In this paper, let X, Y be two real Banach spaces and $\varepsilon \geq 0$. A mapping $f : X \to Y$ is said to be a standard ε-isometry provided $f(0) = 0$ and

$$|||f(x) - f(y)|| - ||x - y||| \leq \varepsilon, \text{ for all } x, y \in X.$$

If $\varepsilon = 0$, then it is simply called a standard isometry. We prove a sufficient and necessary condition for which $\{f(x_n)\}_{n \geq 1}$ is a basic sequence of Y equivalent to $\{x_n\}_{n \geq 1}$ whenever $\{x_n\}_{n \geq 1}$ is a basic sequence in X and $f : X \to Y$ is a nonlinear standard isometry. As a corollary we obtain the stability of basic sequences under the perturbation by nonlinear and non-surjective standard ε-isometries.

Key words: ε-isometry, basic sequence, stability, Banach space.

1. **Introduction**

Throughout this paper, let X, Y be two real Banach spaces and $\varepsilon \geq 0$ and f will be nonlinear. A mapping $f : X \to Y$ is said to be a standard ε-isometry provided $f(0) = 0$ and

$$|||f(x) - f(y)|| - ||x - y||| \leq \varepsilon, \text{ for all } x, y \in X.$$

1Supported by the Natural Science Foundation of China (Grant No. 11601264) and the Outstanding Youth Scientific Research Personnel Training Program of Fujian Province and the Research Foundation of Quanzhou Normal University (Grant No. 2016YYKJ12) and the High level Talents Innovation and Entrepreneurship Project of Quanzhou City, (Grant No. 2017Z032).
If \(\varepsilon = 0 \), then it is simply called a standard isometry. For a subset \(A \) of \(X \) and \(Y \) we denote by \(\text{span} \, A \) the vector space spanned by \(A \).

The Mazur-Ulam theorem [8] says that every surjective standard isometry \(f : X \to Y \) is a linear isometry. The study of surjective standard \(\varepsilon \)-isometry has been considered by many mathematicians (see, for instance, Theorem 1.1 [10] which gives a sharp estimate for the Hyers-Ulam problem [6]).

For non-surjective standard isometry, we mention the theorem in [5] which was proved in 1968 by Figiel that for every standard isometry \(f : X \to Y \), there is a linear operator \(P : L(f) \to X \) with \(\|P\| = 1 \) so that \(Pf = Id \) on \(X \), where \(L(f) \) is the closure of span \(f(X) \) in \(Y \) (see also [2]).

Theorem 1.1 — (Omladič-Šemrl). If \(f : X \to Y \) is a surjective standard \(\varepsilon \)-isometry, then there is a surjective linear isometry \(U : X \to Y \) such that

\[
\|f(x) - U(x)\| \leq 2\varepsilon, \quad \text{for all } x \in X.
\]

In 2015, Cheng showed the following sharp weak stability theorem in [3].

Theorem 1.2 — (Cheng et al.). Let \(f : X \to Y \) be a standard \(\varepsilon \)-isometry for some \(\varepsilon \geq 0 \). Then for every \(x^* \in X^* \), there exists \(\varphi(x^*) \in L(f)^* \) with \(\|\varphi(x^*)\| = \|x^*\| = r \) such that

\[
|\langle \varphi(x^*), f(x) \rangle - \langle x^*, x \rangle| \leq 2\varepsilon r, \quad \text{for all } x \in X.
\]

In 2014, Dai and Dong [4] study the stability of Banach spaces for convexity and smoothness under the perturbation by a nonlinear \(\varepsilon \)-isometry, indeed, they prove that if such \(f \) exists, then \(X \) admits some convexity and smoothness inherited from \(Y \).

Definition 1.3 — We define \(M \) to be \(P^*(X^*) \), where \(P^* : X^* \to L(f)^* \) is a linear isometry and \(f : X \to Y \) is a standard isometry by Figiel theorem.

In this paper, we study the stability of basic sequences under the perturbation by \(\varepsilon \)-isometries and show the following: (i) If \(Y \) is reflexive and \(f : X \to Y \) is a standard isometry then \(\{f(x_n)\}_{n \geq 1} \) is a basic sequence equivalent to \(\{x_n\}_{n \geq 1} \) if and only if \(M \) separates points of \(\overline{\text{span}} \{f(x_n)\}_{n \geq 1} \) whenever \(\{x_n\}_{n \geq 1} \) is a basic sequence in \(X \); (ii) If \(Y \) is reflexive, and admitting KKP (we say that \(Y \) has the Kadets-Klee property, for short KKP if whenever \(\{y_n\}_{n \geq 1} \subset Y \) and \(y \in Y \) such that \(\{y_n\}_{n \geq 1} \) converges weakly to \(y \) and \(\lim_{n \to \infty} \|y_n\| = \|y\| \), then \(\{y_n\}_{n \geq 1} \) converges to \(y \) in norm topology), \(f : X \to Y \) is a standard \(\varepsilon \)-isometry, and assume that \(M \) separates points of \(\overline{\text{span}} \{U(x_n)\}_{n \geq 1} \) for a standard isometry \(U \) (see Theorem 2.10). (In particular, when \(Y \) is strictly convex), then there is a sequence \(\{\lambda_n\}_{n \geq 1} \subset \mathbb{R}^{N_0} \) which tends to \(\infty \) such that \(\{f(\lambda_n x_n)\}_{n \geq 1} \) is a basic sequence equivalent to \(\{\lambda_n x_n\}_{n \geq 1} \) whenever \(\{x_n\}_{n \geq 1} \) is a basic sequence in \(X \).
2. MAIN RESULTS

For definitions and known results on basic sequences in Banach spaces we refer to [1]. According to [1], for a basic sequence \(\{x_n\}_{n \geq 1} \) of \(X \) we also denote by \([x_n]\) the closure of the vector space spanned by \(\{x_n\}_{n \geq 1} \).

Next we recall Rosenthal’s theorem as Theorem 2.1 and Lindenstrauss-Zippin theorem as Theorem 2.2.

Theorem 2.1 — (Rosenthal’s \(\ell_1 \) theorem [11]). Let \(\{x_n\}_{n \geq 1} \) be a bounded sequence in an infinite-dimensional Banach space \(X \). Then either:

(i) \(\{x_n\}_{n \geq 1} \) has a subsequence which is weakly Cauchy, or

(ii) \(\{x_n\}_{n \geq 1} \) has a subsequence which is basic and equivalent to the canonical basis of \(\ell_1 \).

Theorem 2.2 — (Lindenstrauss-Zippin [7]). A Banach space \(X \) has a unique unconditional basis (up to equivalence) if and only if \(X \) is isomorphic to one of the following three spaces: \(c_0 \), \(\ell_1 \), or \(\ell_2 \).

We first study the following so called basic sequences preserving problem.

Problem 2.3 : Let \(f : X \to Y \) be a standard isometry. Then whether \(\{f(x_n)\}_{n \geq 1} \) is a basic sequence of \(Y \) equivalent to \(\{x_n\}_{n \geq 1} \) whenever \(\{x_n\}_{n \geq 1} \) is a basic sequence in \(X \).

The following example gives a positive answer to Problem 2.3 for seminormalized unconditional bases of \(\ell_1 \).

Example 2.4 : Assume that \(f : \ell_1 \to Y \) is a standard isometry, and assume that \(\{x_n\}_{n \geq 1} \) is a seminormalized unconditional basis in \(\ell_1 \). Then \(\{f(x_n)\}_{n \geq 1} \) is a seminormalized unconditional basis in \(Y \) equivalent to \(\{x_n\}_{n \geq 1} \).

Proof : Suppose that \(\{x_n\}_{n \geq 1} \) is a seminormalized unconditional basis in \(\ell_1 \). We first show for every sequence of scalars \(\{a_n\}_{n \geq 1} \) satisfying that \(\sum_{n=1}^{\infty} a_n x_n \) is convergent \(\sum_{n=1}^{\infty} f(x_n) \) is also convergent. By Theorem 2.2 \(\{x_n\}_{n \geq 1} \) is equivalent to the canonical basis \(\{e_n\}_{n \geq 1} \) of \(\ell_1 \), \(\sum_{n=1}^{\infty} a_n e_n \) is convergent and hence \(\sum_{n=1}^{\infty} |a_n| \) converges. Therefore, we deduce that \(\sum_{n=1}^{\infty} a_n f(x_n) \) converges absolutely and hence converges. Let \(\{x^*_n\}_{n \geq 1} \) be the biorthogonal functionals associated with \(\{x_n\}_{n \geq 1} \), then \(\{\varphi(x^*_n)\}_{n \geq 1} \) is the biorthogonal functionals associated with \(\{f(x_n)\}_{n \geq 1} \). Let us define \(T : \{x_n\} \to \text{span}\{f(x_n)\}_{n \geq 1} \) by \(T(\sum_{n=1}^{\infty} a_n x_n) = \sum_{n=1}^{\infty} a_n f(x_n) \). \(T \) is well defined, injective and linear. we prove that \(T \) is continuous by using the Closed Graph theorem. Suppose \(\{u_i\} \to u \) in \([x_n]\) and \(T u_i \to v \) in \(Y \). Thus \(u_i = \sum_{n=1}^{\infty} x^*_n(u_i)(x_n) \) and \(u = \sum_{n=1}^{\infty} x^*_n(u)(x_n) \). It follows from the continuity of \(x^*_n \) and \(\varphi(x^*_n) \) that \(x^*_n(u_i) \to x^*_n(u) \) and \(\varphi(x^*_n)(Tu_i) = x^*_n(u_i) \to \varphi(x^*_n)(v) \) for
all \(n \). Hence, we deduce that \(x_n^*(u) = \varphi(x_n^*)(v) \) for all \(n \). Therefore \(Tu = v \) and so \(T \) is continuous. It follows from Figiel’s Theorem or Theorem 1.2 that \(T^{-1} \) is also continuous on \(T([x_n]) \) with \(\|T^{-1}\| = 1 \), so \(T \) is an isomorphism between \([x_n] \) and \(T([x_n]) \). Therefore, \(\{f(x_n)\}_{n \geq 1} \) is a semi-normalized unconditional basis and we complete the proof.

Now we will prove a sufficient and necessary condition for which \(\{f(x_n)\}_{n \geq 1} \) is a basic sequence equivalent to \(\{x_n\}_{n \geq 1} \) in Theorem 2.8.

Lemma 2.5 — Let \(\varphi : X^* \to L(f)^* \) be a mapping as defined in Theorem 1.2 with \(\|\varphi(x^*)\| = \|x^*\| \) such that for all \(x \in X \),

\[
|\langle \varphi(x^*), f(x) \rangle - \langle x^*, x \rangle| \leq 2\|x^*\|\varepsilon. \tag{2.1}
\]

Then the following statements hold

(i) There exist a closed subspace \(N \) of \(L(f)^* \) and a linear isometry \(U \) from \(X \) into \(N^* \) such that for each \(x^* \in S_{X^*} \) and \(x \in X \),

\[
\langle \varphi(x^*), U(x) \rangle = \langle x^*, x \rangle; \tag{2.2}
\]

(ii) If, in addition, \(\varepsilon = 0 \), then we may choose for each \(x \in X \), \(U(x) \) of (i) to be \(f(x) \) restricted on \(N \), i.e., for each \(x^* \in S_{X^*} \) and \(x \in X \), the following equality holds

\[
\langle \varphi(x^*), f(x) \rangle = \langle x^*, x \rangle. \tag{2.3}
\]

Proof: (i) The proof can be found in ([4], Proposition 4.5, pp. 1003-1004)

(ii) Let \(\varepsilon = 0 \) in (2.1). Obviously, \(\varphi : X^* \to L(f)^* \) is a linear isometry. Moreover, we have

\[
M = N = \varphi(X^*) = \text{span}\{\varphi(x^*) : x^* \in S_{X^*}\}.
\]

It follows that \(f : X \to M^* \) is a linear isometry and (2.3) holds. \(\Box \)

Lemma 2.6 — Let \(f : X \to Y \) be a standard isometry. Let \(M \) and \(\varphi \) be as in (ii) of Lemma 2.5. Assume that \(\{x_n\}_{n \geq 1} \) is a basic sequence with basis constant \(K \) in \(X \). If we define a new norm \(\|\cdot\| \) on \(\text{span}\{f(x_n)\}_{n \geq 1} \) for all \(y \in \text{span}\{f(x_n)\}_{n \geq 1} \) by

\[
\|y\| = \sup_{y^* \in S_M} y^*(y) = \sup_{x^* \in S_{X^*}} \langle \varphi(x^*), y \rangle,
\]

then \(\{f(x_n)\}_{n \geq 1} \) with respect to the norm \(\|\cdot\| \) is a basis of \(\text{span}\{f(x_n)\}_{n \geq 1} \) isometrically equivalent to \(\{x_n\}_{n \geq 1} \).
We assume for the rest of the paper that Y is a reflexive Banach space.

Lemma 2.7 — Let f, M and φ be as in (ii) of Lemma 2.5. If we denote $\text{span}\{f(x_n)\}_{n \geq 1}$ by E and denote the dual of E by E^*, then M separates points of E. If, in addition, M separates points of E with respect to its original dual norm $\| \cdot \|^*$ then E^* is linear isomorphic to M.

Proof: Since M separates points of E, for all $y^* \in M$ there is $x^* \in X^*$ (assume without loss of generality that $X = [x_n]$) such that $y^* = \varphi(x^*)$ and we can define a bounded linear operator T from M into E^* for all $e \in E$ by

$$T(y^*)(e) = T(\varphi(x^*))(e) = \varphi(x^*)(e).$$

Since that $\varphi(x^*)(f(x_n)) = 0$ for all natural number n implies $x^* = 0$, T is injective. On the other hand, the Hahn-Banach theorem entails that $T(M)^{w^*} = E^*$, where w^*-topology on E^* denotes the topology induced by $E^{||}$. Since Y is reflexive, it suffices to show that $T(M)^{w^*} = T(M)^w = T(M)^{||} \subseteq T(M)$.

Assume that $(y^*_n) \subset T(M)$ is convergent to $y^*_0 \in T(M)^{||}$ in the norm topology. Then for all $n \in N$ there exist $x^*_n \in X^*$ such that

$$\lim_n \varphi(x^*_n)(e) = y^*_0(e), \quad \text{for all } e \in E^{||}.$$

Thus

$$\lim_n \varphi(x^*_n)(f(x_m)) = \lim_n x^*_n(x_m)$$

exists for all $m \in N$.

We deduce from the boundedness of $\{x^*_n\}_{n \geq 1}$ that there exists $x^* \in X^*$ and a subsequence $\{x^*_n\}_{i \geq 1} \subset \{x^*_n\}_{n \geq 1}$ such that

$$\lim_i x^*_n(x) = x^*(x), \quad \text{for all } x \in X.$$

Therefore,

$$\lim_i \varphi(x^*_n)(f(x_m)) = \lim_i x^*_n(x_m) = x^*(x_m) = \varphi(x^*)(f(x_m)).$$

Hence,

$$\lim_i \varphi(x^*_n)(e) = \varphi(x^*)(e),$$

exists for all $e \in E^{||}$. Then $y^*_0 = T(\varphi(x^*)) \in T(M)$. It follows from the Inverse Mapping Theorem that T is a linear isomorphism from M to E^*.

□
Theorem 2.8 — Let \(f : X \to Y \) be a standard isometry. If \(\{x_n\}_{n\geq 1} \) is a basic sequence in \(X \), then \(\{f(x_n)\}_{n\geq 1} \) is a basic sequence in \(Y \) if and only if \(M \) separates points of \(\overline{E} \).

Proof : If \(\{f(x_n)\}_{n\geq 1} \) is a basic sequence in \(Y \), for every nonzero element \(e \in \overline{E} \) there is a unique sequence \(\{a_n\}_{n\geq 1} \) of scalars such that

\[
e = \sum_{n=1}^{\infty} a_n f(x_n).
\]

We deduce for every \(x^* \in X^* \) that

\[
\varphi(x^*)(e) = \sum_{n=1}^{\infty} a_n \langle \varphi(x^*), f(x_n) \rangle = \langle x^*, \sum_{n=1}^{\infty} a_n x_n \rangle.
\]

Hence \(M \) separates points of \(\overline{E} \). Using Lemma 2.6 and Lemma 2.7 we can easily complete the proof of (if) part. Indeed, for every sequence of scalars \(\{a_n\}_{n\geq 1} \) and all the integers \(k, l \) such that \(k \leq l \),

\[
\| \sum_{n=1}^{k} a_n f(x_n) \| = \sup_{y^* \in B_{E^*}} \sum_{n=1}^{k} a_n y^*(f(x_n)) \leq \| T \| \cdot \| T^{-1} \| \cdot \sum_{n=1}^{k} a_n \varphi(x^*) f(x_n)
\] (2.4)

\[
= \sup_{y^* \in T T^{-1} B_{E^*}} \sum_{n=1}^{k} a_n y^*(f(x_n)) \leq \| T \| \cdot \| T^{-1} \| \cdot \sup_{x^* \in B_{[x_n]^*}} \sum_{n=1}^{k} a_n \varphi(x^*) f(x_n)
\] (2.5)

\[
\leq K \| T \| \cdot \| T^{-1} \| \cdot \sum_{n=1}^{l} a_n x^*(x_n)
\] (2.6)

\[
\leq K \| T \| \cdot \| T^{-1} \| \cdot \sum_{n=1}^{l} a_n x_n \| (2.7)
\]

\[
\leq K \| T \| \cdot \| T^{-1} \| \cdot \sum_{n=1}^{l} a_n f(x_n) \| (2.8)
\]
and we complete the proof. □

As a result of Theorem 2.8, we obtain the stability of basic sequences under the perturbation by non-surjective standard \(\varepsilon \)-isometries.

Lemma 2.9 — Let \(X \) be separable with dense set \(\{x_m\} \) and admitting KKP. If \(\varepsilon \geq 0 \), \(f : X \to Y \) is a \(\varepsilon \)-isometry, then there is an isometry \(U : X \to Y \) such that

\[
U(x_m) \equiv \lim_{k} \frac{f(n_kx_m)}{n_k}
\]
exists for all \(m \in N \).

Proof: Given \(x \in X \), by the Rosenthal’s \(\ell_1 \) theorem (i.e., Theorem 2.1), there exists a weakly Cauchy subsequence \(\{\frac{f(n_kx)}{n_k}\}_{k=1}^{\infty} \) of \(\{\frac{f(nx)}{n}\}_{n \geq 1} \). Since \(Y \) is reflexive, \(\{\frac{f(n_kx)}{n_k}\}_{k=1}^{\infty} \) is a \(w \)-convergent sequence in \(Y \). Let \(\{x_m\}_{m=1}^{\infty} \) be a norm-dense sequence of \(X \). By a standard argument of principal diagonal, we can without loss of generality assume that \(\{n_k\}_{k=1}^{\infty} \) satisfies that

\[
U(x_m) \equiv w - \lim_{k} \frac{f(n_kx_m)}{n_k}
\]
exists for all \(m \in N \).

By Theorem 1.2, for each \(x^* \in S_{X^*} \), there is a functional \(\phi \in S_{Y^*} \) such that

\[
|\langle \phi, f(x) \rangle - \langle x^*, x \rangle| \leq 2\varepsilon,
\]
for all \(x \in X \).

Hence

\[
|\langle \phi, \frac{f(n_kx_m)}{n_k} \rangle - \langle x^*, x_m \rangle| \leq \frac{2\varepsilon}{n_k},
\]
for all \(m, k \in N \).

Let \(k \) tend to \(\infty \), we deduce that for all \(m \in N \),

\[
\langle \phi, U(x_m) \rangle = \langle x^*, x_m \rangle.
\] (2.11)

Given \(m, n \in N \), by the Hahn-Banach theorem and (2.11) we can choose a norm-attaining functional \(x^* \in S_{X^*} \) such that

\[
\|x_m - x_n\| = x^*(x_m - x_n)
\]
\[
= \langle \phi, U(x_m) \rangle - \langle \phi, U(x_n) \rangle
\]
\[
\leq \|U(x_m) - U(x_n)\|.
\] (2.12)

On the other hand, by the \(w \)-lower semicontinuous argument of a norm in \(Y \), we deduce that for every \(m, n \in N \)

\[
\|U(x_m) - U(x_n)\| = \|w - \lim_{k} \frac{f(n_kx_m) - f(n_kx_n)}{n_k}\|
\]
\[
\leq \lim_{k} \inf \left| \frac{n_kx_m - n_kx_n}{n_k} + \varepsilon \right|
\]
\[
= \|x_m - x_n\|.
\] (2.13)
Therefore, combining (2.12) and (2.13) $U : \{x_m\}_{m=1}^{\infty} \to Y$ is an isometry. Obviously, U has a unique extension $\tilde{U} : X \to Y$ such that \tilde{U} is also an isometry and for all $x \in X$,

$$\langle \phi, \tilde{U}(x) \rangle = \langle x^*, x \rangle.$$ \hfill (2.14)

Since $\lim_k \|f(n_kx_m)\| = \|x_m\|$ for all $m \in N$ and Y has KKP, we deduce that the limit

$$U(x_m) \equiv w - \lim_k \frac{f(n_kx_m)}{n_k} \equiv \lim_k \frac{f(n_kx_m)}{n_k}$$

exists for all $m \in N$. □

Theorem 2.10 — Let $\{x_n\}_{n \geq 1}$ be a basic sequence of X and Y be admitting KKP. If $\varepsilon > 0$, $f : X \to Y$ is a ε-isometry, and assume that M separates points of $E = \text{span}\{U(x_n)\}_{n \geq 1}$ with respect to U defined in Lemma 2.9 (In particular, when Y is strictly convex) then there is a sequence $\{\lambda_n\}_{n \geq 1} \subset \mathbb{R}^{\aleph_0}$ which tends to ∞ such that $\{f(\lambda_nx_n)\}_{n \geq 1}$ is a basic sequence equivalent to $\{\lambda_nx_n\}_{n \geq 1}$.

Proof: Assume without loss of generality that $\text{span}\{x_n\}_{n \geq 1} = X$. By Lemma 2.9, we can choose norm dense sequence containing $\{x_n\}_{n \geq 1}$ such that

$$U(x_n) \equiv w - \lim_k \frac{f(n_kx_n)}{n_k} \equiv \lim_k \frac{f(n_kx_n)}{n_k}$$

exists for all $n \in N$.

We deduce from Theorem 2.8 that $\{U(x_n)\}_{n \geq 1}$ is a basic sequence equivalent to $\{x_n\}_{n \geq 1}$ (U is even linear when Y is strictly convex [9]). On the other hand, for each $n \in N$ we can choose large enough λ_n such that

$$2K \sum_{n=1}^{\infty} \frac{\|U(x_n) - \frac{f(\lambda_nx_n)}{\lambda_n}\|}{\|U(x_n)\|} = \theta < 1.$$ \hfill (2.15)

Hence by using principle of small perturbations, $\{\frac{f(\lambda_nx_n)}{\lambda_n}\}_{n \geq 1}$ is also a basic sequence equivalent to $\{x_n\}_{n \geq 1}$, and we complete the proof. □

Acknowledgement

The author would like to express his appreciation for the referee’s useful comments. This work was partially done while the author was visiting Texas A&M University and in Analysis and Probability Workshop at Texas A&M University which was funded by NSF Grant. The author would like to thank Professor W.B. Johnson and Professor Th. Schlumprecht for the invitation. This work is also a part of the author’s Ph.D. thesis under the supervision of Professor Lixin Cheng.
REFERENCES

