LAPLACIAN SPECTRUM OF NON-COMMUTING GRAPHS OF FINITE GROUPS

Parama Dutta, Jutirekha Dutta and Rajat Kanti Nath

Department of Mathematical Sciences, Tezpur University, Napaam 784 028, Sonitpur, Assam, India e-mails: parama@gonitsora.com, jutirekhadutta@yahoo.com; rajatkantinath@yahoo.com

(Received 9 December 2016; after final revision 2 June 2017; accepted 21 June 2017)

In this paper, we compute the Laplacian spectrum of non-commuting graphs of some classes of finite non-abelian groups. Our computations reveal that the non-commuting graphs of all the groups considered in this paper are L-integral. We also obtain some conditions on a group so that its non-commuting graph is L-integral.

Key words: Non-commuting graph; spectrum; L-integral graph; finite group.

1. Introduction

Let G be a finite group with centre Z(G). The non-commuting graph of a non-abelian group G, denoted by \mathcal{A}_G , is a simple undirected graph whose vertex set is $G \setminus Z(G)$ and two vertices x and y are adjacent if and only if $xy \neq yx$. Various aspects of non-commuting graphs of different finite groups can be found in [1, 4, 8, 12, 23]. In [12], Elvierayani and Abdussakir have computed the Laplacian spectrum of the non-commuting graph of dihedral groups D_{2m} where m is odd and suggested to consider the case when m is even. In this paper, we compute the Laplacian spectrum of the non-commuting graph of D_{2m} for any $m \geq 3$ using a different method. Our method also enables to compute the Laplacian spectrum of the non-commuting graphs of several well-known families of finite non-abelian groups such as the quasidihedral groups, generalized quaternion groups, some projective special linear groups, general linear groups etc. In a separate paper [11], we study the Laplacian energy of non-commuting graphs of the groups considered in this paper.

For a graph \mathcal{G} we write $\overline{\mathcal{G}}$ and $V(\mathcal{G})$ to denote the complement of \mathcal{G} and the set of vertices of \mathcal{G} respectively. Let $A(\mathcal{G})$ and $D(\mathcal{G})$ denote the adjacency matrix and degree matrix of a graph \mathcal{G}

respectively. Then the Laplacian matrix of \mathcal{G} is given by $L(\mathcal{G}) = D(\mathcal{G}) - A(\mathcal{G})$. We write L-spec(\mathcal{G}) to denote the Laplacian spectrum of \mathcal{G} and L-spec(\mathcal{G}) = $\{\alpha_1^{a_1}, \alpha_2^{a_2}, \ldots, \alpha_n^{a_n}\}$ where $\alpha_1 < \alpha_2 < \cdots < \alpha_n$ are the eigenvalues of $L(\mathcal{G})$ with multiplicities a_1, a_2, \ldots, a_n respectively. The Laplacian spectrum of graphs plays an important role in solving many Physical and Chemical problems. The reader may conf. [18, Section 5] for details. A graph \mathcal{G} is called L-integral if L-spec (\mathcal{G}) contains only integers. As a consequence of our results, it follows that the non-commuting graphs of all the groups considered in this paper are L-integral. It is worth mentioning that L-integral graphs are studied extensively in [3, 15, 17].

2. Preliminary Results

It is well-known that L-spec $(K_n) = \{0^1, n^{n-1}\}$ where K_n denotes the complete graph on n vertices. Further, we have the following results.

Theorem 2.1 — If $G = l_1 K_{m_1} \sqcup l_2 K_{m_2} \sqcup \cdots \sqcup l_k K_{m_k}$, where $l_i K_{m_i}$ denotes the disjoint union of l_i copies of K_{m_i} for $1 \leq i \leq k$ and $m_1 < m_2 < \cdots < m_k$, then

L-spec(
$$\mathcal{G}$$
) = $\left\{0^{\sum_{i=1}^{k} l_i}, m_1^{l_1(m_1-1)}, m_2^{l_2(m_2-1)}, \dots, m_k^{l_k(m_k-1)}\right\}$.

Theorem 2.2 — [18, Theorem 3.6]. Let \mathcal{G} be a graph such that L-spec $(\mathcal{G}) = \{\alpha_1^{a_1}, \alpha_2^{a_2}, \dots, \alpha_n^{a_n}\}$ then L-spec $(\overline{\mathcal{G}})$ is given by

$$\{0, (|V(\mathcal{G})| - \alpha_n)^{a_n}, (|V(\mathcal{G})| - \alpha_{n-1})^{a_{n-1}}, (|V(\mathcal{G})| - \alpha_{n-2})^{a_{n-2}}, \dots, (|V(\mathcal{G})| - \alpha_1)^{a_1-1}\}.$$

As a corollary of the above two theorems we have the following result.

Corollary 2.3 — If $\mathcal{G} = l_1 K_{m_1} \sqcup l_2 K_{m_2} \sqcup \cdots \sqcup l_k K_{m_k}$, where $l_i K_{m_i}$ denotes the disjoint union of l_i copies of K_{m_i} for $1 \leq i \leq k$ and $m_1 < m_2 < \cdots < m_k$, then

L-spec(
$$\overline{\mathcal{G}}$$
) ={0, $\left(\sum_{i=1}^{k} l_i m_i - m_k\right)^{l_k(m_k-1)}$, $\left(\sum_{i=1}^{k} l_i m_i - m_{k-1}\right)^{l_{k-1}(m_{k-1}-1)}$, $\left(\sum_{i=1}^{k} l_i m_i - m_{k-1}\right)^{l_1(m_1-1)}$, $\left(\sum_{i=1}^{k} l_i m_i\right)^{\sum_{i=1}^{k} l_i - 1}$ }.

A group G is called a CA-group if $C_G(x)$ is abelian for all $x \in G \setminus Z(G)$. Various aspects of CA-groups can be found in [1, 10, 21]. The following result gives the Laplacian spectrum of the non-commuting graph of a finite non-abelian CA-group.

Theorem 2.4 — Let G be a finite non-abelian CA-group. Then

L-spec(
$$\mathcal{A}_G$$
) = {0, $(|G| - |X_n|)^{|X_n| - |Z(G)| - 1}, \dots, (|G| - |X_1|)^{|X_1| - |Z(G)| - 1}, (|G| - |Z(G)|)^{n-1}$ }.

where X_1, \ldots, X_n are the distinct centralizers of non-central elements of G such that $|X_1| \leq \cdots \leq |X_n|$.

PROOF: Let G be a finite non-abelian CA-group and $X_i = C_G(x_i)$ where $x_i \in G \setminus Z(G)$ and $1 \leq i \leq n$. Let $x, y \in X_i \setminus Z(G)$ for some i and $x \neq y$ then, since G is a CA-group, there is an edge between x and y in $\overline{\mathcal{A}_G}$. Suppose that $x \in (X_i \cap X_j) \setminus Z(G)$ for some $1 \leq i \neq j \leq n$. Then $[x, x_i] = 1$ and $[x, x_j] = 1$. Let $s \in C_G(x)$ then $[s, x_i] = 1$ since $x_i \in C_G(x)$ and G is a CA-group. Therefore, $s \in C_G(x_i)$ and so $C_G(x) \subseteq C_G(x_i)$. Again, let $t \in C_G(x_i)$ then [t, x] = 1 since $x \in C_G(x_i)$ and G is a CA-group. Therefore, $t \in C_G(x)$ and so $C_G(x_i) \subseteq C_G(x)$. Thus $C_G(x) = C_G(x_i)$. Similarly, it can be seen that $C_G(x) = C_G(x_j)$, which is a contradiction. Therefore, $X_i \cap X_j = Z(G)$ for any $1 \leq i \neq j \leq n$. This shows that

$$\overline{\mathcal{A}_G} = \bigcup_{i=1}^n K_{|X_i| - |Z(G)|}.$$
(2.1)

Therefore, by Corollary 2.3, we have

L-spec
$$(A_G) = \{0, \left(\sum_{i=1}^n (|X_i| - |Z(G)|) - (|X_n| - |Z(G)|)\right)^{|X_n| - |Z(G)| - 1}, \dots, \left(\sum_{i=1}^n (|X_i| - |Z(G)|) - (|X_1| - |Z(G)|)\right)^{|X_1| - |Z(G)| - 1}, \left(\sum_{i=1}^n (|X_i| - |Z(G)|)\right)^{n-1}\}.$$

Hence, the result follows noting that
$$\sum_{i=1}^{n}(|X_i|-|Z(G)|)=|G|-|Z(G)|$$
.

Corollary 2.5 — Let G be a finite non-abelian CA-group and A be any finite abelian group. Then

L-spec
$$(A_{G \times A}) = \{0, (|A|(|G| - |X_n|))^{|A|(|X_n| - |Z(G)|) - 1}, \dots, (|A|(|G| - |X_1|))^{|A|(|X_1| - |Z(G)|) - 1}, (|A|(|G| - |Z(G)|))^{n-1}\}.$$

where X_1, \ldots, X_n are the distinct centralizers of non-central elements of G such that $|X_1| \leq \cdots \leq |X_n|$.

PROOF: It is easy to see that $G \times A$ is a CA-group and $X_1 \times A, X_2 \times A, \ldots, X_n \times A$ are the distinct centralizers of non-central elements of $G \times A$. Hence, the result follows from Theorem 2.4 noting that $Z(G \times A) = Z(G) \times A$.

3. GROUPS WITH GIVEN CENTRAL FACTORS

In this section, we compute the Laplacian spectrum of the non-commuting graphs of some families of finite non-abelian groups whose central factors are some well-known finite groups. We begin with the following result.

Theorem 3.1 — Let G be a finite group and $\frac{G}{Z(G)} \cong Sz(2)$, where Sz(2) is the Suzuki group presented by $\langle a, b : a^5 = b^4 = 1, b^{-1}ab = a^2 \rangle$. Then

L-spec(
$$\mathcal{A}_G$$
) = {0, $(15|Z(G)|)^{4|Z(G)|-1}$, $(16|Z(G)|)^{15|Z(G)|-5}$, $(19|Z(G)|)^5$ }.

PROOF: We have

$$\frac{G}{Z(G)}=\langle aZ(G),bZ(G):a^5Z(G)=b^4Z(G)=Z(G),b^{-1}abZ(G)=a^2Z(G)\rangle.$$

Observe that

$$C_{G}(ab) = Z(G) \sqcup abZ(G) \sqcup a^{4}b^{2}Z(G) \sqcup a^{3}b^{3}Z(G),$$

$$C_{G}(a^{2}b) = Z(G) \sqcup a^{2}bZ(G) \sqcup a^{3}b^{2}Z(G) \sqcup ab^{3}Z(G),$$

$$C_{G}(a^{2}b^{3}) = Z(G) \sqcup a^{2}b^{3}Z(G) \sqcup ab^{2}Z(G) \sqcup a^{4}bZ(G),$$

$$C_{G}(b) = Z(G) \sqcup bZ(G) \sqcup b^{2}Z(G) \sqcup b^{3}Z(G),$$

$$C_{G}(a^{3}b) = Z(G) \sqcup a^{3}bZ(G) \sqcup a^{2}b^{2}Z(G) \sqcup a^{4}b^{3}Z(G) \text{ and }$$

$$C_{G}(a) = Z(G) \sqcup aZ(G) \sqcup a^{2}Z(G) \sqcup a^{3}Z(G) \sqcup a^{4}Z(G)$$

are the only centralizers of non-central elements of G. Also note that these centralizers are abelian subgroups of G. Thus G is a CA-group.

We have
$$|C_G(a)| = 5|Z(G)|$$
 and

$$|C_G(ab)| = |C_G(a^2b)| = |C_G(a^2b^3)| = |C_G(b)| = |C_G(a^3b)| = 4|Z(G)|.$$

Therefore, by Theorem 2.4, the result follows.

Theorem 3.2 — Let G be a finite group such that $\frac{G}{Z(G)} \cong \mathbb{Z}_p \times \mathbb{Z}_p$, where p is a prime integer. Then

L-spec
$$(\mathcal{A}_G) = \{0, ((p^2 - p)|Z(G)|)^{(p^2 - 1)|Z(G)| - p - 1}, ((p^2 - 1)|Z(G)|)^p\}.$$

PROOF: Let |Z(G)|=n. Since $\frac{G}{Z(G)}\cong \mathbb{Z}_p\times \mathbb{Z}_p$ we have $\frac{G}{Z(G)}=\langle aZ(G),bZ(G):a^p,b^p,aba^{-1}b^{-1}\in Z(G)\rangle$, where $a,b\in G$ with $ab\neq ba$. Then for any $z\in Z(G)$, we have

$$C_G(a) = C_G(a^i z) = Z(G) \sqcup aZ(G) \sqcup \cdots \sqcup a^{p-1}Z(G) \text{ for } 1 \le i \le p-1,$$

 $C_G(a^j b) = C_G(a^j bz) = Z(G) \sqcup a^j bZ(G) \sqcup \cdots \sqcup a^{(p-1)j}b^{p-1}Z(G) \text{ for } 1 \le j \le p.$

These are the only centralizers of non-central elements of G. Also note that these centralizers are abelian subgroups of G. Therefore, G is a CA-group. We have $|C_G(a)| = |C_G(a^jb)| = pn$ for $1 \le j \le p$. Hence, the result follows from Theorem 2.4.

As a corollary we have the following result.

Corollary 3.3 — Let G be a non-abelian group of order p^3 , for any prime p, then

L-spec(
$$\mathcal{A}_G$$
) = {0, $(p^3 - p^2)^{p^3 - 2p - 1}$, $(p^3 - p)^p$ }.

PROOF: Note that |Z(G)|=p and $\frac{G}{Z(G)}\cong \mathbb{Z}_p\times \mathbb{Z}_p$. Hence the result follows from Theorem 3.2.

Theorem 3.4 — Let G be a finite group such that $\frac{G}{Z(G)} \cong D_{2m}$, for $m \geq 2$. Then

L-spec(
$$\mathcal{A}_G$$
) = {0, $(m|Z(G)|)^{(m-1)|Z(G)|-1}$, $(2(m-1)|Z(G)|)^{m|Z(G)|-m}$, $((2m-1)|Z(G)|)^m$ }.

PROOF: Since $\frac{G}{Z(G)} \cong D_{2m}$ we have $\frac{G}{Z(G)} = \langle xZ(G), yZ(G) : x^2, y^m, xyx^{-1}y \in Z(G) \rangle$, where $x, y \in G$ with $xy \neq yx$. It is not difficult to see that for any $z \in Z(G)$,

$$C_G(xy^j) = C_G(xy^jz) = Z(G) \sqcup xy^j Z(G), 1 \le j \le m$$

and

$$C_G(y) = C_G(y^i z) = Z(G) \sqcup yZ(G) \sqcup \cdots \sqcup y^{m-1}Z(G), 1 \le i \le m-1$$

are the only centralizers of non-central elements of G. Also note that these centralizers are abelian subgroups of G. Therefore, G is a CA-group. We have $|C_G(x^jy)|=2n$ for $1\leq j\leq m$ and $|C_G(y)|=mn$, where |Z(G)|=n. Hence, the result follows from Theorem 2.4.

Using Theorem 3.4, we now compute the Laplacian spectrum of the non-commuting graphs of the groups M_{2mn} , D_{2m} and Q_{4n} respectively.

Corollary 3.5 — Let $M_{2mn}=\langle a,b:a^m=b^{2n}=1,bab^{-1}=a^{-1}\rangle$ be a metacyclic group, where m>2. Then L-spec $(\mathcal{A}_{M_{2mn}})$

$$=\begin{cases} \{0,(mn)^{mn-n-1},(2mn-2n)^{mn-m},(2mn-n)^m\} & \text{if } m \text{ is odd} \\ \{0,(mn)^{mn-2n-1},(2mn-4n)^{mn-\frac{m}{2}},(2mn-2n)^{\frac{m}{2}}\} & \text{if } m \text{ is even.} \end{cases}$$

PROOF: Observe that $Z(M_{2mn}) = \langle b^2 \rangle$ or $\langle b^2 \rangle \cup a^{\frac{m}{2}} \langle b^2 \rangle$ according as m is odd or even. Also, it is easy to see that $\frac{M_{2mn}}{Z(M_{2mn})} \cong D_{2m}$ or D_m according as m is odd or even. Hence, the result follows from Theorem 3.4.

As a corollary to the above result we have the following result.

Corollary 3.6 — Let $D_{2m} = \langle a, b : a^m = b^2 = 1, bab^{-1} = a^{-1} \rangle$ be the dihedral group of order 2m, where m > 2. Then

$$\text{L-spec}(\mathcal{A}_{D_{2m}}) = \begin{cases} \{0, m^{m-2}, (2m-1)^m\} & \text{if } m \text{ is odd} \\ \{0, m^{m-3}, (2m-4)^{\frac{m}{2}}, (2m-2)^{\frac{m}{2}}\} & \text{if } m \text{ is even.} \end{cases}$$

Corollary 3.7 — Let $Q_{4n}=\langle x,y:y^{2n}=1,x^2=y^n,xyx^{-1}=y^{-1}\rangle$, where $n\geq 2$, be the generalized quaternion group of order 4n. Then

L-spec(
$$\mathcal{A}_{Q_{4n}}$$
) = {0, $(2n)^{2n-3}$, $(4n-4)^n$, $(4n-2)^n$ }.

PROOF: The result follows from Theorem 3.4 noting that $Z(Q_{4n})=\{1,a^n\}$ and $\frac{Q_{4n}}{Z(Q_{4n})}\cong D_{2n}$.

4. Some Well-known Groups

In this section, we compute the Laplacian spectrum of the non-commuting graphs of some well-known families of finite groups. We begin with the family of finite groups having order pq where p and q are primes.

Proposition 4.1 — Let G be a non-abelian group of order pq, where p and q are primes with $p \mid (q-1)$. Then

L-spec(
$$\mathcal{A}_G$$
) = {0, $(pq-q)^{q-2}$, $(pq-p)^{pq-2q}$, $(pq-1)^q$ }.

PROOF: It is easy to see that |Z(G)|=1 and G is a CA-group. Also the centralizers of non-central elements of G are precisely the Sylow subgroups of G. The number of Sylow q-subgroups and Sylow p-subgroups of G are one and q respectively. Hence, the result follows from Theorem 2.4. \Box

Proposition 4.2 — The Laplacian spectrum of the non-commuting graph of the quasidihedral group $QD_{2^n} = \langle a, b : a^{2^{n-1}} = b^2 = 1, bab^{-1} = a^{2^{n-2}-1} \rangle$, where $n \geq 4$, is given by

L-spec(
$$\mathcal{A}_{QD_{2n}}$$
) = {0, $(2^{n-1})^{2^{n-1}-3}$, $(2^n - 4)^{2^{n-2}}$, $(2^n - 2)^{2^{n-2}}$ }.

PROOF : It is well-known that $Z(QD_{2^n})=\{1,a^{2^{n-2}}\}$. Also

$$C_{QD_{2^n}}(a) = C_{QD_{2^n}}(a^i) = \langle a \rangle \text{ for } 1 \le i \le 2^{n-1} - 1, i \ne 2^{n-2}$$

and

$$C_{QD_{2^n}}(a^jb) = \{1, a^{2^{n-2}}, a^jb, a^{j+2^{n-2}}b\} \text{ for } 1 \le j \le 2^{n-2}$$

are the only centralizers of non-central elements of QD_{2^n} . Note that these centralizers are abelian subgroups of QD_{2^n} . Therefore, QD_{2^n} is a CA-group. We have $|C_{QD_{2^n}}(a)|=2^{n-1}$ and $|C_{QD_{2^n}}(a^jb)|=4$ for $1 \le j \le 2^{n-2}$. Hence, the result follows from Theorem 2.4.

Proposition 4.3 — The Laplacian spectrum of the non-commuting graph of the projective special linear group $PSL(2, 2^k)$, where $k \ge 2$, is given by

L-spec
$$(\mathcal{A}_{PSL(2,2^k)}) = \{0, (2^{3k} - 2^{k+1} - 1)^{2^{3k-1} - 2^{2k} + 2^{k-1}}, (2^{3k} - 2^{k+1})^{2^{2k} - 2^k - 2}, (2^{3k} - 2^{k+1} + 1)^{2^{3k-1} - 2^{2k} - 3 \cdot 2^{k-1}}, (2^{3k} - 2^k - 1)^{2^{2k} + 2^k}\}.$$

PROOF: We know that $PSL(2, 2^k)$ is a non-abelian group of order $2^k(2^{2k}-1)$ with trivial center. By Proposition 3.21 of [1], the set of centralizers of non-trivial elements of $PSL(2, 2^k)$ is given by

$$\{xPx^{-1}, xAx^{-1}, xBx^{-1} : x \in PSL(2, 2^k)\}$$

where P is an elementary abelian 2-subgroup and A, B are cyclic subgroups of $PSL(2,2^k)$ having order $2^k, 2^k - 1$ and $2^k + 1$ respectively. Also the number of conjugates of P, A and B in $PSL(2,2^k)$ are $2^k + 1, 2^{k-1}(2^k + 1)$ and $2^{k-1}(2^k - 1)$ respectively. Note that $PSL(2,2^k)$ is a CA-group and so, by (2.1), we have

$$\overline{\mathcal{A}_{PSL(2,2^k)}} = (2^k+1)K_{|xPx^{-1}|-1} \sqcup 2^{k-1}(2^k+1)K_{|xAx^{-1}|-1} \sqcup 2^{k-1}(2^k-1)K_{|xBx^{-1}|-1}.$$

That is, $\overline{\mathcal{A}_{PSL(2,2^k)}} = (2^k+1)K_{2^k-1} \sqcup 2^{k-1}(2^k+1)K_{2^k-2} \sqcup 2^{k-1}(2^k-1)K_{2^k}$. Hence, the result follows from Corollary 2.3.

Proposition 4.4 — The Laplacian spectrum of the non-commuting graph of the general linear group GL(2,q), where $q=p^n>2$ and p is a prime integer, is given by

L-spec
$$(\mathcal{A}_{GL(2,q)}) = \{0, (q^4 - q^3 - 2q^2 + q + 1)^{\frac{q^4 - 2q^3 + q}{2}}, (q^4 - q^3 - 2q^2 + 2q)^{q^3 - q^2 - 2q}, (q^4 - q^3 - 2q^2 + 3q - 1)^{\frac{q^4 - 2q^3 - 2q^2 + q}{2}}, (q^4 - q^3 - q^2 + 1)^{q^2 + q}\}.$$

PROOF: We have $|GL(2,q)| = (q^2 - 1)(q^2 - q)$ and |Z(GL(2,q))| = q - 1. By Proposition 3.26 of [1], the set of centralizers of non-central elements of GL(2,q) is given by

$$\{xDx^{-1},xIx^{-1},xPZ(GL(2,q))x^{-1}:x\in GL(2,q)\}$$

where D is the subgroup of GL(2,q) consisting of all diagonal matrices, I is a cyclic subgroup of GL(2,q) having order q^2-1 and P is the Sylow p-subgroup of GL(2,q) consisting of all upper triangular matrices with 1 in the diagonal. The orders of D and PZ(GL(2,q)) are $(q-1)^2$ and q(q-1) respectively. Also the number of conjugates of D, I and PZ(GL(2,q)) in GL(2,q) are $\frac{q(q+1)}{2}$, $\frac{q(q-1)}{2}$ and q+1 respectively. Since GL(2,q) is a CA-group (see Lemma 3.5 of [1]), by (2.1), we have $\overline{\mathcal{A}_{GL(2,q)}} =$

$$\frac{q(q+1)}{2}K_{|xDx^{-1}|-q+1} \sqcup \frac{q(q-1)}{2}K_{|xIx^{-1}|-q+1} \sqcup (q+1)K_{|xPZ(GL(2,q))x^{-1}|-q+1}.$$

That is, $\overline{\mathcal{A}_{GL(2,q)}}=\frac{q(q+1)}{2}K_{q^2-3q+2}\sqcup\frac{q(q-1)}{2}K_{q^2-q}\sqcup(q+1)K_{q^2-2q+1}.$ Hence, the result follows from Corollary 2.3.

Proposition 4.5 — Let $F = GF(2^n), n \ge 2$ and ϑ be the Frobenius automorphism of F, that is, $\vartheta(x) = x^2$ for all $x \in F$. Then the Laplacian spectrum of the non-commuting graph of the group

$$A(n,\vartheta) = \left\{ U(a,b) = \begin{bmatrix} 1 & 0 & 0 \\ a & 1 & 0 \\ b & \vartheta(a) & 1 \end{bmatrix} : a, b \in F \right\}$$

under matrix multiplication given by $U(a,b)U(a',b') = U(a+a',b+b'+a'\vartheta(a))$ is

L-spec
$$(\mathcal{A}_{A(n,\vartheta)}) = \{0, (2^{2n} - 2^{n+1})^{(2^n - 1)^2}, (2^{2n} - 2^n)^{2^n - 2}\}.$$

PROOF: Note that $Z(A(n,\vartheta))=\{U(0,b):b\in F\}$ and so $|Z(A(n,\vartheta))|=2^n$. Let U(a,b) be a non-central element of $A(n,\vartheta)$. It can be seen that the centralizer of U(a,b) in $A(n,\vartheta)$ is $Z(A(n,\vartheta))\sqcup U(a,0)Z(A(n,\vartheta))$. Clearly $A(n,\vartheta)$ is a CA-group and so, by (2.1), we have $\overline{\mathcal{A}_{A(n,\vartheta)}}=(2^n-1)K_{2^n}$. Hence the result follows from Corollary 2.3.

Proposition 4.6 — Let $F = GF(p^n)$, p be a prime. Then the Laplacian spectrum of the non-commuting graph of the group

$$A(n,p) = \left\{ V(a,b,c) = \begin{bmatrix} 1 & 0 & 0 \\ a & 1 & 0 \\ b & c & 1 \end{bmatrix} : a,b,c \in F \right\}$$

under matrix multiplication V(a, b, c)V(a', b', c') = V(a + a', b + b' + ca', c + c') is

L-spec(
$$\mathcal{A}_{A(n,p)}$$
) = {0, $(p^{3n} - p^{2n})^{p^{3n} - 2p^n - 1}$, $(p^{3n} - p^n)^{p^n}$ }.

PROOF: We have $Z(A(n,p)) = \{V(0,b,0) : b \in F\}$ and so $|Z(A(n,p))| = p^n$. The centralizers of non-central elements of A(n,p) are given below

- (i) If $b, c \in F$ and $c \neq 0$ then the centralizer of V(0, b, c) in A(n, p) is $\{V(0, b', c') : b', c' \in F\}$ having order p^{2n} .
- (ii) If $a, b \in F$ and $a \neq 0$ then the centralizer of V(a, b, 0) in A(n, p) is $\{V(a', b', 0) : a', b' \in F\}$ having order p^{2n} .
- (iii) If $a,b,c \in F$ and $a \neq 0,c \neq 0$ then the centralizer of V(a,b,c) in A(n,p) is $\{V(a',b',ca'a^{-1}):a',b'\in F\}$ having order p^{2n} .

It can be seen that all the centralizers of non-central elements of A(n, p) are abelian. Hence A(n, p) is a CA-group and so, by (2.1), we have

$$\overline{\mathcal{A}_{A(n,p)}} = K_{p^{2n}-p^n} \sqcup K_{p^{2n}-p^n} \sqcup (p^n-1)K_{p^{2n}-p^n} = (p^n+1)K_{p^{2n}-p^n}.$$

Hence the result follows from Corollary 2.3.

We would like to mention here that the groups considered in Proposition 4.5-4.6 are constructed by Hanaki (see [14]). These groups are also considered in [5], in order to compute their numbers of distinct centralizers.

5. Some Consequences

Note that the non-commuting graphs of all the groups considered in Section 3 and 4 are L-integral. In this section, we determine some conditions on *G* so that its non-commuting graph becomes L-integral.

A finite group is called an n-centralizer group if it has n numbers of distinct element centralizers. It is clear that 1-centralizer groups are precisely the abelian groups. There are no 2, 3-centralizer finite groups. The study of these groups was initiated by Belcastro and Sherman [6] in the year 1994. We have the following results regarding n-centralizer groups.

Proposition 5.1 — If G is a finite 4-centralizer group then A_G is L-integral.

PROOF: Let G be a finite 4-centralizer group. Then, by [6, Theorem 2], we have $\frac{G}{Z(G)} \cong \mathbb{Z}_2 \times \mathbb{Z}_2$. Therefore, by Theorem 3.2, we have

L-spec(
$$\mathcal{A}_G$$
) = {0, $(2|Z(G)|)^{3|Z(G)|-3}$, $(3|Z(G)|)^2$ }.

Hence, A_G is L-integral.

Further, we have the following result.

Proposition 5.2 — If G is a finite (p+2)-centralizer p-group for any prime p, then \mathcal{A}_G is Lintegral.

PROOF: Let G be a finite (p+2)-centralizer p-group. Then, by [5, Lemma 2.7], we have $\frac{G}{Z(G)} \cong \mathbb{Z}_p \times \mathbb{Z}_p$. Therefore, by Theorem 3.2, we have

L-spec(
$$\mathcal{A}_G$$
) = $\{0, ((p^2 - p)|Z(G)|)^{(p^2 - 1)|Z(G)| - p - 1}, ((p^2 - 1)|Z(G)|)^p\}.$

Hence, A_G is L-integral.

Proposition 5.3 — If G is a finite 5-centralizer group then A_G is L-integral.

PROOF: Let G be a finite 5-centralizer group. Then by [6, Theorem 4] we have $\frac{G}{Z(G)} \cong \mathbb{Z}_3 \times \mathbb{Z}_3$ or D_6 . Now, if $\frac{G}{Z(G)} \cong \mathbb{Z}_3 \times \mathbb{Z}_3$ then by Theorem 3.2 we have $\operatorname{L-spec}(\mathcal{A}_G) = \{0, (6|Z(G)|)^{8|Z(G)|-4}, (8|Z(G)|)^3\}$ and hence \mathcal{A}_G is L-integral. If $\frac{G}{Z(G)} \cong D_6$ then, by Theorem 3.4, we have

L-spec(
$$\mathcal{A}_G$$
) = {0, $(3|Z(G)|)^{2|Z(G)|-1}$, $(4|Z(G)|)^{3|Z(G)|-3}$, $(5|Z(G)|)^3$ }

and hence A_G is L-integral. Therefore, the result follows.

We also have the following corollary.

Corollary 5.4 — Let G be a finite non-abelian group and $\{x_1, x_2, \dots, x_r\}$ be a set of pairwise non-commuting elements of G having maximal size. Then A_G is L-integral if r = 3, 4.

PROOF: By Lemma 2.4 in [2], we have that G is a 4-centralizer or a 5-centralizer group according as r=3 or 4. Hence the result follows from Proposition 5.1 and Proposition 5.3.

The commuting probability of a finite group G denoted by $\Pr(G)$ is the probability that any two randomly chosen elements of G commute. Clearly, $\Pr(G) = 1$ if and only if G is abelian. The study of $\Pr(G)$ is originated from a paper of Erdös and Turán [13]. Various results on $\Pr(G)$ can be found in [7, 9, 19]. The following results show that \mathcal{A}_G is L-integral if $\Pr(G)$ has some particular values.

Proposition 5.5 — If
$$\Pr(G) \in \{\frac{5}{14}, \frac{2}{5}, \frac{11}{27}, \frac{1}{2}, \frac{5}{8}\}$$
 then \mathcal{A}_G is L-integral.

PROOF: If $\Pr(G) \in \{\frac{5}{14}, \frac{2}{5}, \frac{11}{27}, \frac{1}{2}, \frac{5}{8}\}$ then as shown in [22, pp. 246] and [20, pp. 451], we have $\frac{G}{Z(G)}$ is isomorphic to one of the groups in $\{D_{14}, D_{10}, D_8, D_6, \mathbb{Z}_2 \times \mathbb{Z}_2\}$. If $\frac{G}{Z(G)}$ is isomorphic to D_{14}, D_{10}, D_8 or D_6 then, by Theorem 3.4, it follows that \mathcal{A}_G is L-integral. If $\frac{G}{Z(G)}$ is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$ then, by Theorem 3.2, it follows that \mathcal{A}_G is L-integral. Hence, the result follows.

Proposition 5.6 — Let G be a finite group and p the smallest prime divisor of |G|. If $\Pr(G) = \frac{p^2+p-1}{p^3}$ then \mathcal{A}_G is L-integral.

PROOF: If $\Pr(G) = \frac{p^2 + p - 1}{p^3}$ then by [16, Theorem 3] we have $\frac{G}{Z(G)}$ is isomorphic to $\mathbb{Z}_p \times \mathbb{Z}_p$. Now, by Theorem 3.2, it follows that \mathcal{A}_G is L-integral.

Proposition 5.7 — If G is a non-solvable group with $Pr(G) = \frac{1}{12}$ then A_G is L-integral.

PROOF: By [7, Proposition 3.3.7], we have that G is isomorphic to $A_5 \times B$ for some abelian group B. Since A_5 is a CA-group, by Corollary 2.5, it follows that A_G is L-integral.

A graph is called planar if it can be embedded in the plane so that no two edges intersect geometrically except at a vertex to which both are adjacent. We conclude this paper with the following result.

Proposition 5.8 — Let G be a finite group then A_G is L-integral if A_G is planar.

PROOF: It was shown in Proposition 2.3 of [1] that A_G is planar if and only if G is isomorphic to D_6, D_8 or Q_8 . Therefore, by Corollary 3.6 and Corollary 3.7, the result follows.

ACKNOWLEDGEMENT

The authors would like to thank the referee for his/her valuable comments and suggestions.

REFERENCES

- 1. A. Abdollahi, S. Akbari and H. R. Maimani, Non-commuting graph of a group, *J. Algebra*, **298** (2006), 468-492.
- 2. A. Abdollahi, S. M. Jafarain and A. M. Hassanabadi, Groups with specific number of centralizers, *Houston J. Math.*, **33**(1) (2007), 43-57.
- 3. N. M. M. Abreu, C. T. M. Vinagre, A. S. Bonifácioa and I. Gutman, The Laplacian energy of some Laplacian integral graph, *MATCH Commun. Math. Comput. Chem.*, **60** (2008), 447-460.
- 4. M. Afkhami, M. Farrokhi D. G. and K. Khashyarmanesh, Planar, toroidal, and projective commuting and non-commuting graphs, *Comm. Algebra*, **43**(7) (2015), 2964-2970.
- 5. A. R. Ashrafi, On finite groups with a given number of centralizers, *Algebra Colloq.*, **7**(2) (2000), 139-146.
- 6. S. M. Belcastro and G. J. Sherman, Counting centralizers in finite groups, *Math. Magazine*, **67**(5) (1994), 366-374.
- 7. A. Castelaz, Commutativity degree of finite groups, M.A. thesis, Wake Forest University (2010).
- 8. M. R. Darafsheh, H. Bigdely, A. Bahrami and M. D. Monfared, Some results on non-commuting graph of a finite group, *Ital. J. Pure Appl. Math.*, **27** (2010), 107-118.

- 9. A. K. Das, R. K. Nath and M. R. Pournaki, A survey on the estimation of commutativity in finite groups, *Southeast Asian Bull. Math.*, **37**(2) (2013), 161-180.
- 10. A. K. Das and D. Nongsiang, On the genus of the commuting graphs of finite non-abelian groups, *Int. Electron. J. Algebra*, **19** (2016), 91-109.
- 11. P. Dutta and R. K. Nath, Laplacian energy of non-commuting graphs of finite groups, preprint.
- 12. R. R. Elvierayani and Abdussakir, Spectrum of the Laplacian matrix of non-commuting graph of dihedral group D_{2n} , Proceeding International Conference, 2013, The 4th Green Technology Faculty of Science and Technology Islamic of University State Maulana Malik Ibrahim Malang.
- 13. P. Erdös and P. Turán, On some problems of a statistical group-theory IV, *Acta. Math. Acad. Sci. Hungar.*, **19** (1968), 413-435.
- 14. A. Hanaki, A condition of lengths of conjugacy classes and character degree, *Osaka J. Math.*, **33** (1996), 207-216.
- 15. S. Kirkland, Constructably Laplacian integral graphs, *Linear Algebra Appl.*, 423 (2007), 3-21.
- 16. D. MacHale, How commutative can a non-commutative group be?, Math. Gaz., 58 (1974), 199-202.
- 17. R. Merris, Degree maximal graphs are Laplacian integral, Linear Algebra Appl., 199 (1994), 381-389.
- 18. B. Mohar, The Laplacian spectrum of graphs, *Graph Theory, Combinatorics, and Applications*, **2**, Ed. Y. Alavi, G. Chartrand, O. R. Oellermann, A. J. Schwenk, Wiley, 1991, 871-898.
- 19. R. K. Nath, *Commutativity degrees of finite groups a survey*, M. Phil. thesis, North-Eastern Hill University (2008).
- 20. R. K. Nath, Commutativity degree of a class of finite groups and consequences, *Bull. Aust. Math. Soc.*, **88**(3) (2013), 448-452.
- 21. D. M. Rocke, p-groups with abelian centralizers, *Proc. London Math. Soc.*, 30(3) (1975), 55-75.
- 22. D. J. Rusin, What is the probability that two elements of a finite group commute?, *Pacific J. Math.*, **82**(1) (1979), 237-247.
- 23. A. A. Talebi, On the non-commuting graphs of group D_{2n} , Int. J. Algebra, 2(20) (2008), 957-961.