)(m + n)).

Whenp = k andq = k + 1, by Theorem 3, the sufficient condition forλKm,n to have aKk,k+1-

factorization as follows.

Lemma10 — Letλ, m, n andk be positive integers. Assume(1) kn ≤ (k + 1)m, (2) km ≤
(k + 1)n, (3) (k + 1)m − kn ≡ (k + 1)n − km ≡ 0 (mod 2k + 1), (4) λ((k + 1)m − kn)((k +

1)n− km) ≡ 0 (mod k(k + 1)(2k + 1)(m + n)), thenλKm,n has aKk,k+1-factorization.

PROOF OFTHEOREM 4 : Combining the Lemma 6 to Lemma 10, we get the proof of Theorem 4.
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