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We develop new closed form representations of sums of reciprocal binomial coefficients. We
also identify new integral and hypergeometric representation for the binomial-harmonic number
sums.
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1. INTRODUCTION AND PRELIMINARIES

In the interesting paper [6], Nimbran considers the representation of

Sk)y=>" W (1.1)

n=1
for £ € N\ {1}, in closed form and evaluates(k) for & = {2,3,4,5,6,8,10,12} . In particular
S (2) = In2islisted in [4],5 (3) = ¥3% — LIn3ands (4) = L In2— Z are listed in [5]. Nimbran's
search of the literature yields no other evaluatior5df) for £ > 5 and then sets out to evaluate
S (k) for k = {5,6,8,10,12}. Nimbran claimsS (10) is difficult to evaluate and finds it impossible
to evaluates (k) for any other values df. Nimbran’s method of evaluating (k) is indeed ingenious
and relies on the representation
p—1
p=2 (Z <mp—|—1—m - n;))
m>1 \r=1
which is a generalization of an identity given by Euler in 1734, [3]. As a by-product of Nimbran’'s
investigations, he also obtains some rather interesting representatiotisctiding

22 i 60
7T = (4n?—1)(16n* — 1) (16n* — 9)

m =
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In this paper we shall investigate (1.1) and give a general identity & for everyk € N\ {1}.
Furthermore we shall extend our investigation of (1.1) and evaluate representations for harmonic
number sums of the formil,, S (k) . First we recall some definitions of some special functions that
will be useful throughout this paper. The Gamma functionxfar C, as given by Euler in integral

formis

o0
I(z) = / et ldt, R (2) > 0,
0
the special case for € N reduces to, from the recurrence relatid;n + 1) = nI' (n) = n!l. The

Pochhammer, or shifted factorial is defined By, = F(FA&)”) The Beta function, or Euler integral

of the first kind is

1
B(sw) = /tz—l (1= )" ar
0
T
T

(T () .
Cruw)’ R(z) > 0,R(w) > 0.

Let

1 L1 - > n
2 /0 1—t Teintl) Z (j+n) "

J=1 J

n

be thenth harmonic number, wherg denotes the Euler-Mascheroni consta‘ﬂﬁ”) => . Tim is
them!” order harmonic number and z) is the Digamma (or Psi) function defined by

V(e) = S {logT(2)) = [ andu(1 +2) = v() + 1.

moreover

—( 1 1
¢(Z):_7+;]<n+1_n+z>'

A generalized hypergeometric function is defined by

oFolzl = pFy ! a1,a2,...,ap 2] = pFy[(ap); (bg) | 2]
b1, b2, ..., by
i (aj), 2"
_ (a1),, - (ap), 2" =
= > (b1),, .- (bg), n! > | . (1.2)
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for b; non-negative integers or zero. When< g¢; ,F, [z] converges for all complex values of
z, pFy [2] is an entire function. Whep > ¢ + 1; ,F, [z] converge forz = 0, unless it terminates,
which it does when one of the parameteysis a negative integer, hengé’, [2] is a polynomial in
z. Whenp = ¢ + 1 the series converges in the unit dis¢ < 1, and also folz| = 1 provided that

q p
R > bj—> aj| >0.Whenp = 2,¢q=1we have the familiar Gauss hypergeometric function
j=1 j=1
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where|z| < 1, R (c — b) > 0and® (b) > 0. The following Lemma will be useful in the development
of the main Theorem.

Lemmal — Letp (n) andq (n) be polynomials im where all the roots of (n) are simple. No

root of g (n) is inN and let thedeg (p (n)) < deg (¢ (n) — 2). Letv, = %. Then

o) k
Zvn = - Zar¢(ﬁr) (1.3)
n=0 r=1
where
p(n) <~ _a
Uy =L = . 1.4
q(n) E:I n+ 5, (4
[ee] o
PrROOF: Fromuv, = % we have > v, = >, %. By partial fraction expansiom, =
n=0 n=0

e8]
Zle —15- since all the roots of (n) are simple. For the seri€}s; v, to converge it suffices to have

n=0

lim nv, = 0, in which cas€&_*_, a,, = 0. Now

n—oo

[e.e]

ook o
T
KD ) D

n=0 n=0r=1

oo k 1 1
-2 <n+ﬁr—n+1)

n=0r=1
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[e.e]

= S (g i)

r=1

k
= =) a(y+(6)
r=1

k
= - Z arw(ﬂr)
r=1
and the Lemma is proved.

2. CLOSED FORMSUMMATION

We now prove the following theorem.

Theoreml — Letk € N\ {1} andj € R* then we have the novel representation

00 k .
TGR=Y =3 ( 1)%2‘7)-

—_

3
l

VR
S

o~ 5
+
<

~—
3

The casg = 0 reduces to

> 1 k 1 r
T(o,k)Z;(nk) Zl <T_1>¢(k,).
k

PROOF: Consider the expansion

. = 1 2 k! (nk— k4 j)!

TGk =), ——= :
7121 nk + j 7121 (nk +5)!
k
> 1 > 1
= k! = k!

kz k . kz(nk:—i-j—l—l—k)

n=L T (nk+j+1-1) n=1

r=1

S !
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2.1)

(2.2)
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where Pochhammer’s symb@t),, = F(F”C(x). By partial fraction decomposition we have

. _k S E-1 ) & 1 1

n =0

and applying Lemma 1 we conclude

k _ .
T(.K) = Z(—l)’"(k 1>w< )

r=1

and (2.1) follows. Foy = 0 (2.2) follows and we notice that (0, k) = k!S (k) which is the sum
(1.2). O

It is possible to expresE (j, k) in terms of basic trigonometric functions and we show the result
in the next remark

Remarkl : Gauss’s Digamma theorem states thatfer a < b

[3]-1
i W ~Teot () 12 3 cos (22 ) 1 (sin (X
1/1(3) = —v —In(20) 2cot( 5 >+2 2 cos< 5 )ln(sm( b ))
Applying Gauss’s Digamma theorem to (2.1) we have

T(,k) = (—1)kln(2/€)+§:(_1)r ( ol ) <_72r“’t (W))

r=1 r—1
b k-1 bl 21 (r + j) :
+2r21(_1) ( S ) P c ( 3 >ln (sm <—>> ,

where|z] is the integer part of andr + j < k. The casg = 0 follows simply.

Some examples follow. The cage-= k is interesting and we see that

Tk =3 e = 3 (1) ( el )wﬁ";’“).
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Now sinceiy(1 + 2) = ¥(z) + 1, we have that

(z
00 k
TR = Y=Y ) S N
r k

= —14+T(0,k).
Also
2
T(0,6) = 321n2——71n3—7\/§7r,
2 6
2 11
T(3,6) = 47— 321112——71 3— \6/377,
2 11
T(8,6) = —%+321 2+571 3— ‘/3”,

3
T<2,4> - Tr(4+2\f2) _>
In the next section we give an extension to Theorem 1 by incorporating harmonic numbers to the
sumT (4, k) and associating the sum with hypergeometric and integral representation.

3. EXTENSION

We begin with the proof of the following Theorem.

Theorem2 — Under the assumptions of Theorem 1 andiket N then

-1
) s > g(m) nk +j s -
7 )(37/“) = ZW(( i ZZQ( )(Jk
n=1

n=1
1 E—1 r+j
- —1)" (m)
km;< 1) <r1>¢ () (3.1)
m! - r+m k—1 (m+1)
= 2 (1) HT (3.2)
—t r—1 3

where
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PrROOF: From the identity (2.1) we differentiate both sides” times with respect tg so that
-1
) . > g(m) nk + j © )
T )(.77k) = Zdj(m)(< 1 ZZQ( )(jak)
n=1

1< k=1 o rt
= ﬁZ(*l) ( >¢( )(T)

r—1

and (3.1) follows. From the known identity, relating polygamma functions with harmonic numbers
V(1 +2) = ()" m (HD =1+ 2))

then

(m) (5 m! : r+m k-1 (m+1)
™ (j, k) = —— (=1) H.\ oy

since
k—1

k
> (-1 =0, fork > 2,
r=1 r—1

hence (3.2) follows. For completeness we detail some valu@s™®f (j, k):
1

QW (k) = ————— (Hintjk — Hinyy)
nk+j
and
1
@Dy - o N2 (@ _g®
Q (]7 k) = k] ((Hkn—i-j—k Hkn+]) <H]m+j,k H]m+j>) )
k
some more details on the functici” (j, k) are given in the paper [9]. O

The caseg = 0 andj = k are interesting and the results are given in the next corollary.

Corollaryl — Forj =0

T (0,k) = > QU™ (0,k)
n=1

k
1 k—1 r
N AR (m) ("
km;:l( 1) (r_1>¢ (%)
k—1
m! e [ K1 m
= o (U <7« 1)1{5;:1), (3.3)
r=1 -
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where .
(m)
Forj =k
T (k, k) = T™ (0, k) + (=1)™ LA™ (k)
where

PrROOF: From (3.1) we have

T (0,k) =

since forr = k, H(mH) = 0, then (3.3) follows. For the cage= k,

i@( )
n=1
1 k
e

dm)
=lim | —
By the property of the polygamma function

(=D)" m!

where

Q™ (k, k)

m)!
m+1

1 r
sl
m'kz

-1 1
1 Tm—s—l :

P (1+2) = M +2)+

= T (0, k)

ol

(=1

,rerl

)

(3.4)
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From the paper [9], we have

b (k=1 1 A (K
Zl(_l) ( ) pmAl T m!lf: )

r—1

hence
T (k, k) = T (0,k) + (—1)™ A (k)

hence (3.4) follows. Some values &f™ (k) are
AD (k) = Hy, A® &) =H + HY
A® (k) = H}+3H.H?+2H O

Examplel : Some illustrative examples follow.

> Huyp i — Hypors
7(1) (],k’) _ Z k—k+j . k+j
n=1 nk+J
k

k
m! k—1 9
ka:1( ) ( r—1 ) r+i7k7

3 1 1 1 7
TW(L,4) = :0(2) - (G =5 TY0.4) = G- ()

whered is Catalan’s constant.

T(g) (07 2) = - 2 C (4) y
2835 5m° 76111
(4) _ 209 _om bt
T (44) 16 ¢(5) 16 864

The expressiofT (j, k) andT(™ (j, k) can also be represented in integral and hypergeometric
form and for completeness the following is recorded.

Theorem3 — Let the assumptions of Theorem 1 apply, then

Ui (] — g)E1
T (k) = k:/o de, (3.5)
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1.5 oNE-1 m
70" (k) = k/ x (1( )" " In z
0

1 — zk)
and
T(j, k) = ——— 14%F% 1
. 1+j+k 24+j+k 2k+j
k+j a2 S L
k
ProoOF: Consider
. — > nk—l—j—k+1) (k+1)
nl(nk+j> n=1 77, +]+ )
k

o0

= kY B(knk—k+j+1),

whererl (+) is the gamma function an#t (-, -) is the beta function. Now

1 g1 k=1 0 "
T(j,k) = k:/o :E](lzkx)z_:l(xk) dz,

and (3.5) follows. Now differentiating» times with respect tg results in

Lgd (1 —2)*~ x
e k)_k/o J(l(l—)x’f) &

(3.6)

(3.7)

hence (3.6). For the hypergeometric function we consider the definition (1.2) above and write

= 1 > 1
T(Jak)_ =
RZ:I nk+j nz:o nk+k+j
k k

therefore (3.7) follows.
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Remark? : It is straightforward to see, from (3.3) and (3.6), that

o)

-1
T(m (0,2) = 2/ e = S him [ L ntJ
0 1—|—$ n:1]—>0 d](m) 2

= 2(-1)"m!(1-2"")((m+1)

)™ ml o
(-1 HOmHD

2m 2

o0 (_1)m+n+1
= | ~ 7
o %n.E: nm+1 )
n=1

Many other examples of binomial sums, harmonic number sums, integral representations and

hypergeometric summation are available in [1, 2, 8, 10-15]. Some interesting binomial series are also

investigated in [7].
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