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We determine the number of centralizers of different non-abelian finite dimensional Lie algebras
over a specific field. Also, the concept of Lie algebras with abelian centralizers are studied and
using a result of Bokut and Kukin [5], for a given residually free Lie algebr# is shown that

L is fully residually free if and only if every centralizer of non-zero elements o abelian.

Key words : Centralizer;n-centralizer Lie algebras; CT Lie algebra; free Lie algebra.

1. INTRODUCTION AND PRELIMINARIES

Let L be a finite dimension Lie algebra over the fixed fiéld Then for any element € L, the
setCr(x) = {y € L | [z,y] = 0} is called thecentralizerof z in L. The set of all centralizers
in L is denoted byCent(L) and |Cent(L)| denotes the number of distinct centralizersZin A
Lie algebraL is calledn-centralizerif |Cent(L)| = n and L is calledprimitive n-centralizerif
|Cent(L/Z(L))| = |Cent(L)| = n, whereZ(L) is the centre ofL. A subalgebras of L is called
proper centralizeof L if K = Cr(x), forsomezr € L\ Z(L).

Similar to group theory, it is clear thdtis abelian if and only ifCent(L)| = 1.
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Lemmal.l — LetL; andL, be Lie algebras, then

Cent(L1 ® Lg) = Cent(L1) ® Cent(Ls).

ProOOF : Clearly, the Lie product of elements @&fy © Lo is defined by[(z1, z2), (y1,y2)] =
([x1,y1], [x2,92]), for all x;,y; € L; (i = 1,2). Now the result follows from the property that
ClrroLy) (1, 22) = Cp, (21) @ Cpy(w2), forallzy € Ly andas € Lo. O

Lemmal.2 — For a Lie algebrd, the centreZ (L), is the intersection of all centralizersini.e.
Z(L) = Nyer Cr(x), forallz € L.

ProoOF: Clearly, Z(L) € (N, Cr(x). Now, suppose thdte (., Cr(x), then[z,l] = 0, for
allz € L and sd € Z(L), which gives the claim. O

Lemmal.3 — If L is a non-abelian Lie algebra, thénis the union of centralizers of all non-
central elements af.

PrOOF : Clearly, U,er—z(r) Cr(z) © L. Letl € Z(L), then by using Lemma.2, | €
Cr(z) for all 2 € L and sincel € Cr(l) it follows that! € (J,c_ 7 Cr(z). Therefore
L € U,er—zr) Cr(z) and the proof is complete. O

Lemmal.4 — A Lie algebral, can not are written as a union of two proper Lie subalgebras.

PrROOF: SupposeH and K are two proper Lie subalgebras bfsuch thatl, = H U K. Let
he H— Kandk € K — H,theneithelh + k€ Horh+ k € K,whichimplyk € Horh € K,
respectively. This gives a contradiction. Therefbre k ¢ L, which gives the lemma. O

Theoreml.5— Let L be a non-abelian Lie algebra, thé@'ent(L)| > 4.

PrRoOOF: By Lemmal.3, L is the union of its proper centralizers. SinEds non-abelian, we
have|Cent(L)| > 1. If |Cent(L)| = 2, thenL is the proper Lie subalgebra of itself, which is
impossible. Suppos€ent(L)| = 3, thenCent(L) = {L,Cr(z),CL(y)}, whereCr(z) andCL(y)
are proper centralizers df. ThereforeL = Cp(z) U CL(y), which is impossible by Lemma.4.
Hence,|Cent(L)| > 4. O

2. COUNTING CENTRALIZERS IN LIE ALGEBRAS

In this section, we study the centralizers of low-dimensional Lie algebras over the Galois field of
elementsZ,, for any prime numbep.

Lemma2.1 — Let L;’s be finite dimensional Lie algebras witent(L;)| = n;, for ¢ =
1,2,...,r. Then|Cent(L1 & Ly & ... ® L,)| = [\ ni.
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PROOF: Assumel = L1 ® Lo @ ... ® L,. Using Lemmal.1, we have
C’L(xl,xg, ...,xr) = CLl(xl) (&) CL2($2) D...PD C’Lr(x,.),

for all (z1,x2,...,2z,) € L. It follows thatCr(z1,xo,...,2,) = CL(y1,¥2,...,y:) if @and only if
Cr,(xzi) = Cr,(y;), forall1 <i < r. Thisimplies thatCent(L1 & Ly & ... & L,)| = [[{_; n;. O

Lemma2.2 — Let K be a subalgebra of a finite dimensional Lie algebralhen|Cent(K)| <
|Cent(L)|.

PROOF: Let ky, ko, ..., kn, be a basis of, andCk (k1), ..., Ck (k) be the distinct centralizers
in K. On the other handC'x (k;) = K N Cr(k;) thenCr(k;) # Cr(k;), for all i # j, where
1 <i,5 < m, and hence the lemma is obtained. O

Lemma2.3 — Let L ben-centralizer Lie algebra witlh?> N Z(L) = 0. ThenL is a primitive
n-centralizer.

PROOF: Suppose that’ent(L) = {Cr(z1),Cr(z2),...,Cr(xy,)} is the set of all distinct cen-
tralizers inL. One can easily check thél; ;1) (» + Z(L)) = Cr(z)/Z(L). Hence it is enough
to show that for anyl < i # j < n, Cp 7y (xi + Z(L)) # Crz)(z; + Z(L)). So assume
there exist somé < i # j < n such thatCy 71\ (v; + Z(L)) = Cr z)(z; + Z(L)). Suppose
y € Cr(z;), theny + Z(L) € Cp (1) (wi + Z(L)) = Cpz1y(z; + Z(L)) and by the assumption
we havely, z;] = 0, i.e.,Cr(z;) € Cr(z;). Using similar argument, we havgy,(z;) C Cr(x;)
which gives a contradiction. Thu€'ent(L/Z(L))| = n and hencd. is a primitiven-centralizer. O

In the following, we determine the number of centralizer8-dimension non-abelian Lie algebra
over the Galois field op elements.

Theorem2.4— Let L be a2-dimension non-abelian Lie algebra over the figld Then\Cent(L)\ =
p+ 2.

PrRoOF: Clearly there exists a unigudimension non-abelian Lie algebra over any field. The
centre of this Lie algebra is trivial and the Lie algebra has a Hasig} such that its Lie bracket is
described byz, y| = x. Clearly

Cr(x) = (x), CL(y) = (y), CL(ax + By) = (ax + By),
and the number of distinet', (ax + By) = (ax + By) is equal to(pp_fll)2 = p — 1, for all non-zero
o, 5 € Z,. Now adding the centralize(s; (=), Cr(y) andL, we have] Cent(L)| =p+2. 0

Definition 2.5 — Let L be a3-dimension non-abelian Lie algebra over a figldwith L? to be
1-dimension so that? is contained inZ(L). Such a Lie algebra is known &keisenberg Lie algebra
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Theorem2.6— Let L be Heisenberg Lie algebra over the fiélg, then|Cent(L)| = p + 2.

PrRoOF: Clearly there is a unique such a Lie algebra, and it has a bsis =}, where[f, g] = =z
andz lies in Z(L). Hence for every € Cp(f) there existy, 3,y € Z, suchthaty = af + g+ 7z,
then

0=1[f,yl =[f,f + Bg +~z] = Blf.g] = Bz,

and sof = 0. ThusCr(f) = (af +~z). Similarly Cr(9) = (39 + ~2), Cr(af + Bg) =
(of + By +7'2), CL(f +2) = CL(f), CL(g + 2) = CL(g), CL(af + Bg + v2) = Cr(af + Bg)
and clearlyCr,(z) = L. Now for any non-zero elements 5 € Z,, we have(pp_fll)2 = p — 1 distinct

centralizers of the forn'z, (a.f + Bg). So|Cent(L)|=p—1+3=p+2. O

Example2.7 : LetL = n(3,Z,) = (e12, e13, e23) be the Lie algebra of non-zero strictly upper
triangular matrices, thefe;2, ea3] = e13 andL? = Z(L). Hence, the above theorem implies that
|Cent(L)| = p+2.

As in Theorem3.2 [8], there exists a uniqug-dimensional Lie algebra over a field such that
L? is 1-dimension and.? ¢ Z(L). Hence such a Lie algebra is the direct sum of the non-abelian
2-dimension withl-dimension Lie subalgebras.

Theorem2.8 — Let L be the3-dimensional Lie algebra as above over the figlg Then
|Cent(L)] =p+ 2.

PrROOF: By the assumption we may write = Lo, & L1, whereL, is 2-dimensional non-abelian
andL, is 1-dimensional Lie algebra ov&,. By Lemma2.1, |Cent(L)| = |Cent(Ls)||Cent(Ly)| =
(p+2)x1=p+2. O

The following lemma is very useful for our further study.
Lemma2.9 — ([8], Lemma 3.3). LeL be a Lie algebra with dimensighanddimL? = 2. Then
(i) L?is abelian;
(i) the mapadz : L?> — L? is an isomorphism, for alt € L — L2.
Theorem2.10— Let L be a Lie algebra with dimensiob over the fieldZ, and dimL? = 2.
Then|Cent(L)| = p? + 2.

PROOF: Let {y, z} be a basis for the derived subalgeliraand extend it to a basis:, y, 2} for
L. Then the derived subalgebfd is abelian, and hende, 2] = 0. Therefore we havé',(y) = {I =

az + By +vz | [y,l] =0} = (By +7v2), CL(2) = CL(y), CL(z) = (z), CL(z + y) = (ax + ay),
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Cr(z+ z) = (ax + az), Cr(y + 2) = Cr(z) = CL(y), Cr(z + y + 2) = (az + ay + az),
Crlax + By) = (ax + By), CL(ax + Bz) = (ax + Bz), CL(ax + By +vz) = (ax + By +72).

Clearly, each casdsar, 3y) and(ax + (z), has(p — 1)? distinct set of centralizers so that every
set containg — 1 elements. Hence each of these have é@&lﬁ = p — 1 distinct sets. Also for
3
Cr(ax+ Py +vz) = (ax+ Py +vz) we have(pp%) = (p—1)? distinct sets. Therefore the number
of Cent(L) is equal to(p — 1)2 +2(p — 1) + 3 = p? + 2. O

The following example justifies the above theorem.

Example2.11 : Consider th8-dimension Lie algebrd with the basis{x,y, z} as in Theorem
2.10 over the fieldZs, then one may calculate all the centralizerd.ah the following way:

Cr(x) ={0,z,2x,3z,4z}, Cr(y) = {0,vy, 2y, 3y, 4y}, Cr(0) = L,
Cr(z+y)={0,24y,2x+y),3x+y),4x+1y)},
L(x+2)={0,z+22x+2),3(x+ 2),4(z + 2)},
Ly +2) = Cu(2) = Culy),
Lz+y+z)={0,z+y+2z2x+y+2),3(x+y+2),4z+y+2)}
L2z +y) ={0,22 + y,4x + 2y, z + 3y, 3z + 4y) },
1Bz +y) ={0,3x + y,x + 2y, 4x + 3y, 3x + 4y)},
(4z +y) = {0,4x + y, 3z + 2y, 2z + 3y, x + 4y)},
L2z +2) ={0,2z + 2,42 + 2z, + 32,3x + 42) },

) )
)

QO 0000 an

(3 4+ 2) ={0,3z + 2z, + 22,4z + 32, 2x + 42) },

Q

(
(
(
(
(
(
(
(
(
(
L(4x + 2) = {0,42 + 2,3z + 22,2z + 3z, x + 42)},
12x4+y+2)={0,20+y+ z,4x + 2y + 2z, + 3y + 3z, 3x + 4y + 42)},
LBr+y+2)={0,3z+y+ z,x + 2y + 22,42 + 3y + 32,3z + 4y + 42)},
(
(
(
(
(
(
(
(
(
(
(

Q09 a9 a8

)
) )
L(dx+y+z) =104z +y + 2,3z + 2y + 22,22 + 3y + 3z,x + 4y + 42)},
Lxz+2y+2)={0,2+2y+ 2,2z + 4y + 22,3z + y + 3z,4x + 3y + 42)},
L(x+3y+2)={0,2+3y+ 2,2z + y + 22,3z + 4y + 3z,4x + 2y + 42)},
) )
)
)

Q

L(x+4y+ 2) ={0,x + 4y + 2,22 + 3y + 22,3z + 2y + 3z, 4z + y + 42)},
L(x+y+22) ={0,2+y+ 22,2z + 2y + 42,3z + 3y + z,4x + 4y + 3z},
L(x+y+32) ={0,x +y+32,2x + 2y + 2,3z + 3y + 4z, 4x + 4y + 2z},
L(z+y+4z) ={0,2 +y+4z,2x + 2y + 32,3z + 3y + 22,4z + 4y + =z},
(x+2y+32) ={0,2+ 2y + 32,22 + 4y + 2,3z + y + 42,4z + 3y + 22)},
Cr(x+3y+42) ={0,z+ 3y + 42,20 +y+32,3x + 4y + 22,4z + 2y + z) },
Cr(2x +3y+42) ={0,2z + 3y + 4z,4c + y + 32,z + 4y + 22,3z + 2y + 2)},
Crx+2y+42) ={0,z + 2y +4z,2x + 4y + 32,3z + y + 2z,4c + 3y + 2) },

Qa9 9 8
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Cr(z+3y+22) ={0,2+ 3y + 22,2z + y + 42,3z + 4y + z,4x + 2y + 3z}.

One observes tha€ent(L)| = 27. On the other hand, by Theoreiml 0, the number of distinct
centralizers must b& + 2 = 27.

Theorem2.12— Let L be a Lie algebra over the field, such thatdimL = 3 anddimL? = 3.
Then|Cent(L)| = p* + p + 2.

PrROOF: Let z be a non-zero element of the Lie algeldrathen extend: to a basis ofL, say
{x,y,2}. ClearlyL? is spanned by, 3], [z, 2], [y, 2]} and this set must be linearly independent. So
we haveC(z) = (z), CL(y) = (y), Cr(z) = (2), Cr(ax + By) = (ax + Py), Crlax + vz) =
(ax+vz), CL(By+vz) = (By +v2), Cr(ax + By +vz) = (ax + Py + vz). Now for all non-zero
elementsy, 3 € Z,, we can write(p — 1)? sets of centralizers of the forfi (ax + By + v2) =
(ax + By + ~v2), but every set contains— 1 elements and so we ha\%:lT)3 = (p — 1)2 distinct
sets of the formC(ax + By + ~vz). Similarly, we have(‘”p_fll)2 = p — 1 distinct sets of each
Cr(ax + By), Cr(ax +vz) andCr(By + vz). So summing up all together we obtadient(L)| =
(p—1)2+3(p—-1)+4=p*+p+2. m

The following example justifies the above theorem.
Example2.13 : The distinct centralizers of tBedimension Lie algebra in Theore®nl 2 over the

field Z5 are as follows:

Cr(x) ={0,z,22}, Cr(y) ={0,y,2y}, Cr(z) =10, 2,2z}, CL(0) = L,

Cr(x+vy) =10,z +y,2x + 2y},
Cr(2x +y) = {0,2z + y, x + 2y},
Cr(z+2)={0,z + z,2z + 2z},

Q

(
(
(
(x
L(2x + 2) = {0,2z + z, 2 + 2z},
L(y+2)={0,y+ 2,2y + 2z},
(
(z
(
(
(z

Q Q

L2y +2) ={0,2y + z,y + 2z},

Coz+y+2) ={0,z+y+ 2 2x + 2y + 2z},
Cr2r+y+2) ={0,20+y+ z,x + 2y + 2z},
Crx+2y+2) ={0,z+2y + 2,2z + y + 2z},
Crz+y+22) ={0,z +y+ 22,2z + 2y + z}.

So|Cent(L)| = 14 and using Theorerd.12, we get the same number, i.&ent(L)| = 3% +
34+2=14.
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3. LIE ALGEBRAS WITH ABELIAN CENTRALIZERS

In this section we study Lie algebrds in which every centralizer of non-zero elements/ofs
abelian. Such Lie algebras are equivalent to commutative transitive Lie algebras (see Lemma 3.2).
The concept of commutative transitive groups was first introduced and studied by Weisner [11] in
1925.

Definition 3.1 — A Lie algebral is commutative transitivéhenceforth C7, if [z,y] = 0 and
[y, z] = 0 imply that[z, z] = 0, for any non-zero elemenisy, z in L.

The property of CT is clearly subalgebra closed, while it is not quotient closed, as every free Lie
algebra is CT (see [9], Example4 for more detail).

The Frattini subalgebr& (L) of a Lie algebral, is the intersection of all maximal subalgebras of
L oritis L itself, when there are no maximal subalgebras (see also [10]).

In this section, we study the concept of commutative transitive Lie algebras and among other
results, their relationships with fully residually free Lie algebras are established.

Here, we introduce some basic notion and then prove our main results of this section.
Lemma3.2 — For any Lie algebré, the following statements are equivalent:

(1) Lis CT Lie algebra;

(73) The centralizers of non-zero elementdoére abelian.

PROOF: (i) = (ii) Let L be a CT Lie algebra. For any non-zero elemert L, if y, z € Cr(x)
we havely, z] = 0 and[z,z] = 0. The definition of CT implies thaly, z] = 0. HenceCL(x) is
abelian.

(13) = (i) Assumer, y, z are non-zero elements &f with [z, y] = 0 and[y, z] = 0. Obviously
z,z € Cr(y). By the assumptiol’;(y) is abelian and hence, z] = 0. ThusL is commutative
transitive. O

The proof of the following lemma is a routine argument by using Zorn’s Lemma.

Lemma3.3 — Every abelian subalgebfa of a given Lie algebrd. is contained in a maximal
abelian subalgebra.

PrRoOF: Consider the collection of all abelian subalgebrad @ontainingK’, ordered by inclu-
sion. We first show that in this partially ordered set, every chain has an upper bound. Indeed, given an
ascending chain of abelian subalgebras and consider their union. We need to show that this is again
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abelian. Given an ascending chain of subalbebras then for any two elemamds, in their union,

one hagz, y] = 0. Thus the partially ordered collection of abelian subalgebras contaltisatisfies

the condition that every chain has an upper bound in the collection. Zorn’s lemma vyields that there
exists a maximal element in the partially ordered collectidn say. Hencek is contained in the
maximal abelian subalgebrd of L. O

The following fact is needed in proving our main results.

Proposition3.4 — Let L be a non-abelian Lie algebra wifl L) # 0. ThenL has one maximal
abelian subalgebra.

PROOF: Let L be a non-abelian Lie algebra with non-zero Frattini subalgebfa). Without
loss of generality, we may assume tidét andM> are maximal abelian subalgebras with = M.
Assume there exists an element € M; \ Mo, then clearly

My C My @ (mq) C L.

If My @ (m1) = L, thenL is abelian which contradicts our assumption. Hengemust be in
My and soM; = M,. (]

Using the above proposition and Lemha, we obtain the following useful result.
Theorem3.5— Every non-abelian Lie algebra with non-zero Frattini subalgebra is CT.

PROOF: Let L be a non-abelian Lie algebra, for whidh(L) # 0 and assume thdt,y] =
0, [y, 2] = 0, for non-zero elements, y, z in L. Suppose thal/; and M, are maximal abelian
subalgebras i, which contain two abelian ideals = (z,y) andl> = (y, z), respectively. Then
Proposition3.4 implies that)M/; = Ms, which givesz, z] = 0 and soL is CT. O

In 2010, Klep and Moravec [9] classified all finite dimensional commutative transitive Lie alge-
bras over an algebraically closed field of characterigticThey proved that these Lie algebras are
either simple or soluble, where the only simple such Lie algebe&isAlso, they showed that in
the soluble case, Lie algebras are either abelian or a one-dimensional split extension of abelian Lie
algebra (see [9] for more information).

Now, using Theoren3.5 one can easily see that every non-abelian Lie algebrad(it) # 0
is either simple or soluble. One notes that all the results on CT Lie algebras in [9], carried out the
assumption of non-triviality of Frattini subalgebras.

In the following, we focus on non-abelian CT Lie algebras and give some structural results.

Theorem3.6— The centre of a non-abelian CT Lie algebra is trivial.
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PROOF: Assumel is a non-abelian Lie algebra with non-zero centre aigda non-zero element
in Z(L). Clearly, for every non-zero elementsy € L

[:C, Z] =0, [Z7y] =0,

then the definition of CT Lie algebras implies tlaty] = 0. HenceL is abelian Lie algebra and this
contradiction gives the result. O

A derivationof a Lie algebra. over a fieldF' is an F-linear transformationd : L — L such that

d([z, y]) = [d(x), y] + [z, d(y)],

forall z,y € L. We denote byDer (L) the vector space of derivations bf which forms a Lie algebra
with respect to the bracket of linear transformations, calledigrévation algebreaof L. Clearly, the
space

adr, = {ady|x € L}

of inner derivationss an ideal ofDer(L).
Theorem3.7— Let L be a non-abelian CT Lie algebra, théf{ Der(L)) = 0.

PROOF : It is clear thatL is centre less Lie algebra. Assume tdat Z(Der(L)). Then in
particular we havelad,(y) = ad,d(y), and hencel([z,y]) = [z,d(y)], for all z,y € L. Hence
by the definition of derivationd(x),y] = 0, for all z,y € L. SinceL has trivial centre, we obtain
d(xz) =0, i.e.,d = 0. ThereforeZ(Der(L)) = 0. O

Let x be a class of Lie algebras. Then a Lie algebr#s residually x if for every non-zero
elementr € L, there exists a homomorphisin: L — K, whereK is a x-Lie algebra such that
¢(x) # 0. Also a Lie algebrd. is fully residuallyy, if for finitely many non-zero elements, ..., z,,
in L there exists a homomorphisin: L — K, whereK is ax-Lie algebra such that(z;) # 0, for
alli=1,...,n.

In 1967, Baumslag [3] introduced the notion of fully residually free groups and proved that a
residually free group is fully residually free if and only if it is commutative transitive. A grGup
commutative transitive, ifx,y] = 1 and[y, z] = 1 implies that[z, z] = 1, for non-trivial elements
z,y,zinG.

Lemma3.8 — (Bokut and Kukin [5], Lemma 4.16.2). A Lie algebfais fully residually free if
and only if, for every two linearly independent elementsandzx; in L, there exists a homomorphism
¢ from the Lie algebrd. into a free Lie algebr& such that the elemenigx;) and¢(x2) are linearly
independent irF.
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Now, using the above lemma we give the following result concerning free Lie algebras.

Theorem3.9— Let L be a residually free Lie algebra. Thénis fully residually free, if and only
if Lis CT.

PrROOF: Without loss of generality we may assume thas non-abelian Lie algebra. Now Iét
be a non-abelian residually free CT Lie algebra over a ffleld’hen we show that for given non-zero
linearly independent elements andz- in L, there exists a homomorphisp: L — F such thatF
is a free Lie algebra and(z,) and¢(x2) are linearly independent. Hence Lemfa& implies thatZ
is fully residually free.

For every non-zero element in L, there exits a homomorphisg: L — F such thaty(x) # 0,
as by the assumptioh is residually free Lie algebra. On the other hand, TheoBegdrimplies that
Z(L) = 0. Hence,[x1,z2] # 0 for somez, in L. Soz; andxs are linearly independent if.
Clearly,[¢(z1), ¢(x2)] # 0, asF is free Lie algebra. Thea(x;) and¢(z2) are linearly independent
and hencd. is fully residually free.

Conversely, lefL be a fully residually free Lie algebra such that, z2] = 0 and|z2, z3] = 0, for
any non-zero elements, xo andzs in L. Assume that. is not CT andcy = [z1, 23] # 0, then there
exits a homomorphism : L — F, whereF is a free Lie algebra and(z;) # 0 fori = 1,2,3,4, as
by the assumptiod is fully residually free Lie algebra. Hence(z4) = [¢(x1), ¢(z3)] # 0. Now,
to prove our claim it is enough to show that eitfigfz1), ¢(z2)] # 0 or [¢(z2), ¢(x3)] # 0. But both
of which contradict the assumptiofis;, 2] = 0 and[z2, z3] = 0, respectively. Thugr;, z3] = 0
andL is CT Lie algebra. O
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