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We determine the number of centralizers of different non-abelian finite dimensional Lie algebras

over a specific field. Also, the concept of Lie algebras with abelian centralizers are studied and

using a result of Bokut and Kukin [5], for a given residually free Lie algebraL, it is shown that

L is fully residually free if and only if every centralizer of non-zero elements ofL is abelian.
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1. INTRODUCTION AND PRELIMINARIES

Let L be a finite dimension Lie algebra over the fixed fieldF . Then for any elementx ∈ L, the

setCL(x) = {y ∈ L | [x, y] = 0} is called thecentralizerof x in L. The set of all centralizers

in L is denoted byCent(L) and |Cent(L)| denotes the number of distinct centralizers inL. A

Lie algebraL is calledn-centralizer if |Cent(L)| = n andL is calledprimitive n-centralizer if

|Cent(L/Z(L))| = |Cent(L)| = n, whereZ(L) is the centre ofL. A subalgebraK of L is called

proper centralizerof L if K = CL(x), for somex ∈ L \ Z(L).

Similar to group theory, it is clear thatL is abelian if and only if|Cent(L)| = 1.
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Lemma1.1 — LetL1 andL2 be Lie algebras, then

Cent(L1 ⊕ L2) = Cent(L1)⊕ Cent(L2).

PROOF : Clearly, the Lie product of elements ofL1 ⊕ L2 is defined by[(x1, x2), (y1, y2)] =

([x1, y1], [x2, y2]), for all xi, yi ∈ Li (i = 1, 2). Now the result follows from the property that

C(L1⊕L2)(x1, x2) = CL1(x1)⊕ CL2(x2), for all x1 ∈ L1 andx2 ∈ L2. 2

Lemma1.2 — For a Lie algebraL, the centreZ(L), is the intersection of all centralizers inL, i.e.

Z(L) =
⋂

x∈L CL(x), for all x ∈ L.

PROOF : Clearly,Z(L) ⊆ ⋂
x∈L CL(x). Now, suppose thatl ∈ ⋂

x∈L CL(x), then[x, l] = 0, for

all x ∈ L and sol ∈ Z(L), which gives the claim. 2

Lemma1.3 — If L is a non-abelian Lie algebra, thenL is the union of centralizers of all non-

central elements ofL.

PROOF : Clearly,
⋃

x∈L−Z(L) CL(x) ⊆ L. Let l ∈ Z(L), then by using Lemma1.2, l ∈
CL(x) for all x ∈ L and sincel ∈ CL(l) it follows that l ∈ ⋃

x∈L−Z(L) CL(x). Therefore

L ⊆ ⋃
x∈L−Z(L) CL(x) and the proof is complete. 2

Lemma1.4 — A Lie algebraL can not are written as a union of two proper Lie subalgebras.

PROOF : SupposeH andK are two proper Lie subalgebras ofL such thatL = H ∪ K. Let

h ∈ H −K andk ∈ K −H, then eitherh + k ∈ H or h + k ∈ K, which implyk ∈ H or h ∈ K,

respectively. This gives a contradiction. Thereforeh + k 6∈ L, which gives the lemma. 2

Theorem1.5— LetL be a non-abelian Lie algebra, then|Cent(L)| ≥ 4.

PROOF : By Lemma1.3, L is the union of its proper centralizers. SinceL is non-abelian, we

have |Cent(L)| > 1. If |Cent(L)| = 2, thenL is the proper Lie subalgebra of itself, which is

impossible. Suppose|Cent(L)| = 3, thenCent(L) = {L,CL(x), CL(y)}, whereCL(x) andCL(y)

are proper centralizers ofL. ThereforeL = CL(x) ∪ CL(y), which is impossible by Lemma1.4.

Hence,|Cent(L)| ≥ 4. 2

2. COUNTING CENTRALIZERS IN L IE ALGEBRAS

In this section, we study the centralizers of low-dimensional Lie algebras over the Galois field ofp

elements,Zp, for any prime numberp.

Lemma2.1 — Let Li’s be finite dimensional Lie algebras with|Cent(Li)| = ni, for i =

1, 2, ..., r. Then|Cent(L1 ⊕ L2 ⊕ ...⊕ Lr)| =
∏r

i=1 ni.
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PROOF : AssumeL = L1 ⊕ L2 ⊕ ...⊕ Lr. Using Lemma1.1, we have

CL(x1, x2, ..., xr) = CL1(x1)⊕ CL2(x2)⊕ ...⊕ CLr(xr),

for all (x1, x2, ..., xr) ∈ L. It follows that CL(x1, x2, ..., xr) = CL(y1, y2, ..., yr) if and only if

CLi(xi) = CLi(yi), for all 1 ≤ i ≤ r. This implies that|Cent(L1 ⊕ L2 ⊕ ...⊕ Lr)| =
∏r

i=1 ni. 2

Lemma2.2 — LetK be a subalgebra of a finite dimensional Lie algebraL. Then|Cent(K)| ≤
|Cent(L)|.

PROOF : Let k1, k2, ..., km be a basis ofK, andCK(k1), ..., CK(km) be the distinct centralizers

in K. On the other hand,CK(ki) = K ∩ CL(ki) thenCL(ki) 6= CL(kj), for all i 6= j, where

1 ≤ i, j ≤ m, and hence the lemma is obtained. 2

Lemma2.3 — LetL ben-centralizer Lie algebra withL2 ∩ Z(L) = 0. ThenL is a primitive

n-centralizer.

PROOF : Suppose thatCent(L) = {CL(x1), CL(x2), ..., CL(xn)} is the set of all distinct cen-

tralizers inL. One can easily check thatCL/Z(L)(x + Z(L)) = CL(x)/Z(L). Hence it is enough

to show that for any1 ≤ i 6= j ≤ n, CL/Z(L)(xi + Z(L)) 6= CL/Z(L)(xj + Z(L)). So assume

there exist some1 ≤ i 6= j ≤ n such thatCL/Z(L)(xi + Z(L)) = CL/Z(L)(xj + Z(L)). Suppose

y ∈ CL(xi), theny + Z(L) ∈ CL/Z(L)(xi + Z(L)) = CL/Z(L)(xj + Z(L)) and by the assumption

we have[y, xj ] = 0, i.e., CL(xi) ⊆ CL(xj). Using similar argument, we haveCL(xj) ⊆ CL(xi)

which gives a contradiction. Thus|Cent(L/Z(L))| = n and henceL is a primitiven-centralizer. 2

In the following, we determine the number of centralizers of2-dimension non-abelian Lie algebra

over the Galois field ofp elements.

Theorem2.4— LetL be a2-dimension non-abelian Lie algebra over the fieldZp. Then
∣∣Cent(L)

∣∣ =

p + 2.

PROOF : Clearly there exists a unique2-dimension non-abelian Lie algebra over any field. The

centre of this Lie algebra is trivial and the Lie algebra has a basis{x, y} such that its Lie bracket is

described by[x, y] = x. Clearly

CL(x) = 〈x〉, CL(y) = 〈y〉, CL(αx + βy) = 〈αx + βy〉,

and the number of distinctCL(αx + βy) = 〈αx + βy〉 is equal to(p−1)2

p−1 = p − 1, for all non-zero

α, β ∈ Zp. Now adding the centralizersCL(x), CL(y) andL, we have
∣∣Cent(L)

∣∣ = p + 2. 2

Definition2.5 — LetL be a3-dimension non-abelian Lie algebra over a fieldF , with L2 to be

1-dimension so thatL2 is contained inZ(L). Such a Lie algebra is known asHeisenberg Lie algebra.
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Theorem2.6— LetL be Heisenberg Lie algebra over the fieldZp, then|Cent(L)| = p + 2.

PROOF: Clearly there is a unique such a Lie algebra, and it has a basis{f, g, z}, where[f, g] = z

andz lies inZ(L). Hence for everyy ∈ CL(f) there existα, β, γ ∈ Zp such thaty = αf +βg + γz,

then

0 = [f, y] = [f, αf + βg + γz] = β[f, g] = βz,

and soβ = 0. ThusCL(f) = 〈αf + γz〉. Similarly CL(g) = 〈βg + γz〉, CL(αf + βg) =

〈αf + βg + γ′z〉, CL(f + z) = CL(f), CL(g + z) = CL(g), CL(αf + βg + γz) = CL(αf + βg)

and clearlyCL(z) = L. Now for any non-zero elementsα, β ∈ Zp, we have(p−1)2

p−1 = p− 1 distinct

centralizers of the formCL(αf + βg). So|Cent(L)| = p− 1 + 3 = p + 2. 2

Example2.7 : LetL = n(3,Zp) = 〈e12, e13, e23〉 be the Lie algebra of non-zero strictly upper

triangular matrices, then[e12, e23] = e13 andL2 = Z(L). Hence, the above theorem implies that∣∣Cent(L)
∣∣ = p + 2.

As in Theorem3.2 [8], there exists a unique3-dimensional Lie algebra over a fieldF such that

L2 is 1-dimension andL2 6⊆ Z(L). Hence such a Lie algebra is the direct sum of the non-abelian

2-dimension with1-dimension Lie subalgebras.

Theorem 2.8 — Let L be the3-dimensional Lie algebra as above over the fieldZp. Then

|Cent(L)| = p + 2.

PROOF : By the assumption we may writeL = L2 ⊕ L1, whereL2 is 2-dimensional non-abelian

andL1 is1-dimensional Lie algebra overZp. By Lemma2.1,
∣∣Cent(L)

∣∣ =
∣∣Cent(L2)

∣∣∣∣Cent(L1)
∣∣ =

(p + 2)× 1 = p + 2. 2

The following lemma is very useful for our further study.

Lemma2.9 — ([8], Lemma 3.3). LetL be a Lie algebra with dimension3 anddimL2 = 2. Then

(i) L2 is abelian;

(ii) the mapadx : L2 → L2 is an isomorphism, for allx ∈ L− L2.

Theorem2.10— Let L be a Lie algebra with dimension3 over the fieldZp and dimL2 = 2.

Then
∣∣Cent(L)

∣∣ = p2 + 2.

PROOF : Let {y, z} be a basis for the derived subalgebraL2 and extend it to a basis{x, y, z} for

L. Then the derived subalgebraL2 is abelian, and hence[y, z] = 0. Therefore we haveCL(y) = {l =

αx + βy + γz | [y, l] = 0} = 〈βy + γz〉, CL(z) = CL(y), CL(x) = 〈x〉, CL(x + y) = 〈αx + αy〉,



CENTRALIZERS IN LIE ALGEBRAS 43

CL(x + z) = 〈αx + αz〉, CL(y + z) = CL(z) = CL(y), CL(x + y + z) = 〈αx + αy + αz〉,
CL(αx + βy) = 〈αx + βy〉, CL(αx + βz) = 〈αx + βz〉, CL(αx + βy + γz) = 〈αx + βy + γz〉.

Clearly, each cases〈αx, βy〉 and〈αx + βz〉, has(p− 1)2 distinct set of centralizers so that every

set containsp − 1 elements. Hence each of these have only(p−1)2

p−1 = p − 1 distinct sets. Also for

CL(αx+βy +γz) = 〈αx+βy +γz〉 we have(p−1)3

p−1 = (p−1)2 distinct sets. Therefore the number

of Cent(L) is equal to(p− 1)2 + 2(p− 1) + 3 = p2 + 2. 2

The following example justifies the above theorem.

Example2.11 : Consider the3-dimension Lie algebraL with the basis{x, y, z} as in Theorem

2.10 over the fieldZ5, then one may calculate all the centralizers ofL in the following way:

CL(x) = {0, x, 2x, 3x, 4x}, CL(y) = {0, y, 2y, 3y, 4y}, CL(0) = L,

CL(x + y) = {0, x + y, 2(x + y), 3(x + y), 4(x + y)},
CL(x + z) = {0, x + z, 2(x + z), 3(x + z), 4(x + z)},
CL(y + z) = CL(z) = CL(y),

CL(x + y + z) = {0, x + y + z, 2(x + y + z), 3(x + y + z), 4(x + y + z)},
CL(2x + y) = {0, 2x + y, 4x + 2y, x + 3y, 3x + 4y)},
CL(3x + y) = {0, 3x + y, x + 2y, 4x + 3y, 3x + 4y)},
CL(4x + y) = {0, 4x + y, 3x + 2y, 2x + 3y, x + 4y)},
CL(2x + z) = {0, 2x + z, 4x + 2z, x + 3z, 3x + 4z)},
CL(3x + z) = {0, 3x + z, x + 2z, 4x + 3z, 2x + 4z)},
CL(4x + z) = {0, 4x + z, 3x + 2z, 2x + 3z, x + 4z)},
CL(2x + y + z) = {0, 2x + y + z, 4x + 2y + 2z, x + 3y + 3z, 3x + 4y + 4z)},
CL(3x + y + z) = {0, 3x + y + z, x + 2y + 2z, 4x + 3y + 3z, 3x + 4y + 4z)},
CL(4x + y + z) = {0, 4x + y + z, 3x + 2y + 2z, 2x + 3y + 3z, x + 4y + 4z)},
CL(x + 2y + z) = {0, x + 2y + z, 2x + 4y + 2z, 3x + y + 3z, 4x + 3y + 4z)},
CL(x + 3y + z) = {0, x + 3y + z, 2x + y + 2z, 3x + 4y + 3z, 4x + 2y + 4z)},
CL(x + 4y + z) = {0, x + 4y + z, 2x + 3y + 2z, 3x + 2y + 3z, 4x + y + 4z)},
CL(x + y + 2z) = {0, x + y + 2z, 2x + 2y + 4z, 3x + 3y + z, 4x + 4y + 3z},
CL(x + y + 3z) = {0, x + y + 3z, 2x + 2y + z, 3x + 3y + 4z, 4x + 4y + 2z},
CL(x + y + 4z) = {0, x + y + 4z, 2x + 2y + 3z, 3x + 3y + 2z, 4x + 4y + z},
CL(x + 2y + 3z) = {0, x + 2y + 3z, 2x + 4y + z, 3x + y + 4z, 4x + 3y + 2z)},
CL(x + 3y + 4z) = {0, x + 3y + 4z, 2x + y + 3z, 3x + 4y + 2z, 4x + 2y + z)},
CL(2x + 3y + 4z) = {0, 2x + 3y + 4z, 4x + y + 3z, x + 4y + 2z, 3x + 2y + z)},
CL(x + 2y + 4z) = {0, x + 2y + 4z, 2x + 4y + 3z, 3x + y + 2z, 4x + 3y + z)},
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CL(x + 3y + 2z) = {0, x + 3y + 2z, 2x + y + 4z, 3x + 4y + z, 4x + 2y + 3z}.

One observes that|Cent(L)| = 27. On the other hand, by Theorem2.10, the number of distinct

centralizers must be52 + 2 = 27.

Theorem2.12— LetL be a Lie algebra over the fieldZp such thatdimL = 3 anddimL2 = 3.

Then
∣∣Cent(L)

∣∣ = p2 + p + 2.

PROOF : Let x be a non-zero element of the Lie algebraL, then extendx to a basis ofL, say

{x, y, z}. ClearlyL2 is spanned by{[x, y], [x, z], [y, z]} and this set must be linearly independent. So

we haveCL(x) = 〈x〉, CL(y) = 〈y〉, CL(z) = 〈z〉, CL(αx + βy) = 〈αx + βy〉, CL(αx + γz) =

〈αx+ γz〉, CL(βy + γz) = 〈βy + γz〉, CL(αx+βy + γz) = 〈αx+βy + γz〉. Now for all non-zero

elementsα, β ∈ Zp, we can write(p − 1)3 sets of centralizers of the formCL(αx + βy + γz) =

〈αx + βy + γz〉, but every set containsp − 1 elements and so we have(p−1)3

p−1 = (p − 1)2 distinct

sets of the formCL(αx + βy + γz). Similarly, we have(p−1)2

p−1 = p − 1 distinct sets of each

CL(αx + βy), CL(αx + γz) andCL(βy + γz). So summing up all together we obtain|Cent(L)| =
(p− 1)2 + 3(p− 1) + 4 = p2 + p + 2. 2

The following example justifies the above theorem.

Example2.13 : The distinct centralizers of the3-dimension Lie algebra in Theorem2.12 over the

fieldZ3 are as follows:

CL(x) = {0, x, 2x}, CL(y) = {0, y, 2y}, CL(z) = {0, z, 2z}, CL(0) = L,

CL(x + y) = {0, x + y, 2x + 2y},
CL(2x + y) = {0, 2x + y, x + 2y},
CL(x + z) = {0, x + z, 2x + 2z},
CL(2x + z) = {0, 2x + z, x + 2z},
CL(y + z) = {0, y + z, 2y + 2z},
CL(2y + z) = {0, 2y + z, y + 2z},
CL(x + y + z) = {0, x + y + z, 2x + 2y + 2z},
CL(2x + y + z) = {0, 2x + y + z, x + 2y + 2z},
CL(x + 2y + z) = {0, x + 2y + z, 2x + y + 2z},
CL(x + y + 2z) = {0, x + y + 2z, 2x + 2y + z}.

So |Cent(L)| = 14 and using Theorem2.12, we get the same number, i.e.|Cent(L)| = 32 +

3 + 2 = 14.
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3. L IE ALGEBRAS WITH ABELIAN CENTRALIZERS

In this section we study Lie algebrasL, in which every centralizer of non-zero elements ofL is

abelian. Such Lie algebras are equivalent to commutative transitive Lie algebras (see Lemma 3.2).

The concept of commutative transitive groups was first introduced and studied by Weisner [11] in

1925.

Definition 3.1 — A Lie algebraL is commutative transitive(henceforth CT), if [x, y] = 0 and

[y, z] = 0 imply that[x, z] = 0, for any non-zero elementsx, y, z in L.

The property of CT is clearly subalgebra closed, while it is not quotient closed, as every free Lie

algebra is CT (see [9], Example4.4 for more detail).

The Frattini subalgebraΦ(L) of a Lie algebraL, is the intersection of all maximal subalgebras of

L or it is L itself, when there are no maximal subalgebras (see also [10]).

In this section, we study the concept of commutative transitive Lie algebras and among other

results, their relationships with fully residually free Lie algebras are established.

Here, we introduce some basic notion and then prove our main results of this section.

Lemma3.2 — For any Lie algebraL, the following statements are equivalent:

(i) L is CT Lie algebra;

(ii) The centralizers of non-zero elements ofL are abelian.

PROOF : (i) ⇒ (ii) Let L be a CT Lie algebra. For any non-zero elementx ∈ L, if y, z ∈ CL(x)

we have[y, x] = 0 and [x, z] = 0. The definition of CT implies that[y, z] = 0. HenceCL(x) is

abelian.

(ii) ⇒ (i) Assumex, y, z are non-zero elements ofL, with [x, y] = 0 and[y, z] = 0. Obviously

x, z ∈ CL(y). By the assumptionCL(y) is abelian and hence[x, z] = 0. ThusL is commutative

transitive. 2

The proof of the following lemma is a routine argument by using Zorn’s Lemma.

Lemma3.3 — Every abelian subalgebraK of a given Lie algebraL is contained in a maximal

abelian subalgebra.

PROOF : Consider the collection of all abelian subalgebras ofL containingK, ordered by inclu-

sion. We first show that in this partially ordered set, every chain has an upper bound. Indeed, given an

ascending chain of abelian subalgebras and consider their union. We need to show that this is again
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abelian. Given an ascending chain of subalbebras then for any two elementsx andy in their union,

one has[x, y] = 0. Thus the partially ordered collection of abelian subalgebras containingK satisfies

the condition that every chain has an upper bound in the collection. Zorn’s lemma yields that there

exists a maximal element in the partially ordered collectionM , say. HenceK is contained in the

maximal abelian subalgebraM of L. 2

The following fact is needed in proving our main results.

Proposition3.4 — LetL be a non-abelian Lie algebra withΦ(L) 6= 0. ThenL has one maximal

abelian subalgebra.

PROOF : Let L be a non-abelian Lie algebra with non-zero Frattini subalgebra,Φ(L). Without

loss of generality, we may assume thatM1 andM2 are maximal abelian subalgebras withM1 6= M2.

Assume there exists an elementm1 ∈ M1 \M2, then clearly

M2 ⊆ M2 ⊕ 〈m1〉 ⊆ L.

If M2 ⊕ 〈m1〉 = L, thenL is abelian which contradicts our assumption. Hencem1 must be in

M2 and soM1 = M2. 2

Using the above proposition and Lemma3.3, we obtain the following useful result.

Theorem3.5— Every non-abelian Lie algebraL with non-zero Frattini subalgebra is CT.

PROOF : Let L be a non-abelian Lie algebra, for whichΦ(L) 6= 0 and assume that[x, y] =

0, [y, z] = 0, for non-zero elementsx, y, z in L. Suppose thatM1 andM2 are maximal abelian

subalgebras inL, which contain two abelian idealsI1 = 〈x, y〉 andI2 = 〈y, z〉, respectively. Then

Proposition3.4 implies thatM1 = M2, which gives[x, z] = 0 and soL is CT. 2

In 2010, Klep and Moravec [9] classified all finite dimensional commutative transitive Lie alge-

bras over an algebraically closed field of characteristic0. They proved that these Lie algebras are

either simple or soluble, where the only simple such Lie algebra issl2. Also, they showed that in

the soluble case, Lie algebras are either abelian or a one-dimensional split extension of abelian Lie

algebra (see [9] for more information).

Now, using Theorem3.5 one can easily see that every non-abelian Lie algebra withΦ(L) 6= 0

is either simple or soluble. One notes that all the results on CT Lie algebras in [9], carried out the

assumption of non-triviality of Frattini subalgebras.

In the following, we focus on non-abelian CT Lie algebras and give some structural results.

Theorem3.6— The centre of a non-abelian CT Lie algebra is trivial.
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PROOF: AssumeL is a non-abelian Lie algebra with non-zero centre andz is a non-zero element

in Z(L). Clearly, for every non-zero elementsx, y ∈ L

[x, z] = 0, [z, y] = 0,

then the definition of CT Lie algebras implies that[x, y] = 0. HenceL is abelian Lie algebra and this

contradiction gives the result. 2

A derivationof a Lie algebraL over a fieldF is anF -linear transformationd : L −→ L such that

d([x, y]) = [d(x), y] + [x, d(y)],

for all x, y ∈ L. We denote byDer(L) the vector space of derivations ofL, which forms a Lie algebra

with respect to the bracket of linear transformations, called thederivation algebraof L. Clearly, the

space

adL = {adx|x ∈ L}
of inner derivationsis an ideal ofDer(L).

Theorem3.7— LetL be a non-abelian CT Lie algebra, thenZ(Der(L)) = 0.

PROOF : It is clear thatL is centre less Lie algebra. Assume thatd ∈ Z(Der(L)). Then in

particular we havedadx(y) = adxd(y), and henced([x, y]) = [x, d(y)], for all x, y ∈ L. Hence

by the definition of derivation,[d(x), y] = 0, for all x, y ∈ L. SinceL has trivial centre, we obtain

d(x) = 0, i.e.,d = 0. ThereforeZ(Der(L)) = 0. 2

Let χ be a class of Lie algebras. Then a Lie algebraL is residuallyχ if for every non-zero

elementx ∈ L, there exists a homomorphismφ : L → K, whereK is a χ-Lie algebra such that

φ(x) 6= 0. Also a Lie algebraL is fully residuallyχ, if for finitely many non-zero elementsx1, ..., xn

in L there exists a homomorphismφ : L → K, whereK is aχ-Lie algebra such thatφ(xi) 6= 0, for

all i = 1, ..., n.

In 1967, Baumslag [3] introduced the notion of fully residually free groups and proved that a

residually free group is fully residually free if and only if it is commutative transitive. A groupG is

commutative transitive, if[x, y] = 1 and[y, z] = 1 implies that[x, z] = 1, for non-trivial elements

x, y, z in G.

Lemma3.8 — (Bokut and Kukin [5], Lemma 4.16.2). A Lie algebraL is fully residually free if

and only if, for every two linearly independent elementsx1 andx2 in L, there exists a homomorphism

φ from the Lie algebraL into a free Lie algebraF such that the elementsφ(x1) andφ(x2) are linearly

independent inF .
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Now, using the above lemma we give the following result concerning free Lie algebras.

Theorem3.9— LetL be a residually free Lie algebra. ThenL is fully residually free, if and only

if L is CT.

PROOF : Without loss of generality we may assume thatL is non-abelian Lie algebra. Now letL

be a non-abelian residually free CT Lie algebra over a fieldF . Then we show that for given non-zero

linearly independent elementsx1 andx2 in L, there exists a homomorphismφ : L → F such thatF
is a free Lie algebra andφ(x1) andφ(x2) are linearly independent. Hence Lemma3.8 implies thatL

is fully residually free.

For every non-zero elementx1 in L, there exits a homomorphismφ : L → F such thatφ(x1) 6= 0,

as by the assumptionL is residually free Lie algebra. On the other hand, Theorem3.6 implies that

Z(L) = 0. Hence,[x1, x2] 6= 0 for somex2 in L. So x1 andx2 are linearly independent inL.

Clearly,[φ(x1), φ(x2)] 6= 0, asF is free Lie algebra. Thenφ(x1) andφ(x2) are linearly independent

and henceL is fully residually free.

Conversely, letL be a fully residually free Lie algebra such that[x1, x2] = 0 and[x2, x3] = 0, for

any non-zero elementsx1, x2 andx3 in L. Assume thatL is not CT andx4 = [x1, x3] 6= 0, then there

exits a homomorphismφ : L → F , whereF is a free Lie algebra andφ(xi) 6= 0 for i = 1, 2, 3, 4, as

by the assumptionL is fully residually free Lie algebra. Hence,φ(x4) = [φ(x1), φ(x3)] 6= 0. Now,

to prove our claim it is enough to show that either[φ(x1), φ(x2)] 6= 0 or [φ(x2), φ(x3)] 6= 0. But both

of which contradict the assumptions[x1, x2] = 0 and[x2, x3] = 0, respectively. Thus[x1, x3] = 0

andL is CT Lie algebra. 2
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