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In this paper, we compute the Laplacian spectrum of non-commuting graphs of some classes of
finite non-abelian groups. Our computations reveal that the non-commuting graphs of all the
groups considered in this paper are L-integral. We also obtain some conditions on a group so that
its non-commuting graph is L-integral.
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1. INTRODUCTION

Let G be a finite group with centr&(G). The non-commuting graph of a non-abelian graip
denoted byAg, is a simple undirected graph whose vertex se&t is Z(G) and two vertices: and

y are adjacent if and only ify # yx. Various aspects of non-commuting graphs of different finite
groups can be found in [1, 4, 8, 12, 23]. In [12], Elvierayani and Abdussakir have computed the
Laplacian spectrum of the non-commuting graph of dihedral grdaps wherem is odd and sug-
gested to consider the case whers even. In this paper, we compute the Laplacian spectrum of the
non-commuting graph ab,,, for anym > 3 using a different method. Our method also enables

to compute the Laplacian spectrum of the non-commuting graphs of several well-known families
of finite non-abelian groups such as the quasidihedral groups, generalized quaternion groups, some
projective special linear groups, general linear groups etc. In a separate paper [11], we study the
Laplacian energy of non-commuting graphs of the groups considered in this paper.

For a graphg we write G and V' (G) to denote the complement 6f and the set of vertices of
G respectively. LetA(G) and D(G) denote the adjacency matrix and degree matrix of a géaph
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respectively. Then the Laplacian matrix@fs given byL(G) = D(G) — A(G). We write L-spe¢G)

to denote the Laplacian spectrum@fand L-spe¢G) = {af',a5?,...,ad"} wherea; < as <

.-+ < ay, are the eigenvalues df(G) with multiplicities a1, as, . .. , a,, respectively. The Laplacian
spectrum of graphs plays an important role in solving many Physical and Chemical problems. The
reader may conf. [18, Section 5] for details. A grapls called L-integral if L-spe¢G) contains only
integers. As a consequence of our results, it follows that the non-commuting graphs of all the groups
considered in this paper are L-integral. It is worth mentioning that L-integral graphs are studied
extensively in [3, 15, 17].

2. PRELIMINARY RESULTS
It is well-known that L-spe@X,,) = {0!,n"~!} whereK,, denotes the complete graphawertices.

Further, we have the following results.

Theorem2.1—If G = [ Ky, Ul Ky, U -+ - U1Ky, , Wherel; K, denotes the disjoint union
of /; copies ofK,,, for1 <i < kandm; < ma < --- < my, then

P
L-Spec(g) = {0 '];:1 lq',’mlll(mlfl)vml;(wwfl)’ o ’m;k(mkfl)} .

Theorem2.2— [18, Theorem 3.6]. Le§ be a graph such thdt-spedg) = {a*, 52, ..., a8}
thenL-sped@) is given by

{0, (V@) = )™, (V@] = an-1)* ", (IV(G)] = an2)™ 2., (V(G)] = ar) 7},

As a corollary of the above two theorems we have the following result.

Corollary 2.3 —If G = [ Ky, U lo Ky, U - - - Ul Koy, , Wherel; K, denotes the disjoint union
of [; copies ofK,,, for1 <i < kandm; < mg < --- < my, then

k I (my—1) k lg—1(m_1-1)
L-spec(G) ={0, <Z lim; — mk) ; (Z lim; — mkl) ;
i—1 i—1

1

k ll(ml—l) k Pi.czl li—
ey (Z limi — m1> y (Z lzmz> }
i=1 =1

A group G is called a CA-group ilC;(x) is abelian for alle € G\ Z(G). Various aspects of
CA-groups can be found in [1, 10, 21]. The following result gives the Laplacian spectrum of the
non-commuting graph of a finite non-abelian CA-group.
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Theorem2.4— Let G be a finite non-abelian CA-group. Then

Lespec(Ag) ={0, (|G| — | X)X 7@
(1G] — X,y X-1Z@11 (6| — | Z(@))" .

whereXy, ..., X,, are the distinct centralizers of non-central element§ sich thai X;| < --- <
| Xn |-

PROOF: Let G be a finite non-abelian CA-group add, = Cg(z;) wherez; € G\ Z(G) and
1 <i<n.lLetz,y € X;\ Z(G) for somei andz # y then, since is a CA-group, there is an edge
between: andy in A¢. Suppose that € (X;NX;)\Z(G)forsomel <i # j <n. Thenz,z;] =1
and[z,z;] = 1. Lets € Cg(x) then[s, z;] = 1 sincex; € Cg(x) andG is a CA-group. Therefore,
s € Cg(z;) and soCq(x) C Cq(x;). Again, lett € Ci(z;) thenlt, z] = 1 sincex € Cg(x;) andG
is a CA-group. Therefore, € Cq(x) and soCq(z;) C Ca(z). ThusCq(z) = Ca(z;). Similarly,
it can be seen thaf(z) = Cq(z;), which is a contradiction. Therefor&; N X; = Z(G) for any
1 <1 # j < n. This shows that

Ag = 0 Kix, -z (2.1)

Therefore, by Corollary 2.3, we have

n

[ Xn|=|Z(G)]-1
L-spec(Ag) = {0, (Z(\Xir ~1Z(@))) - (1%l - \Z(G)\))

i=1

n X-1Z@-1 /o, n—1
(Z(IXA —12(G)]) = (1Xa] = \Z<G)\)> : <Z(|Xi‘ - Z(G))> Iz

i=1 i=1

Hence, the result follows noting that (| X;| — |Z(G)|) = |G| — |Z(G)|. O
=1

Corollary 2.5 — LetG be a finite non-abelian CA-group andbe any finite abelian group. Then
L-spec(Agxa) ={0, (|A|(|G] — | X)) AX 2D
(|AI(IG| = [ X)) AXAZEODT (al(6| - 12(@)) ')

whereXy, ..., X, are the distinct centralizers of non-central element§ such that X;| < --- <
| Xl

PROOF: Itis easy to see that x A is a CA-group andX; x A, Xy x A,..., X, x A are the
distinct centralizers of non-central elementsbik A. Hence, the result follows from Theorem 2.4
noting thatZ (G x A) = Z(G) x A. O
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3. GROUPSWITH GIVEN CENTRAL FACTORS

In this section, we compute the Laplacian spectrum of the non-commuting graphs of some families
of finite non-abelian groups whose central factors are some well-known finite groups. We begin with
the following result.

Theorem3.1— Let G be a finite group andZ(G—G) = Sz(2), whereSz(2) is the Suzuki group
presented bya, b : a® = b* = 1,b"tab = a?). Then

L-spec(Ag) = {0, (15| Z2(G)|)*1# D171 (16| 2(G)|) 7D, (19)12(G)))°}.

PrRoOF: We have

G
20 = (aZ(G),bZ(G) : ®Z(G) = b Z(G) = Z(G), b LabZ(G) = a*Z(G)).
Observe that

Cglab) = Z(G)UabZ(G)Ua*V?*Z(G)Ua*b*Z(Q),

Ca(a®h) = Z(G)Ua*hZ(G)Ua®h?*Z(G)Uab®Z(Q),

Cao(a®b®) = Z(G)Ua?¥Z(G)Uab*Z(G) Ua*bZ(G),

Ca(b =Z(G)UbZ(G)UMZ(G)UbZ(G),

Ca(a®h) = Z(G)Uad®bZ(G)Ua?®Z(G)Ua*?Z(G) and

Ca(a) =Z(G)UaZ(G)Ua?Z(G)Ua’Z(G)Ua*Z(G)
are the only centralizers of non-central element&;ofAlso note that these centralizers are abelian
subgroups of+. ThusG is a CA-group.

We havelCi(a)| = 5|Z(G)| and

[Ca(ab)| = |Ca(a®h)| = |Ca(a®h®)| = |Ca(b)| = |Ca(a’h)| = 4|Z(G)|.

Therefore, by Theorem 2.4, the result follows. O

Theorem3.2— Let G be a finite group such thaé% = 7, x Zy,, Wherep is a prime integer.
Then
2-1)|Z(G)|—p—1
Lespec(Ag) = {0, ((p* = )| Z(G))" O (2~ n)jz(@))'}

PROOF : Let |Z(G)| = n. Since% >~ 7, x 7, we have% = (aZ(@),bZ(G) :

|
aP,b? aba1b~t € Z(G)), wherea, b € G with ab # ba. Then for any: € Z(G), we have

Cgla) = Cqla'z) =Z(G)UaZ(G)U---UaP 1 Z(G)for1 <i<p-—1,
Ca(a?b) = Ca(a’bz) = Z(G) Ua?bZ(G) U --- UaPDVIpP~1 Z(G) for 1 < j < p.
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These are the only centralizers of non-central elements.oflso note that these centralizers
are abelian subgroups 6f. Therefore,G is a CA-group. We havéCg(a)| = |Cg(a’b)| = pn for
1 < j < p. Hence, the result follows from Theorem 2.4. O

As a corollary we have the following result.

Corollary 3.3 — LetG be a non-abelian group of ordgt, for any primep, then

Lspec(Ag) = {0, (0° — p)F %71, (5° — p)'}.

PROOF: Note that|Z(G)| = p and% = 7, x Zp. Hence the result follows from Theorem

3.2. O

Theorem3.4— Let G be a finite group such thazt%) ~ Doy, form > 2. Then
L-spec(Ag) ={0, (m|Z(G))) ™ V2= (2(m — 1)|2(G)|) ™ DI=m,
((2m = 1)|Z(G)))"}.

PROOF : Since% >~ Dy, We have% = 2Z(Q),yZ(G) : 2%, y™ zyz~y € Z(Q)),

wherex, y € G with xy # yz. Itis not difficult to see that for any € Z(G),
Ca(zy’) = Colry’z) = Z(G) Uy Z(G),1 < j <m

and

Caly) =Ca(y'z) = Z(G)UyZ(G)U---LUy™ 1 Z(G),1<i<m—1
are the only centralizers of non-central elements;/ofAlso note that these centralizers are abelian
subgroups of;. Therefore,G is a CA-group. We havéCq(27y)| = 2n for 1 < j < m and
|Ca(y)| = mn, where|Z(G)| = n. Hence, the result follows from Theorem 2.4. 0

Using Theorem 3.4, we now compute the Laplacian spectrum of the non-commuting graphs of
the groups\os, Do, @ndQ 4, respectively.

Corollary 3.5 — LetMs,,, = {a,b: a™ = b*" = 1,bab~! = a~!) be a metacyclic group, where
m > 2. Then L-spe€Ays,,,..)

{0, (mn)™ == (2mn — 2n)"" """ (2mn —n)™} if m is odd

{0, (mn)™=2n=1 (2mp — 4n)™ "% (2mn —2n)= } if mis even
PROOF: Observe thafZ(Ma,,,) = (b?) or (b%) Uaz (b?) according asn is odd or even. Also, it
is easy to see th% = Do, or D,, according asn is odd or even. Hence, the result follows

from Theorem 3.4. O
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As a corollary to the above result we have the following result.
Corollary 3.6 — LetDy,, = {a,b: a™ = b* = 1,bab~! = a~!) be the dihedral group of order
2m, wherem > 2. Then

{0,m™2% (2m — 1)™} if m is odd
L-spec(Ap,,,) =

m
2

{0,m™ 3, (2m —4)% , (2m —2)%} if mis even

Corollary 3.7 — LetQy, = (z,y : y*" = 1,22 = y", zyz~ ! = y~ 1), wheren > 2, be the
generalized quaternion group of order. Then

L-spec(Ag,,) = {0, (2n)*" 72, (4n — 4)", (4n — 2)"}.

PROOF : The result follows from Theorem 3.4 noting th&tQ,,) = {1,¢"} and Z%Z y =
Doy, O

4. SOME WELL-KNOWN GROUPS

In this section, we compute the Laplacian spectrum of the non-commuting graphs of some well-
known families of finite groups. We begin with the family of finite groups having opgexvherep
andgq are primes.

Proposition4.1 — Let G be a non-abelian group of ordgg, wherep and g are primes with
p|(g—1). Then

L-spec(Ag) = {0, (pg — 9)* 2, (pg — p)** %, (pg — 1)7}.

PROOF: It is easy to see thaZ(G)| = 1 andG is a CA-group. Also the centralizers of non-
central elements df are precisely the Sylow subgroups@f The number of Sylow-subgroups and
Sylow p-subgroups of> are one andg respectively. Hence, the result follows from Theorem 2.

Proposition4.2 — The Laplacian spectrum of the non-commuting graph of the quasidihedral

2n71

groupQDan = (a,b:a?" ' = b2 =1,bab~! = a?"~*~1), wheren > 4, is given by

n—1_ n— n—
L-spec(Agp,.) = {0, (2" 1)*" 7 (2n —4)¥" 7 (2" —2)*""

.

2n—2

PROOF: Itis well-known thatZ (QDan) = {1,a* " }. Also

Copyn (@) = Cop,n (a') = (a) for 1 <i <27t — 1,4 #2772
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and
Copyn (ab) = {1,a%" " alb,a?*?" b} for1 < j < 272

are the only centralizers of non-central elementg 6%,». Note that these centralizers are abelian sub-
groups ofQ Da». Therefore() Don is a CA-group. We haviog p,,, (a)| = 2"~ and|Cgp,. (a’b)| =
4for1 < j < 2" 2. Hence, the result follows from Theorem 2.4. O

Proposition4.3 — The Laplacian spectrum of the non-commuting graph of the projective special
linear groupPSL(2,2%), wherek > 2, is given by

22k _k_2

)

22k +2k
}.

23k—1722k+2k—1

L-spec(Apgraar)) ={0, (2% —2M1 — 1) , (2%% — 2+

23k—1_22k_3'2k—1

(23k . 2k+1 + 1) , (23k o 2k o 1)
PROOF: We know thatPSL(2, 2¥) is a non-abelian group of ord2¥ (22* — 1) with trivial center.
By Proposition 3.21 of [1], the set of centralizers of non-trivial elementB 8L (2, 2%) is given by

{xPx~t xAz~! Ba~' .z € PSL(2,2%)}

where P is an elementary abelian 2-subgroup andd, B are cyclic subgroups oPSL(2,2")
having order2®, 2¥ — 1 and2* + 1 respectively. Also the number of conjugatesidfd and B in
PSL(2,2F) are2% + 1,2F1(2F 4 1) and2¥~1(2F — 1) respectively. Note thaPSL(2,2%) is a
CA-group and so, by (2.1), we have

Apsrar) = (28 + DK pppe-1121 U281 (28 + DK pag-112 U281 (28 = DK ppp1-1-

That is, Apgrgor) = (2F + 1)Koy U 28128 + 1) Ko _p L1 27 1(2F — 1) Ko Hence, the
result follows from Corollary 2.3. O

Proposition4.4 — The Laplacian spectrum of the non-commuting graph of the general linear
groupGL(2,q), whereq = p™ > 2 andp is a prime integer, is given by

a*—2¢3+4

3_ 272
L-spec(Agrg) =10, (¢" = =2 +q+1) 2 (' = -2 +2¢)" " 7,

a*—2¢%-24%1¢

(- -2 +3¢-1) 2 (- -4 +1

)q2+q}.

PROOF: We have|GL(2,q)| = (¢*> — 1)(¢*> — ¢) and|Z(GL(2,q))| = ¢ — 1. By Proposition
3.26 of [1], the set of centralizers of non-central elements bf2, q) is given by

{eDz™ Y xlz™ 2 PZ(GL(2,q))z™" : 2 € GL(2,¢)}
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whereD is the subgroup of7L(2, q) consisting of all diagonal matrice$,is a cyclic subgroup of
GL(2,q) having orderg> — 1 and P is the Sylowp-subgroup ofGL(2, ¢) consisting of all upper
triangular matrices with in the diagonal. The orders dd and PZ(GL(2,q)) are (¢ — 1)? and
q(q — 1) respectively. Also the number of conjugatesiofl and PZ(GL(2,q)) in GL(2,q) are
q(q—;l), @ andg + 1 respectively. Sincé&/L(2, q) is a CA-group (see Lemma 3.5 of [1]), by (2.1),
we haved; s, =

qlg+1 q(g—1)
9 )K\ID1*1|fq+1u (

Klaro-11—g+1 U (@ + DK pzcr2.q) a1 |-g+1-

Thatis, Agr2,q) = ‘I(q;” K 3,400 q(q2—1)Kqu U(q+1)K 29,41 Hence, the result follows

from Corollary 2.3. g

Proposition4.5 — LetF' = GF'(2"),n > 2 andv be the Frobenius automorphism Bf that is,
¥(x) = 22 for all z € F. Then the Laplacian spectrum of the non-commuting graph of the group

1 0 0
An,9)=<U(a,b)=|a 1 O0f|:abeF
b da) 1

under matrix multiplication given by/ (a, b)U (a/,b') = U(a + a/,b+ V' + a’9(a)) is
mn __ 2 n__
Lespec(Aagg) = {0, (220 — 2707 (22— oy,

PrRoOOF: Note thatZ(A(n,d)) = {U(0,b) : b € F} and so|Z(A(n,v))| = 2". LetU(a,b)
be a non-central element of(n,?). It can be seen that the centralizer@fa,b) in A(n,?) is
Z(A(n,9))UU(a,0)Z(A(n,v)). ClearlyA(n,v) is a CA-group and so, by (2.1), we hawg,,, y) =
(2™ — 1) Kan. Hence the result follows from Corollary 2.3. O

Proposition4.6 — Let ' = GF(p"™), p be a prime. Then the Laplacian spectrum of the non-
commuting graph of the group

1 00
A(n,p) =< V(a,b,c) = |a 1 0| :a,b,ceF
b ¢ 1
under matrix multiplicatiorV/ (a, b, c)V (', V', ') = V(a + d/,b+ V' + cd’,c+ ) is

p3n_2pn -1 n

L_SpeC(AA(n,p)) = {07 (p?m - an) ) (p?m - pn)p }

PROOF: We haveZ (A(n,p)) = {V(0,b,0) : b € F} andsgZ(A(n,p))| = p™. The centralizers
of non-central elements of(n, p) are given below
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(i) If b,c € F andc # 0 then the centralizer df (0, b, ¢) in A(n,p) is{V(0,¥',c) : ¥/, € F}
having ordep?".

(i7) If a,b € F anda # 0 then the centralizer df (a, b, 0) in A(n,p)is{V(d’,V',0) : ',V € F}
having ordep?”.

(zit) If a,b,c € F anda # 0,c # 0 then the centralizer oV (a,b,c) in A(n,p) is
{V(a',V/,ca’a™t) : a’,b' € F} having ordep®".

It can be seen that all the centralizers of non-central elementyofp) are abelian. Hence
A(n,p) is a CA-group and so, by (2.1), we have

A = Kpon_pn U Kpan_pe U (p" = DK,

2n_pn = (pn + ]_)Kan_pn.
Hence the result follows from Corollary 2.3. O

We would like to mention here that the groups considered in Proposition 4.5-4.6 are constructed
by Hanaki (see [14]). These groups are also considered in [5], in order to compute their numbers of
distinct centralizers.

5. SOME CONSEQUENCES
Note that the non-commuting graphs of all the groups considered in Section 3 and 4 are L-integral. In
this section, we determine some conditiongbso that its non-commuting graph becomes L-integral.

A finite group is called am-centralizer group if it has numbers of distinct element centralizers.
It is clear thatl-centralizer groups are precisely the abelian groups. There a2e 31gentralizer
finite groups. The study of these groups was initiated by Belcastro and Sherman [6] in the year 1994.
We have the following results regardingcentralizer groups.

Proposition5.1 — If G is a finite4-centralizer group thenls is L-integral.
PROOF: Let G be afinited-centralizer group. Then, by [6, Theorem 2], we h%% & Zo X L.

Therefore, by Theorem 3.2, we have

Lespec(Ag) = {0, (2|12(@))* 9172, (312(@)))*}.

Hence, Aq is L-integral. a

Further, we have the following result.
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Proposition5.2 — If G is a finite (p + 2)-centralizerp-group for any primep, then As is L-
integral.

PROOF: Let G be a finite(p + 2)-centralizerp-group. Then, by [5, Lemma 2.7], we have
726 = Zy, x Zy. Therefore, by Theorem 3.2, we have

Lespec(Ag) = {0, (0> — p)|Z(@)) T V71 (2 — 1)1 2(G)))).

Hence, A is L-integral. O
Proposition5.3 — If G is a finite5-centralizer group thenls is L-integral.

PROOF: Let G be a finite5-centralizer group. Then by [6, Theorem 4] we h% =73 X L3
or Dg. Now, if s = 73 x Z; then by Theorem 3.2 we ha¥espec(Ag) = {0, (6/2(G)|)3# @)=,

(8/12(G)|)*} and henced; is L-integral. If% = D¢ then, by Theorem 3.4, we have

Lspec(Ag) = {0, (312(G) )L, (42(G)) > D2, (5] 2(G))*)

and henced. is L-integral. Therefore, the result follows. O
We also have the following corollary.

Corollary 5.4 — LetG be a finite non-abelian group add, z»,...,z,} be a set of pairwise
non-commuting elements 6 having maximal size. Thed is L-integral ifr = 3, 4.

PrRoOOF: By Lemma 2.4 in [2], we have th&t is a4-centralizer or &-centralizer group according
asr = 3 or 4. Hence the result follows from Proposition 5.1 and Proposition 5.3. O

The commuting probability of a finite group denoted byPr(G) is the probability that any two
randomly chosen elements Gfcommute. ClearlyPr(G) = 1 if and only if G is abelian. The study
of Pr(G) is originated from a paper of Eid and Tuén [13]. Various results of*r(G) can be found
in[7,9, 19]. The following results show that is L-integral if Pr(G) has some particular values.

Proposition5.5 — If Pr(G) € {-, 2,111 3} then A is L-integral.

PROOF: If Pr(G) € {2,2 L 1 5} then as shownin[22, pp. 246] and [20, pp. 451], we have
% is isomorphic to one of the groups {D14, D1o, Ds, D¢, Zo X Zo}. If % is isomorphic to
D1y, Do, Dg or Dg then, by Theorem 3.4, it follows that; is L-integral. If% is isomorphic to
Zo X 7 then, by Theorem 3.2, it follows that is L-integral. Hence, the result follows. O

Proposition5.6 — LetG be a finite group ang the smallest prime divisor df7|. If Pr(G) =

% then. A is L-integral.
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PROOF: If Pr(G) = ”2;7{;‘1 then by [16, Theorem 3] we ha\@% is isomorphic tdZ, x Z,.
Now, by Theorem 3.2, it follows thad; is L-integral. O

Proposition5.7 — If G is a non-solvable group witAr(G) = %2 thenAg is L-integral.

PrRoOOF: By [7, Proposition 3.3.7], we have thét is isomorphic toA; x B for some abelian
groupB. SinceAs is a CA-group, by Corollary 2.5, it follows thad¢ is L-integral. O

A graph is called planar if it can be embedded in the plane so that no two edges intersect geo-
metrically except at a vertex to which both are adjacent. We conclude this paper with the following
result.

Proposition5.8 — LetG be a finite group thepl is L-integral if A is planar.

PROOF: It was shown in Proposition 2.3 of [1] thats is planar if and only ifG is isomorphic
to Dg, Dg or Qg. Therefore, by Corollary 3.6 and Corollary 3.7, the result follows. O
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