EULER RELATED BINOMIAL SUMS

Anthony Sofo

Victoria University, P. O. Box 14428, Melbourne City, Victoria 8001, Australia
e-mail: anthony.sofo@vu.edu.au

(Received 26 July 2017; after final revision 24 November 2017;
accepted 19 March 2018)

We develop new closed form representations of sums of reciprocal binomial coefficients. We also identify new integral and hypergeometric representation for the binomial-harmonic number sums.

Key words : Binomial coefficients; harmonic numbers; combinatorial series identities; summation formulas; partial fraction approach.

1. INTRODUCTION AND PRELIMINARIES

In the interesting paper [6], Nimbran considers the representation of

\[S(k) = \sum_{n=1}^{\infty} \frac{(nk-k)!}{(nk)!}, \]

(1.1)

for \(k \in \mathbb{N} \setminus \{1\} \), in closed form and evaluates \(S(k) \) for \(k = \{2, 3, 4, 5, 6, 8, 10, 12\} \). In particular \(S(2) = \ln 2 \) is listed in [4], \(S(3) = \frac{\sqrt{3\pi}}{12} - \frac{1}{4} \ln 3 \) and \(S(4) = \frac{1}{4} \ln 2 - \frac{\pi}{24} \) are listed in [5]. Nimbran’s search of the literature yields no other evaluation of \(S(k) \) for \(k \geq 5 \) and then sets out to evaluate \(S(k) \) for \(k = \{5, 6, 8, 10, 12\} \). Nimbran claims \(S(10) \) is difficult to evaluate and finds it impossible to evaluate \(S(k) \) for any other values of \(k \). Nimbran’s method of evaluating \(S(k) \) is indeed ingenious and relies on the representation

\[\ln p = \sum_{m=1}^{\infty} \left(\sum_{r=1}^{p-1} \left(\frac{1}{mp+r-m} - \frac{1}{mp} \right) \right) \]

which is a generalization of an identity given by Euler in 1734, [3]. As a by-product of Nimbran’s investigations, he also obtains some rather interesting representations of \(\pi \) including

\[\pi = \frac{22}{7} - \sum_{n=1}^{\infty} \frac{60}{(4n^2 - 1)(16n^2 - 1)(16n^2 - 9)}. \]
In this paper we shall investigate (1.1) and give a general identity for $S(k)$ for every $k \in \mathbb{N} \setminus \{1\}$. Furthermore we shall extend our investigation of (1.1) and evaluate representations for harmonic number sums of the form $H_{kn} S(k)$. First we recall some definitions of some special functions that will be useful throughout this paper. The Gamma function, for $z \in \mathbb{C}$, as given by Euler in integral form is

$$\Gamma(z) = \int_0^\infty e^{-t} t^{z-1} dt, \Re(z) > 0,$$

the special case for $z \in \mathbb{N}$ reduces to, from the recurrence relation, $\Gamma(n+1) = n \Gamma(n) = n!$. The Pochhammer, or shifted factorial is defined by

$$(\lambda)_\nu = \frac{\Gamma(\lambda + \nu)}{\Gamma(\lambda)}.$$

The Beta function, or Euler integral of the first kind is

$$B(z, w) = \int_0^1 t^{z-1} (1 - t)^{w-1} dt = \frac{\Gamma(z) \Gamma(w)}{\Gamma(z+w)}, \Re(z) > 0, \Re(w) > 0.$$

Let $H_n = \sum_{r=1}^n \frac{1}{r} = \int_0^1 \frac{1-t^n}{1-t} dt = \gamma + \psi(n+1) = \sum_{j=1}^{\infty} \frac{n}{j(j+n)}$, $H_0 := 0$

be the nth harmonic number, where γ denotes the Euler-Mascheroni constant, $H_n^{(m)} = \sum_{r=1}^n \frac{1}{r^m}$ is the mth order harmonic number and $\psi(z)$ is the Digamma (or Psi) function defined by

$$\psi(z) := \frac{d}{dz} \{\log \Gamma(z)\} = \frac{\Gamma'(z)}{\Gamma(z)} \text{ and } \psi(1 + z) = \psi(z) + \frac{1}{z},$$

moreover

$$\psi(z) = -\gamma + \sum_{n=0}^{\infty} \left(\frac{1}{n+1} - \frac{1}{n+z} \right).$$

A generalized hypergeometric function is defined by

$$pF_q [z] = \left[a_1, a_2, \ldots, a_p \right| b_1, b_2, \ldots, b_q \left| z \right. = \sum_{n\geq0} \frac{(a_1)_n \ldots (a_p)_n}{(b_1)_n \ldots (b_q)_n} \frac{z^n}{n!}$$

$$= \sum_{n\geq0} \frac{(a_1)_n \ldots (a_p)_n}{(b_1)_n \ldots (b_q)_n} \frac{z^n}{n!} = \frac{\prod_{j=1}^p (a_j)_n}{\prod_{j=1}^q (b_j)_n} \frac{z^n}{n!} \quad \text{(1.2)}.$$
for \(b_j\) non-negative integers or zero. When \(p \leq q\); \(pF_q[z]\) converges for all complex values of \(z\), \(pF_q[z]\) is an entire function. When \(p > q + 1\); \(pF_q[z]\) converge for \(z = 0\), unless it terminates, which it does when one of the parameters \(a_j\) is a negative integer, hence \(pF_q[z]\) is a polynomial in \(z\). When \(p = q + 1\) the series converges in the unit disc \(|z| < 1\), and also for \(|z| = 1\) provided that \(\Re \left(\sum_{j=1}^{q} b_j - \sum_{j=1}^{p} a_j \right) > 0\). When \(p = 2\), \(q = 1\) we have the familiar Gauss hypergeometric function

\[
\mathbf{2F1} \left[\begin{array}{c|c} a, b \\ \hline c \\ \hline z \end{array} \right] = \frac{\Gamma (c)}{\Gamma (b) \Gamma (c-b)} \int_0^1 \frac{t^{b-1} (1-t)^{c-b-1}}{(1-zt)^a} dt,
\]

where \(|z| < 1\), \(\Re (c - b) > 0\) and \(\Re (b) > 0\). The following Lemma will be useful in the development of the main Theorem.

\[\text{Lemma 1} \quad \text{Let} \quad p(n) \quad \text{and} \quad q(n) \quad \text{be polynomials in} \quad n \quad \text{where all the roots of} \quad q(n) \quad \text{are simple. No root of} \quad q(n) \quad \text{is in} \quad \mathbb{N} \quad \text{and let the} \quad \deg (p(n)) \leq \deg (q(n) - 2). \quad \text{Let} \quad v_n = \frac{p(n)}{q(n)}. \quad \text{Then}
\]

\[
\sum_{n=0}^{\infty} v_n = - \sum_{r=1}^{k} \alpha_r \psi (\beta_r)
\]

(1.3)

where

\[
v_n = \frac{p(n)}{q(n)} = \sum_{r=1}^{k} \frac{\alpha_r}{n + \beta_r}.
\]

(1.4)

\[\text{PROOF : From} \quad v_n = \frac{p(n)}{q(n)} \quad \text{we have} \quad \sum_{n=0}^{\infty} v_n = \sum_{n=0}^{\infty} \frac{p(n)}{q(n)}. \quad \text{By partial fraction expansion} \quad v_n = \sum_{r=1}^{k} \frac{\alpha_r}{n + \beta_r} \quad \text{since all the roots of} \quad q(n) \quad \text{are simple. For the series} \quad \sum_{n=0}^{\infty} v_n \quad \text{to converge it suffices to have} \quad \lim_{n \to \infty} n v_n = 0, \quad \text{in which case} \sum_{r=1}^{k} \alpha_r = 0. \quad \text{Now}
\]

\[
\sum_{n=0}^{\infty} v_n = \sum_{n=0}^{\infty} \sum_{r=1}^{k} \frac{\alpha_r}{n + \beta_r} = \sum_{n=0}^{\infty} \sum_{r=1}^{k} \alpha_r \left(\frac{1}{n + \beta_r} - \frac{1}{n + 1} \right)
\]

\[= \sum_{n=0}^{\infty} \sum_{r=1}^{k} \alpha_r \left(\frac{1}{n + \beta_r} - \frac{1}{n + 1} \right)
\]
\[\sum_{r=1}^{k} \alpha_r \sum_{n=0}^{\infty} \left(\frac{1}{n + \beta_r} - \frac{1}{n + 1} \right) = - \sum_{r=1}^{k} \alpha_r (\gamma + \psi(\beta_r)) = - \sum_{r=1}^{k} \alpha_r \psi(\beta_r) \]

and the Lemma is proved. \(\square\)

2. Closed form Summation

We now prove the following theorem.

Theorem 1 — Let \(k \in \mathbb{N} \setminus \{1\} \) and \(j \in \mathbb{R}^+ \) then we have the novel representation

\[T(j, k) = \sum_{n=1}^{\infty} \frac{1}{nk + j} = \sum_{r=1}^{k} (-1)^r \binom{k-1}{r-1} \psi\left(\frac{r+j}{k}\right). \]

(2.1)

The case \(j = 0 \) reduces to

\[T(0, k) = \sum_{n=1}^{\infty} \frac{1}{nk} = \sum_{r=1}^{k} (-1)^r \binom{k-1}{r-1} \psi\left(\frac{r}{k}\right). \]

(2.2)

Proof: Consider the expansion

\[T(j, k) = \sum_{n=1}^{\infty} \frac{1}{nk + j} = \sum_{n=1}^{\infty} \frac{k! \ (nk - k + j)!}{(nk + j)!}. \]

\[= k! \sum_{n=1}^{\infty} \prod_{r=1}^{k} \frac{1}{nk + j + 1 - r} = k! \sum_{n=1}^{\infty} \frac{1}{(nk + j + 1 - k)k}. \]

\[= \sum_{n=0}^{\infty} \frac{k \prod_{r=1}^{k} \left(n + 1 + \frac{j+1-r}{k} \right)}{n} \]
where Pochhammer’s symbol \((x)_n = \frac{\Gamma(x+n)}{\Gamma(x)}\). By partial fraction decomposition we have

\[
T(j, k) = \sum_{r=1}^{k} (-1)^r \left(\begin{array}{c} k-1 \\ r-1 \end{array} \right) \sum_{n=0}^{\infty} \left(\frac{1}{n+1} - \frac{1}{n + \frac{j-r}{k}} \right)
\]

and applying Lemma 1 we conclude

\[
T(j, k) = \sum_{r=1}^{k} (-1)^r \left(\begin{array}{c} k-1 \\ r-1 \end{array} \right) \psi\left(\frac{r+j}{k} \right)
\]

and (2.1) follows. For \(j = 0\) (2.2) follows and we notice that \(T(0, k) = k! S(k)\) which is the sum (1.1). \(\square\)

It is possible to express \(T(j, k)\) in terms of basic trigonometric functions and we show the result in the next remark

Remark 1: Gauss’s Digamma theorem states that for \(0 < a < b\)

\[
\psi\left(\frac{a}{b} \right) = -\gamma - \ln (2b) - \frac{\pi}{2} \cot \left(\frac{\pi a}{b} \right) + 2 \sum_{\mu=1}^{[\frac{b}{a}]-1} \cos \left(\frac{2\pi \mu}{b} \right) \ln \left(\sin \left(\frac{\pi \mu}{b} \right) \right).
\]

Applying Gauss’s Digamma theorem to (2.1) we have

\[
T(j, k) = (-1)^k \ln (2k) + \sum_{r=1}^{k} (-1)^r \left(\begin{array}{c} k-1 \\ r-1 \end{array} \right) \left(-\frac{\pi}{2} \cot \left(\frac{(r+j)\pi}{k} \right) \right)
\]

\[
+ 2 \sum_{r=1}^{k} (-1)^r \left(\begin{array}{c} k-1 \\ r-1 \end{array} \right) \left(\sum_{\mu=1}^{[\frac{r+j}{k}]-1} \cos \left(\frac{2\pi (r+j) \mu}{k} \right) \ln \left(\sin \left(\frac{\pi \mu}{k} \right) \right) \right),
\]

where \([x]\) is the integer part of \(x\) and \(r + j < k\). The case \(j = 0\) follows simply.

Some examples follow. The case \(j = k\) is interesting and we see that

\[
T(k, k) = \sum_{n=1}^{\infty} \frac{1}{nk+k} = \sum_{r=1}^{k} (-1)^r \left(\begin{array}{c} k-1 \\ r-1 \end{array} \right) \psi\left(\frac{r+k}{k} \right).
\]
Now since $\psi(1 + z) = \psi(z) + \frac{1}{z}$, we have that

$$T(k, k) = \sum_{n=1}^{\infty} \frac{1}{nk + k} = \sum_{r=1}^{k} (-1)^r \binom{k-1}{r-1} \left(\frac{k}{r} + \psi\left(\frac{r}{k}\right) \right)$$

$$= -1 + T(0, k).$$

Also

$$T(0, 6) = 32 \ln 2 - \frac{27}{2} \ln 3 - \frac{7\sqrt{3}\pi}{6},$$

$$T(3, 6) = 47 - 32 \ln 2 - \frac{27}{2} \ln 3 - \frac{11\sqrt{3}\pi}{6},$$

$$T(8, 6) = -\frac{757}{28} + 32 \ln 2 + \frac{27}{2} \ln 3 - \frac{11\sqrt{3}\pi}{6},$$

$$T\left(\frac{3}{2}, 4\right) = \pi \left(4 + 2\sqrt{2} \right) - \frac{64}{3}.$$

In the next section we give an extension to Theorem 1 by incorporating harmonic numbers to the sum $T(j, k)$ and associating the sum with hypergeometric and integral representation.

3. Extension

We begin with the proof of the following Theorem.

Theorem 2 — Under the assumptions of Theorem 1 and let $m \in \mathbb{N}$ then,

$$T^{(m)}(j, k) = \sum_{n=1}^{\infty} \frac{d^{(m)}}{dj^{(m)}} \left(\binom{nk + j}{k} \right)^{-1} = \sum_{n=1}^{\infty} Q^{(m)}(j, k)$$

$$= \frac{1}{k^m} \sum_{r=1}^{k} (-1)^r \binom{k-1}{r-1} \psi^{(m)}\left(\frac{r + j}{k}\right)$$

$$= \frac{m!}{k^m} \sum_{r=1}^{k} (-1)^{r+m} \binom{k-1}{r-1} H^{(m+1)}_{r+j-k}, \quad (3.1)$$

where

$$Q^{(m)}(j, k) = \frac{d^{(m)}}{dj^{(m)}} \left(\binom{nk + j}{k} \right)^{-1}. \quad (3.2)$$
PROOF: From the identity (2.1) we differentiate both sides "m" times with respect to \(j \) so that

\[
T^{(m)}(j, k) = \sum_{n=1}^{\infty} d^{(m)}(nk + j) \binom{nk + j}{k}^{-1} = \sum_{n=1}^{\infty} Q^{(m)}(j, k) = \frac{1}{k^{m}} \sum_{r=1}^{k} (-1)^{r} \binom{k - 1}{r - 1} \psi^{(m)}(\frac{r + j}{k})
\]

and (3.1) follows. From the known identity, relating polygamma functions with harmonic numbers

\[
\psi^{(m)}(1 + z) = (-1)^{m} m! \left(H^{(m+1)}_{2} z - \zeta(1 + z) \right),
\]

then

\[
T^{(m)}(j, k) = \frac{m!}{k^{m}} \sum_{r=1}^{k} (-1)^{r+m} \binom{k - 1}{r - 1} \frac{H^{(m+1)}_{r+j-k}}{k^{r}}
\]

since

\[
\sum_{r=1}^{k} (-1)^{r} \binom{k - 1}{r - 1} = 0, \text{ for } k \geq 2,
\]

hence (3.2) follows. For completeness we detail some values of \(Q^{(m)}(j, k) \):

\[
Q^{(1)}(j, k) = \frac{1}{\binom{nk + j}{k}} (H_{kn+j-k} - H_{kn+j})
\]

and

\[
Q^{(2)}(j, k) = \frac{1}{\binom{nk + j}{k}} \left((H_{kn+j-k} - H_{kn+j})^{2} - \left(H^{(2)}_{kn+j-k} - H^{(2)}_{kn+j} \right) \right),
\]

some more details on the function \(Q^{(m)}(j, k) \) are given in the paper [9].

The cases \(j = 0 \) and \(j = k \) are interesting and the results are given in the next corollary.

Corollary 1 — For \(j = 0 \)

\[
T^{(m)}(0, k) = \sum_{n=1}^{\infty} Q^{(m)}(0, k) = \frac{1}{k^{m}} \sum_{r=1}^{k} (-1)^{r} \binom{k - 1}{r - 1} \psi^{(m)}(\frac{r}{k}) = \frac{m!}{k^{m}} \sum_{r=1}^{k-1} (-1)^{r+m} \binom{k - 1}{r - 1} \frac{H^{(m+1)}_{r+j-k}}{k^{r}}, \quad (3.3)
\]
where
\[
\sum_{n=1}^{\infty} Q^{(m)}(0, k) = \sum_{n=1}^{\infty} \lim_{j \to 0} \left(\frac{d^{(m)}}{dj^{(m)}} \left(\binom{n k + j}{k}^{-1} \right) \right).
\]

For \(j = k \)
\[
T^{(m)}(k, k) = T^{(m)}(0, k) + (-1)^{m+1} \Lambda^{(m)}(k)
\]
(3.4)

where
\[
\Lambda^{(m)}(k) = \lim_{\alpha \to 0} \left(\frac{d^{(m)}}{dj^{(m)}} \left(\binom{k + \alpha}{\alpha}^{-1} \right) \right)
\]

Proof: From (3.1) we have
\[
T^{(m)}(0, k) = \frac{1}{k^m} \sum_{r=1}^{k} (-1)^r \binom{k-1}{r-1} \psi^{(m)}(\frac{r}{k})
\]
\[
= \frac{m!}{k^m} \sum_{r=1}^{k} (-1)^{r+m} \binom{k-1}{r-1} H_{\frac{r}{k}}^{(m+1)},
\]
since for \(r = k, \ H_{0}^{(m+1)} = 0, \) then (3.3) follows. For the case \(j = k, \)
\[
T^{(m)}(k, k) = \sum_{n=1}^{\infty} Q^{(m)}(k, k)
\]
\[
= \frac{1}{k^m} \sum_{r=1}^{k} (-1)^r \binom{k-1}{r-1} \psi^{(m)}(1 + \frac{r}{k})
\]
where
\[
Q^{(m)}(k, k) = \lim_{j \to k} \left(\frac{d^{(m)}}{dj^{(m)}} \left(\binom{n k + j}{k}^{-1} \right) \right).
\]

By the property of the polygamma function
\[
\psi^{(m)}(1 + z) = \psi^{(m)}(1 + z) + \frac{(-1)^{m}}{z^{m+1}} m!
\]
\[
T^{(m)}(k, k) = \frac{1}{k^m} \sum_{r=1}^{k} (-1)^r \binom{k-1}{r-1} \left(\psi^{(m)}(\frac{r}{k}) + \frac{(-1)^{m} m! k^{m+1}}{r^{m+1}} \right)
\]
\[
= T^{(m)}(0, k) + (-1)^{m} m! k \sum_{r=1}^{k} (-1)^r \binom{k-1}{r-1} \frac{1}{r^{m+1}}.
\]
From the paper [9], we have
\[\sum_{r=1}^{k} (-1)^r \binom{k-1}{r-1} \frac{1}{r^{m+1}} = -\frac{\Lambda^{(m)}(k)}{m!k} \]

hence
\[T^{(m)}(k, k) = T^{(m)}(0, k) + (-1)^{m+1} \Lambda^{(m)}(k), \]

hence (3.4) follows. Some values of \(\Lambda^{(m)}(k) \) are
\[\Lambda^{(1)}(k) = H_k, \quad \Lambda^{(2)}(k) = H_k^2 + H_k^{(2)} \]
\[\Lambda^{(3)}(k) = H_k^3 + 3H_kH_k^2 + 2H_k^{(3)}. \]

Example 1: Some illustrative examples follow.

\[T^{(1)}(j, k) = \sum_{n=1}^{\infty} \frac{H_{nk-k+j} - H_{nk+j}}{(nk+j)} \left(\frac{1}{nk+j} \right) \]
\[= \frac{m!}{k^m} \sum_{r=1}^{k} (-1)^{r+1} \binom{k-1}{r-1} H_{r+1, k-1}^{(2)} \]
\[T^{(1)}(1, 4) = \frac{3}{16} \zeta(2) - \frac{1}{6} G - \frac{1}{6}, \quad T^{(1)}(0, 4) = \frac{1}{6} G - \frac{7}{48} \zeta(2) \]

where \(G \) is Catalan’s constant.
\[T^{(3)}(0, 2) = -\frac{21}{2} \zeta(4), \]
\[T^{(4)}(4, 4) = -\frac{2835}{16} \zeta(5) - \frac{5\pi^5}{16} - \frac{76111}{864}. \]

The expression \(T(j, k) \) and \(T^{(m)}(j, k) \) can also be represented in integral and hypergeometric form and for completeness the following is recorded.

Theorem 3 — Let the assumptions of Theorem 1 apply, then

\[T(j, k) = k \int_{0}^{1} x^j (1-x)^{k-1} \frac{dx}{(1-x^k)}, \quad (3.5) \]
\[T^{(m)}(j, k) = k \int_0^1 x^j (1 - x)^{k-1} \ln^m x \frac{1}{(1 - x^k)} \, dx \] \hspace{1cm} (3.6) \\
and \\
\[T(j, k) = \frac{1}{\binom{k+j}{k}} \left(\begin{array}{c} 1+j \frac{k}{k}, \frac{2+j}{k}, \ldots, \frac{k+j}{k}, 1 \\ \frac{1+j+k}{k}, \frac{2+j+k}{k}, \ldots, \frac{2k+j}{k} \end{array} \right) \binom{1}{1} \right) . \] \hspace{1cm} (3.7) \\

Proof: Consider \\
\[T(j, k) = \sum_{n=1}^{\infty} \binom{1}{\frac{nk+j}{k}} = \sum_{n=1}^{\infty} \frac{\Gamma(nk+j-k+1) \Gamma(k+1)}{\Gamma(nk+j+1)} \]
\[= k \sum_{n=1}^{\infty} B(k, nk - k + j + 1), \]

where \(\Gamma(\cdot) \) is the gamma function and \(B(\cdot, \cdot) \) is the beta function. Now \\
\[T(j, k) = k \int_0^1 x^j (1 - x)^{k-1} \ln^m x \frac{1}{(1 - x^k)} \, dx, \]

and (3.5) follows. Now differentiating \(m \) times with respect to \(j \) results in \\
\[T^{(m)}(j, k) = k \int_0^1 x^j (1 - x)^{k-1} \ln^m x \frac{1}{(1 - x^k)} \, dx \]

hence (3.6). For the hypergeometric function we consider the definition (1.2) above and write \\
\[T(j, k) = \sum_{n=1}^{\infty} \binom{1}{\frac{nk+j}{k}} = \sum_{n=0}^{\infty} \frac{1}{\binom{nk+k+j}{k}} \]

therefore (3.7) follows. \(\square \)
Remark 2 : It is straightforward to see, from (3.3) and (3.6), that

\[T^{(m)}(0, 2) = 2 \int_0^1 \frac{\ln^m x}{1 + x} dx = \sum_{n=1}^{\infty} \lim_{j \to 0} \frac{d^{(m)}(j)}{dj^{(m)}} \left(\frac{2n + j}{2} \right)^{-1} \]

\[= 2 (-1)^m \frac{m!}{1 - 2^{-m}} \zeta(m + 1) \]

\[= \frac{(-1)^{m+1} m! H^{(m+1)}}{2m} \]

\[= 2m! \sum_{n=1}^{\infty} \frac{(-1)^{m+n+1}}{n^{m+1}}. \]

Many other examples of binomial sums, harmonic number sums, integral representations and hypergeometric summation are available in [1, 2, 8, 10-15]. Some interesting binomial series are also investigated in [7].

REFERENCES

5. K. Knopp, Theory and applications of infinite series, Dover Publications, New York, 1990 reprint of Blackie and son, London 2nd ed. 1951, p268, ex. 107(g) and (h).

