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In this paper, we compute the Laplacian spectrum of non-commuting graphs of some classes of

finite non-abelian groups. Our computations reveal that the non-commuting graphs of all the

groups considered in this paper are L-integral. We also obtain some conditions on a group so that

its non-commuting graph is L-integral.
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1. INTRODUCTION

Let G be a finite group with centreZ(G). The non-commuting graph of a non-abelian groupG,

denoted byAG, is a simple undirected graph whose vertex set isG \ Z(G) and two verticesx and

y are adjacent if and only ifxy 6= yx. Various aspects of non-commuting graphs of different finite

groups can be found in [1, 4, 8, 12, 23]. In [12], Elvierayani and Abdussakir have computed the

Laplacian spectrum of the non-commuting graph of dihedral groupsD2m wherem is odd and sug-

gested to consider the case whenm is even. In this paper, we compute the Laplacian spectrum of the

non-commuting graph ofD2m for any m ≥ 3 using a different method. Our method also enables

to compute the Laplacian spectrum of the non-commuting graphs of several well-known families

of finite non-abelian groups such as the quasidihedral groups, generalized quaternion groups, some

projective special linear groups, general linear groups etc. In a separate paper [11], we study the

Laplacian energy of non-commuting graphs of the groups considered in this paper.

For a graphG we writeG andV (G) to denote the complement ofG and the set of vertices of

G respectively. LetA(G) andD(G) denote the adjacency matrix and degree matrix of a graphG
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respectively. Then the Laplacian matrix ofG is given byL(G) = D(G)−A(G). We write L-spec(G)

to denote the Laplacian spectrum ofG and L-spec(G) = {αa1
1 , αa2

2 , . . . , αan
n } whereα1 < α2 <

· · · < αn are the eigenvalues ofL(G) with multiplicities a1, a2, . . . , an respectively. The Laplacian

spectrum of graphs plays an important role in solving many Physical and Chemical problems. The

reader may conf. [18, Section 5] for details. A graphG is called L-integral if L-spec(G) contains only

integers. As a consequence of our results, it follows that the non-commuting graphs of all the groups

considered in this paper are L-integral. It is worth mentioning that L-integral graphs are studied

extensively in [3, 15, 17].

2. PRELIMINARY RESULTS

It is well-known that L-spec(Kn) = {01, nn−1} whereKn denotes the complete graph onn vertices.

Further, we have the following results.

Theorem2.1— If G = l1Km1 t l2Km2 t · · · t lkKmk
, whereliKmi denotes the disjoint union

of li copies ofKmi for 1 ≤ i ≤ k andm1 < m2 < · · · < mk, then

L-spec(G) =
{

0
Pk

i=1 li ,m
l1(m1−1)
1 ,m

l2(m2−1)
2 , . . . ,m

lk(mk−1)
k

}
.

Theorem2.2— [18, Theorem 3.6]. LetG be a graph such thatL-spec(G) = {αa1
1 , αa2

2 , . . . ,αan
n }

thenL-spec(G) is given by

{0, (|V (G)| − αn)an , (|V (G)| − αn−1)an−1 , (|V (G)| − αn−2)an−2 , . . . , (|V (G)| − α1)a1−1}.

As a corollary of the above two theorems we have the following result.

Corollary 2.3 — If G = l1Km1 t l2Km2 t · · · t lkKmk
, whereliKmi denotes the disjoint union

of li copies ofKmi for 1 ≤ i ≤ k andm1 < m2 < · · · < mk, then

L-spec(G) ={0,

(
k∑

i=1

limi −mk

)lk(mk−1)

,

(
k∑

i=1

limi −mk−1

)lk−1(mk−1−1)

,

. . . ,

(
k∑

i=1

limi −m1

)l1(m1−1)

,

(
k∑

i=1

limi

)Pk
i=1 li−1

}.

A groupG is called a CA-group ifCG(x) is abelian for allx ∈ G \ Z(G). Various aspects of

CA-groups can be found in [1, 10, 21]. The following result gives the Laplacian spectrum of the

non-commuting graph of a finite non-abelian CA-group.
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Theorem2.4— LetG be a finite non-abelian CA-group. Then

L-spec(AG) ={0, (|G| − |Xn|)|Xn|−|Z(G)|−1, . . . ,

(|G| − |X1|)|X1|−|Z(G)|−1, (|G| − |Z(G)|)n−1}.

whereX1, . . . , Xn are the distinct centralizers of non-central elements ofG such that|X1| ≤ · · · ≤
|Xn|.

PROOF : Let G be a finite non-abelian CA-group andXi = CG(xi) wherexi ∈ G \ Z(G) and

1 ≤ i ≤ n. Let x, y ∈ Xi \Z(G) for somei andx 6= y then, sinceG is a CA-group, there is an edge

betweenx andy inAG. Suppose thatx ∈ (Xi∩Xj)\Z(G) for some1 ≤ i 6= j ≤ n. Then[x, xi] = 1

and[x, xj ] = 1. Let s ∈ CG(x) then[s, xi] = 1 sincexi ∈ CG(x) andG is a CA-group. Therefore,

s ∈ CG(xi) and soCG(x) ⊆ CG(xi). Again, lett ∈ CG(xi) then[t, x] = 1 sincex ∈ CG(xi) andG

is a CA-group. Therefore,t ∈ CG(x) and soCG(xi) ⊆ CG(x). ThusCG(x) = CG(xi). Similarly,

it can be seen thatCG(x) = CG(xj), which is a contradiction. Therefore,Xi ∩Xj = Z(G) for any

1 ≤ i 6= j ≤ n. This shows that

AG =
nt

i=1
K|Xi|−|Z(G)|. (2.1)

Therefore, by Corollary 2.3, we have

L-spec(AG) = {0,

(
n∑

i=1

(|Xi| − |Z(G)|)− (|Xn| − |Z(G)|)
)|Xn|−|Z(G)|−1

, . . . ,

(
n∑

i=1

(|Xi| − |Z(G)|)− (|X1| − |Z(G)|)
)|X1|−|Z(G)|−1

,

(
n∑

i=1

(|Xi| − |Z(G)|)
)n−1

}.

Hence, the result follows noting that
n∑

i=1
(|Xi| − |Z(G)|) = |G| − |Z(G)|. 2

Corollary 2.5 — LetG be a finite non-abelian CA-group andA be any finite abelian group. Then

L-spec(AG×A) ={0, (|A|(|G| − |Xn|))|A|(|Xn|−|Z(G)|)−1, . . . ,

(|A|(|G| − |X1|))|A|(|X1|−|Z(G)|)−1, (|A|(|G| − |Z(G)|))n−1}.

whereX1, . . . , Xn are the distinct centralizers of non-central elements ofG such that|X1| ≤ · · · ≤
|Xn|.

PROOF : It is easy to see thatG × A is a CA-group andX1 × A,X2 × A, . . . ,Xn × A are the

distinct centralizers of non-central elements ofG × A. Hence, the result follows from Theorem 2.4

noting thatZ(G×A) = Z(G)×A. 2
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3. GROUPSWITH GIVEN CENTRAL FACTORS

In this section, we compute the Laplacian spectrum of the non-commuting graphs of some families

of finite non-abelian groups whose central factors are some well-known finite groups. We begin with

the following result.

Theorem3.1 — Let G be a finite group and G
Z(G)

∼= Sz(2), whereSz(2) is the Suzuki group

presented by〈a, b : a5 = b4 = 1, b−1ab = a2〉. Then

L-spec(AG) = {0, (15|Z(G)|)4|Z(G)|−1, (16|Z(G)|)15|Z(G)|−5, (19|Z(G)|)5}.

PROOF : We have

G

Z(G)
= 〈aZ(G), bZ(G) : a5Z(G) = b4Z(G) = Z(G), b−1abZ(G) = a2Z(G)〉.

Observe that

CG(ab) = Z(G) t abZ(G) t a4b2Z(G) t a3b3Z(G),

CG(a2b) = Z(G) t a2bZ(G) t a3b2Z(G) t ab3Z(G),

CG(a2b3) = Z(G) t a2b3Z(G) t ab2Z(G) t a4bZ(G),

CG(b) = Z(G) t bZ(G) t b2Z(G) t b3Z(G),

CG(a3b) = Z(G) t a3bZ(G) t a2b2Z(G) t a4b3Z(G) and

CG(a) = Z(G) t aZ(G) t a2Z(G) t a3Z(G) t a4Z(G)

are the only centralizers of non-central elements ofG. Also note that these centralizers are abelian

subgroups ofG. ThusG is a CA-group.

We have|CG(a)| = 5|Z(G)| and

|CG(ab)| = |CG(a2b)| = |CG(a2b3)| = |CG(b)| = |CG(a3b)| = 4|Z(G)|.

Therefore, by Theorem 2.4, the result follows. 2

Theorem3.2 — Let G be a finite group such thatGZ(G)
∼= Zp × Zp, wherep is a prime integer.

Then

L-spec(AG) = {0, ((p2 − p)|Z(G)|)(p
2−1)|Z(G)|−p−1

, ((p2 − 1)|Z(G)|)p}.

PROOF : Let |Z(G)| = n. Since G
Z(G)

∼= Zp × Zp we have G
Z(G) = 〈aZ(G), bZ(G) :

ap, bp, aba−1b−1 ∈ Z(G)〉, wherea, b ∈ G with ab 6= ba. Then for anyz ∈ Z(G), we have

CG(a) = CG(aiz) = Z(G) t aZ(G) t · · · t ap−1Z(G) for 1 ≤ i ≤ p− 1,

CG(ajb) = CG(ajbz) = Z(G) t ajbZ(G) t · · · t a(p−1)jbp−1Z(G) for 1 ≤ j ≤ p.
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These are the only centralizers of non-central elements ofG. Also note that these centralizers

are abelian subgroups ofG. Therefore,G is a CA-group. We have|CG(a)| = |CG(ajb)| = pn for

1 ≤ j ≤ p. Hence, the result follows from Theorem 2.4. 2

As a corollary we have the following result.

Corollary 3.3 — LetG be a non-abelian group of orderp3, for any primep, then

L-spec(AG) = {0, (p3 − p2)p3−2p−1
, (p3 − p)p}.

PROOF : Note that|Z(G)| = p and G
Z(G)

∼= Zp × Zp. Hence the result follows from Theorem

3.2. 2

Theorem3.4— LetG be a finite group such thatGZ(G)
∼= D2m, for m ≥ 2. Then

L-spec(AG) ={0, (m|Z(G)|)(m−1)|Z(G)|−1, (2(m− 1)|Z(G)|)m|Z(G)|−m,

((2m− 1)|Z(G)|)m}.

PROOF : Since G
Z(G)

∼= D2m we have G
Z(G) = 〈xZ(G), yZ(G) : x2, ym, xyx−1y ∈ Z(G)〉,

wherex, y ∈ G with xy 6= yx. It is not difficult to see that for anyz ∈ Z(G),

CG(xyj) = CG(xyjz) = Z(G) t xyjZ(G), 1 ≤ j ≤ m

and

CG(y) = CG(yiz) = Z(G) t yZ(G) t · · · t ym−1Z(G), 1 ≤ i ≤ m− 1

are the only centralizers of non-central elements ofG. Also note that these centralizers are abelian

subgroups ofG. Therefore,G is a CA-group. We have|CG(xjy)| = 2n for 1 ≤ j ≤ m and

|CG(y)| = mn, where|Z(G)| = n. Hence, the result follows from Theorem 2.4. 2

Using Theorem 3.4, we now compute the Laplacian spectrum of the non-commuting graphs of

the groupsM2mn, D2m andQ4n respectively.

Corollary 3.5 — LetM2mn = 〈a, b : am = b2n = 1, bab−1 = a−1〉 be a metacyclic group, where

m > 2. Then L-spec(AM2mn)

=




{0, (mn)mn−n−1, (2mn− 2n)mn−m, (2mn− n)m} if m is odd

{0, (mn)mn−2n−1, (2mn− 4n)mn−m
2 , (2mn− 2n)

m
2 } if m is even.

PROOF : Observe thatZ(M2mn) = 〈b2〉 or 〈b2〉 ∪ a
m
2 〈b2〉 according asm is odd or even. Also, it

is easy to see thatM2mn
Z(M2mn)

∼= D2m or Dm according asm is odd or even. Hence, the result follows

from Theorem 3.4. 2
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As a corollary to the above result we have the following result.

Corollary 3.6 — LetD2m = 〈a, b : am = b2 = 1, bab−1 = a−1〉 be the dihedral group of order

2m, wherem > 2. Then

L-spec(AD2m) =




{0,mm−2, (2m− 1)m} if m is odd

{0,mm−3, (2m− 4)
m
2 , (2m− 2)

m
2 } if m is even.

Corollary 3.7 — LetQ4n = 〈x, y : y2n = 1, x2 = yn, xyx−1 = y−1〉, wheren ≥ 2, be the

generalized quaternion group of order4n. Then

L-spec(AQ4n) = {0, (2n)2n−3, (4n− 4)n, (4n− 2)n}.

PROOF : The result follows from Theorem 3.4 noting thatZ(Q4n) = {1, an} and Q4n

Z(Q4n)
∼=

D2n. 2

4. SOME WELL-KNOWN GROUPS

In this section, we compute the Laplacian spectrum of the non-commuting graphs of some well-

known families of finite groups. We begin with the family of finite groups having orderpq wherep

andq are primes.

Proposition4.1 — Let G be a non-abelian group of orderpq, wherep andq are primes with

p | (q − 1). Then

L-spec(AG) = {0, (pq − q)q−2, (pq − p)pq−2q, (pq − 1)q}.

PROOF : It is easy to see that|Z(G)| = 1 andG is a CA-group. Also the centralizers of non-

central elements ofG are precisely the Sylow subgroups ofG. The number of Sylowq-subgroups and

Sylowp-subgroups ofG are one andq respectively. Hence, the result follows from Theorem 2.4.2

Proposition4.2 — The Laplacian spectrum of the non-commuting graph of the quasidihedral

groupQD2n = 〈a, b : a2n−1
= b2 = 1, bab−1 = a2n−2−1〉, wheren ≥ 4, is given by

L-spec(AQD2n ) = {0, (2n−1)2
n−1−3

, (2n − 4)2
n−2

, (2n − 2)2
n−2}.

PROOF : It is well-known thatZ(QD2n) = {1, a2n−2}. Also

CQD2n (a) = CQD2n (ai) = 〈a〉 for 1 ≤ i ≤ 2n−1 − 1, i 6= 2n−2
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and

CQD2n (ajb) = {1, a2n−2
, ajb, aj+2n−2

b} for 1 ≤ j ≤ 2n−2

are the only centralizers of non-central elements ofQD2n . Note that these centralizers are abelian sub-

groups ofQD2n . Therefore,QD2n is a CA-group. We have|CQD2n (a)| = 2n−1 and|CQD2n (ajb)| =
4 for 1 ≤ j ≤ 2n−2. Hence, the result follows from Theorem 2.4. 2

Proposition4.3 — The Laplacian spectrum of the non-commuting graph of the projective special

linear groupPSL(2, 2k), wherek ≥ 2, is given by

L-spec(APSL(2,2k)) ={0, (23k − 2k+1 − 1)
23k−1−22k+2k−1

, (23k − 2k+1)
22k−2k−2

,

(23k − 2k+1 + 1)
23k−1−22k−3.2k−1

, (23k − 2k − 1)
22k+2k

}.

PROOF: We know thatPSL(2, 2k) is a non-abelian group of order2k(22k−1) with trivial center.

By Proposition 3.21 of [1], the set of centralizers of non-trivial elements ofPSL(2, 2k) is given by

{xPx−1, xAx−1, xBx−1 : x ∈ PSL(2, 2k)}

whereP is an elementary abelian 2-subgroup andA, B are cyclic subgroups ofPSL(2, 2k)

having order2k, 2k − 1 and2k + 1 respectively. Also the number of conjugates ofP, A andB in

PSL(2, 2k) are2k + 1, 2k−1(2k + 1) and2k−1(2k − 1) respectively. Note thatPSL(2, 2k) is a

CA-group and so, by (2.1), we have

APSL(2,2k) = (2k + 1)K|xPx−1|−1 t 2k−1(2k + 1)K|xAx−1|−1 t 2k−1(2k − 1)K|xBx−1|−1.

That is,APSL(2,2k) = (2k + 1)K2k−1 t 2k−1(2k + 1)K2k−2 t 2k−1(2k − 1)K2k . Hence, the

result follows from Corollary 2.3. 2

Proposition4.4 — The Laplacian spectrum of the non-commuting graph of the general linear

groupGL(2, q), whereq = pn > 2 andp is a prime integer, is given by

L-spec(AGL(2,q)) ={0, (q4 − q3 − 2q2 + q + 1)
q4−2q3+q

2 , (q4 − q3 − 2q2 + 2q)q3−q2−2q
,

(q4 − q3 − 2q2 + 3q − 1)
q4−2q3−2q2+q

2 , (q4 − q3 − q2 + 1)q2+q}.

PROOF : We have|GL(2, q)| = (q2 − 1)(q2 − q) and|Z(GL(2, q))| = q − 1. By Proposition

3.26 of [1], the set of centralizers of non-central elements ofGL(2, q) is given by

{xDx−1, xIx−1, xPZ(GL(2, q))x−1 : x ∈ GL(2, q)}
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whereD is the subgroup ofGL(2, q) consisting of all diagonal matrices,I is a cyclic subgroup of

GL(2, q) having orderq2 − 1 andP is the Sylowp-subgroup ofGL(2, q) consisting of all upper

triangular matrices with1 in the diagonal. The orders ofD andPZ(GL(2, q)) are (q − 1)2 and

q(q − 1) respectively. Also the number of conjugates ofD, I andPZ(GL(2, q)) in GL(2, q) are
q(q+1)

2 , q(q−1)
2 andq +1 respectively. SinceGL(2, q) is a CA-group (see Lemma 3.5 of [1]), by (2.1),

we haveAGL(2,q) =

q(q + 1)
2

K|xDx−1|−q+1 t
q(q − 1)

2
K|xIx−1|−q+1 t (q + 1)K|xPZ(GL(2,q))x−1|−q+1.

That is,AGL(2,q) = q(q+1)
2 Kq2−3q+2t q(q−1)

2 Kq2−qt(q+1)Kq2−2q+1. Hence, the result follows

from Corollary 2.3. 2

Proposition4.5 — LetF = GF (2n), n ≥ 2 andϑ be the Frobenius automorphism ofF , that is,

ϑ(x) = x2 for all x ∈ F . Then the Laplacian spectrum of the non-commuting graph of the group

A(n, ϑ) =





U(a, b) =




1 0 0

a 1 0

b ϑ(a) 1


 : a, b ∈ F





under matrix multiplication given byU(a, b)U(a′, b′) = U(a + a′, b + b′ + a′ϑ(a)) is

L-spec(AA(n,ϑ)) = {0, (22n − 2n+1)(2
n−1)2

, (22n − 2n)2
n−2}.

PROOF : Note thatZ(A(n, ϑ)) = {U(0, b) : b ∈ F} and so|Z(A(n, ϑ))| = 2n. Let U(a, b)

be a non-central element ofA(n, ϑ). It can be seen that the centralizer ofU(a, b) in A(n, ϑ) is

Z(A(n, ϑ))tU(a, 0)Z(A(n, ϑ)). ClearlyA(n, ϑ) is a CA-group and so, by (2.1), we haveAA(n,ϑ) =

(2n − 1)K2n . Hence the result follows from Corollary 2.3. 2

Proposition4.6 — LetF = GF (pn), p be a prime. Then the Laplacian spectrum of the non-

commuting graph of the group

A(n, p) =





V (a, b, c) =




1 0 0

a 1 0

b c 1


 : a, b, c ∈ F





under matrix multiplicationV (a, b, c)V (a′, b′, c′) = V (a + a′, b + b′ + ca′, c + c′) is

L-spec(AA(n,p)) = {0, (p3n − p2n)p3n−2pn−1
, (p3n − pn)pn

}.

PROOF: We haveZ(A(n, p)) = {V (0, b, 0) : b ∈ F} and so|Z(A(n, p))| = pn. The centralizers

of non-central elements ofA(n, p) are given below
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(i) If b, c ∈ F andc 6= 0 then the centralizer ofV (0, b, c) in A(n, p) is {V (0, b′, c′) : b′, c′ ∈ F}
having orderp2n.

(ii) If a, b ∈ F anda 6= 0 then the centralizer ofV (a, b, 0) in A(n, p) is {V (a′, b′, 0) : a′, b′ ∈ F}
having orderp2n.

(iii) If a, b, c ∈ F and a 6= 0, c 6= 0 then the centralizer ofV (a, b, c) in A(n, p) is

{V (a′, b′, ca′a−1) : a′, b′ ∈ F} having orderp2n.

It can be seen that all the centralizers of non-central elements ofA(n, p) are abelian. Hence

A(n, p) is a CA-group and so, by (2.1), we have

AA(n,p) = Kp2n−pn tKp2n−pn t (pn − 1)Kp2n−pn = (pn + 1)Kp2n−pn .

Hence the result follows from Corollary 2.3. 2

We would like to mention here that the groups considered in Proposition 4.5-4.6 are constructed

by Hanaki (see [14]). These groups are also considered in [5], in order to compute their numbers of

distinct centralizers.

5. SOME CONSEQUENCES

Note that the non-commuting graphs of all the groups considered in Section 3 and 4 are L-integral. In

this section, we determine some conditions onG so that its non-commuting graph becomes L-integral.

A finite group is called ann-centralizer group if it hasn numbers of distinct element centralizers.

It is clear that1-centralizer groups are precisely the abelian groups. There are no2, 3-centralizer

finite groups. The study of these groups was initiated by Belcastro and Sherman [6] in the year 1994.

We have the following results regardingn-centralizer groups.

Proposition5.1 — If G is a finite4-centralizer group thenAG is L-integral.

PROOF: LetG be a finite4-centralizer group. Then, by [6, Theorem 2], we haveGZ(G)
∼= Z2×Z2.

Therefore, by Theorem 3.2, we have

L-spec(AG) = {0, (2|Z(G)|)3|Z(G)|−3, (3|Z(G)|)2}.

Hence,AG is L-integral. 2

Further, we have the following result.
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Proposition5.2 — If G is a finite (p + 2)-centralizerp-group for any primep, thenAG is L-

integral.

PROOF : Let G be a finite(p + 2)-centralizerp-group. Then, by [5, Lemma 2.7], we have
G

Z(G)
∼= Zp × Zp. Therefore, by Theorem 3.2, we have

L-spec(AG) = {0, ((p2 − p)|Z(G)|)(p
2−1)|Z(G)|−p−1

, ((p2 − 1)|Z(G)|)p}.

Hence,AG is L-integral. 2

Proposition5.3 — If G is a finite5-centralizer group thenAG is L-integral.

PROOF : Let G be a finite5-centralizer group. Then by [6, Theorem 4] we haveGZ(G)
∼= Z3 ×Z3

orD6. Now, if G
Z(G)

∼= Z3×Z3 then by Theorem 3.2 we haveL-spec(AG) = {0, (6|Z(G)|)8|Z(G)|−4,

(8|Z(G)|)3} and henceAG is L-integral. If G
Z(G)

∼= D6 then, by Theorem 3.4, we have

L-spec(AG) = {0, (3|Z(G)|)2|Z(G)|−1, (4|Z(G)|)3|Z(G)|−3, (5|Z(G)|)3}

and henceAG is L-integral. Therefore, the result follows. 2

We also have the following corollary.

Corollary 5.4 — LetG be a finite non-abelian group and{x1, x2, . . . , xr} be a set of pairwise

non-commuting elements ofG having maximal size. ThenAG is L-integral ifr = 3, 4.

PROOF: By Lemma 2.4 in [2], we have thatG is a4-centralizer or a5-centralizer group according

asr = 3 or 4. Hence the result follows from Proposition 5.1 and Proposition 5.3. 2

The commuting probability of a finite groupG denoted byPr(G) is the probability that any two

randomly chosen elements ofG commute. Clearly,Pr(G) = 1 if and only if G is abelian. The study

of Pr(G) is originated from a paper of Erdös and Tuŕan [13]. Various results onPr(G) can be found

in [7, 9, 19]. The following results show thatAG is L-integral ifPr(G) has some particular values.

Proposition5.5 — If Pr(G) ∈ { 5
14 , 2

5 , 11
27 , 1

2 , 5
8} thenAG is L-integral.

PROOF : If Pr(G) ∈ { 5
14 , 2

5 , 11
27 , 1

2 , 5
8} then as shown in [22, pp. 246] and [20, pp. 451], we have

G
Z(G) is isomorphic to one of the groups in{D14, D10, D8, D6,Z2 × Z2}. If G

Z(G) is isomorphic to

D14, D10, D8 or D6 then, by Theorem 3.4, it follows thatAG is L-integral. If G
Z(G) is isomorphic to

Z2 × Z2 then, by Theorem 3.2, it follows thatAG is L-integral. Hence, the result follows. 2

Proposition5.6 — LetG be a finite group andp the smallest prime divisor of|G|. If Pr(G) =
p2+p−1

p3 thenAG is L-integral.
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PROOF : If Pr(G) = p2+p−1
p3 then by [16, Theorem 3] we haveG

Z(G) is isomorphic toZp × Zp.

Now, by Theorem 3.2, it follows thatAG is L-integral. 2

Proposition5.7 — If G is a non-solvable group withPr(G) = 1
12 thenAG is L-integral.

PROOF : By [7, Proposition 3.3.7], we have thatG is isomorphic toA5 × B for some abelian

groupB. SinceA5 is a CA-group, by Corollary 2.5, it follows thatAG is L-integral. 2

A graph is called planar if it can be embedded in the plane so that no two edges intersect geo-

metrically except at a vertex to which both are adjacent. We conclude this paper with the following

result.

Proposition5.8 — LetG be a finite group thenAG is L-integral ifAG is planar.

PROOF : It was shown in Proposition 2.3 of [1] thatAG is planar if and only ifG is isomorphic

to D6, D8 or Q8. Therefore, by Corollary 3.6 and Corollary 3.7, the result follows. 2
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