ON TETRAVALENT VERTEX-TRANSITIVE BI-CIRCULANTS

Sha Qiao and Jin-Xin Zhou

Department of Mathematics, Beijing Jiaotong University, Beijing 100044, China e-mails: 14121549@bjtu.edu.cn; jxzhou@bjtu.edu.cn

(Received 9 September 2016; after final revision 6 August 2018; accepted 25 January 2019)

A graph Γ is called a *bi-circulant* if it admits a cyclic group as a group of automorphisms acting semiregularly on the vertices of Γ with two orbits. The characterization of tetravalent edgetransitive bi-circulants was given in several recent papers. In this paper, a classification is given of connected tetravalent vertex-transitive bi-circulants of order twice an odd integer.

Key words: Bi-Cayley graph; vertex-transitive graph; Cayley graph.

2010 Mathematics Subject Classification: 05C25, 20B25

1. Introduction

Throughout this paper, groups are assumed to be finite, and graphs are assumed to be finite, simple and undirected. For the group-theoretic and graph-theoretic terminology not defined here we refer the reader to [4, 22].

Let G be a permutation group on a set Ω and $\alpha \in \Omega$. Denote by G_{α} the stabilizer of α in G, that is the subgroup of G fixing the point α . We say that G is *semiregular* on Ω if $G_{\alpha} = 1$ for every $\alpha \in \Omega$ and *regular* if G is transitive and semiregular.

A graph Γ is called a *Cayley graph* if it admits a group G of automorphisms acting regularly on its vertex-set $V(\Gamma)$. In that case, Γ is isomorphic to the graph $\operatorname{Cay}(G,S)$ with vertex-set G and edge-set $\{g,xg\}:g\in G,\,x\in S\}$, where S is the subset of elements of G taking the identity element to one of its neighbours (see [3, Lemma 16.3]); and then the automorphism group of Γ contains a subgroup $R(G)=\{R(g):g\in G\}$, where R(g) is the permutation of G given by $x\mapsto xg$ for $\forall x\in G$.

If, instead, we require the graph Γ to admit a group H of automorphisms acting semi-regularly on $V(\Gamma)$ with two orbits, then we call Γ a *bi-Cayley graph* (for H). In this case, H acts regularly on

each of its two orbits on $V(\Gamma)$, and the two corresponding induced subgraphs are Cayley graphs for H. In particular, we may label the vertices of these two subgraphs with elements of two copies H_0 and H_1 of H, and find that there are subsets R, L and S of H such that the edges of those two induced subgraphs are of the form $\{h_0, (xh)_0\}$ with $h_0 \in H_0$ and $x \in R$, and $\{h_1, (yh)_1\}$ with $h_1 \in H_1$ and $y \in L$, while all remaining edges are of the form $\{h_0, (zh)_1\}$ with $z \in S$ and where h_0 and h_1 are the elements of H_0 and H_1 that represent a given $h \in H$.

Conversely, if H is any group, and R, L and S are subsets of H such that $1_H \notin R = R^{-1}$ and $1_H \notin L = L^{-1}$, then the graph Γ with vertex set being the union $H_0 \cup H_1$ of two copies of H and with edges of the form $\{h_0, (xh)_0\}$, $\{h_1, (yh)_1\}$ and $\{h_0, (zh)_1\}$ with $x \in R$, $y \in L$ and $z \in S$, and $h_0 \in H_0$ and $h_1 \in H_1$ representing a given $h \in H$, is a bi-Cayley graph for H. Indeed H acts as a semi-regular group of automorphisms by right multiplication, with H_0 and H_1 as its orbits on vertices. We denote this graph by $\operatorname{BiCay}(H,R,L,S)$, and denote the group of automorphisms induced by H on the graph as R(H). When R(H) is normal in $\operatorname{Aut}(X)$, the bi-Cayley graph $X = \operatorname{BiCay}(H,R,L,S)$ will be called a normal bi-Cayley graph over H.

A bi-Cayley graph over a cyclic group, an abelian group or a dihedral group is also simply called a *bicirculant*, *bi-abelian* or *bi-dihedrant*, respectively.

Bi-Cayley graphs form an extensively studied class of graphs (see, for instance, [2, 8, 12-15, 17, 18, 24]. In the study of bi-Cayley graphs, one of the natural problems is: for a given group H, classify bi-Cayley graphs with specific symmetry properties over H. Some partial answers have been obtained for this problem. For example, Marušič $et\ al$. [20, 21] classified all trivalent vertex-transitive bi-circulants, and Zhou and Feng [25] extended this to the classification of trivalent vertex-transitive bi-abelians. Recently, all tetravalent edge-transitive bi-circulants were classified in [13], and all pentavalent arc-transitive bi-circulants were classified in [1]. The works listed above provide a motivation for us to consider the tetravalent vertex-transitive non-Cayley bi-circulants. In this paper, we shall classify tetravalent vertex-transitive bi-circulant graphs of order 2n for each odd integer n.

The study in the literature on the construction of vertex-transitive non-Cayley graphs also provides a motivation for us to consider vertex-transitive non-Cayley bi-circulants. As one of the most important finite graphs, the Petersen graph is a bi-Cayley graph over a cyclic group of order 5. Note that the Petersen graph is vertex-transitive but not Cayley. We call a vertex-transitive graph which is not Cayley a *vertex-transitive non-Cayley graph*, or a *VNC-graph* for short. There have been a lot of work on the classification and construction of VNC-graphs (see, for instance, [16, 10]). In [23] and [7], Zhou *et al.* classified all tetravalent VNC-graphs of order 4p and $2p^2$ for each prime p, in

[11] Hujdurovic *et al.* constructed two infinite families of VNC-graphs by using generalized Cayley graphs and in [6] Conder *et al.* constructed an infinite family of trivalent VNC-graphs as Haar graphs (namely, 0-type bi-Cayley graphs) over some non-abelian groups. In this paper, by considering tetravalent vertex-transitive bi-circulants graphs of order 2n with n an odd integer, we construct a new infinite family of VNC-graphs.

2. Preliminaries

In this section, we introduce basic concepts and terminology as well as some preliminary results which will be used later in the paper. For a finite, simple and undirected graph X, we use V(X), E(X), A(X), Aut(X) to denote its vertex set, edge set, arc set and full automorphism group, respectively. Let X be a connected vertex-transitive graph, and let $G \leq Aut(X)$. For a G-invariant partition \mathcal{B} of V(X), the quotient graph $X_{\mathcal{B}}$ is defined as the graph with vertex set \mathcal{B} such that, for any two vertices $B, C \in \mathcal{B}$, B is adjacent to C if and only if there exist $u \in B$ and $v \in C$ which are adjacent in X. Let N be a normal subgroup of G. Then the set \mathcal{B} of orbits of N in V(X) is a G-invariant partition of V(X). In this case, the symbol $X_{\mathcal{B}}$ will be replaced by X_N . Note that, if X is vertex-, edge- or arc-transitive, then so is X_N , respectively.

Let X and Y be two graphs. The *lexicographic product* X[Y] is defined as the graph with vertex set $V(X[Y]) = V(X) \times V(Y)$ such that for any two vertices $u = (x_1, y_1)$ and $v = (x_2, y_2)$ in V(X[Y]), u is adjacent to v in X[Y] whenever $\{x_1, x_2\} \in E(X)$ or $x_1 = x_2$ and $\{y_1, y_2\} \in E(Y)$.

For a positive integer n, denote by \mathbb{Z}_n the cyclic group of order n as well as the ring of integers modulo n, by \mathbb{Z}_n^* the multiplicative group of \mathbb{Z}_n consisting of numbers coprime to n, by D_{2n} the dihedral group of order 2n, and by C_n and K_n the cycle and the complete graph of order n, respectively. We call C_n an n-cycle. Finally, for two groups M and N, $N \rtimes M$ denotes a semidirect product of N by M. For a subgroup M of a group M, denote by M the centralizer of M in M and by M in M and M in M and for a subset M of M is the subgroup of M fixing M pointwise.

In the following, we introduce some results regarding bi-Cayley graphs. We always assume that X = BiCay(H, R, L, S) is a connected bi-Cayley graph over a group H. It is easy to get the following obvious basic facts of bi-Cayley graphs.

Proposition 2.1 - [26]. The following hold.

- (1) H is generated by $R \cup L \cup S$.
- (2) Up to graph isomorphism, S can be chosen to contain the identity of H.

- (3) For any automorphism α of H, BiCay $(H, R, L, S) \cong BiCay <math>(H, R^{\alpha}, L^{\alpha}, S^{\alpha})$.
- (4) BiCay $(H, R, L, S) \cong BiCay (H, L, R, S^{-1})$.

The triple (R,L,S) of three subsets R,L,S of a group H is called *bi-Cayley triple* if $R=R^{-1}$, $L=L^{-1}$, and $1\in S$. Two bi-Cayley triples (R,L,S) and (R',L',S') of a group H are said to be equivalent, denoted by $(R,L,S)\equiv (R',L',S')$, if either $(R',L',S')=(L,R,S^{-1})$ or $(R',L',S')=(R,L,S)^{\alpha}$ for some automorphism α of H. The bi-Cayley graphs corresponding to two equivalent bi-Cayley triples of the same group are isomorphic (see Proposition 2.1 (3)-(4)).

Next we give a result about the automorphisms of the bi-Cayley graph X = BiCay(H, R, L, S). Recall that for each $g \in H$, R(g) is a permutation on V(X) defined by the rule

$$h_i^{R(g)} = (hg)_i, \ \forall i \in \mathbb{Z}_2, \ h, \ g \in H, \tag{1}$$

and $R(H) = \{R(g) \mid g \in H\} \leq \operatorname{Aut}(X)$. For an automorphism α of H and $x, y, g \in H$, define two permutations on $V(X) = H_0 \cup H_1$ as following:

$$\delta_{\alpha,x,y}: h_0 \mapsto (xh^{\alpha})_1, h_1 \mapsto (yh^{\alpha})_0, \forall h \in H,
\sigma_{\alpha,g}: h_0 \mapsto (h^{\alpha})_0, h_1 \mapsto (gh^{\alpha})_1, \forall h \in H.$$
(2)

Set

I =
$$\{\delta_{\alpha,x,y} \mid \alpha \in Aut(H) \ s.t. \ R^{\alpha} = x^{-1}Lx, L^{\alpha} = y^{-1}Ry, S^{\alpha} = y^{-1}S^{-1}x\},\$$

F = $\{\sigma_{\alpha,g} \mid \alpha \in Aut(H) \ s.t. \ R^{\alpha} = R, L^{\alpha} = g^{-1}Lg, S^{\alpha} = g^{-1}S\}.$ (3)

Proposition 2.2 — [26, Theorem 1.1]. Let $\Gamma = \operatorname{BiCay}(H,R,L,S)$ be a connected bi-Cayley graph over the group H. Then $N_{\operatorname{Aut}(\Gamma)}(R(H)) = R(H) \rtimes F$ if $I = \emptyset$ and $N_{\operatorname{Aut}(\Gamma)}(R(H)) = R(H) \backslash F$, $\delta_{\alpha,x,y} \rangle$ if $I \neq \emptyset$ and $\delta_{\alpha,x,y} \in I$. Furthermore, for any $\delta_{\alpha,x,y} \in I$, we have the following:

- (1) $\langle R(H), \delta_{\alpha,x,y} \rangle$ acts transitively on $V(\Gamma)$.
- (2) if α has order 2 and x=y=1, then Γ is isomorphic to the Cayley graph $\operatorname{Cay}(\bar{H}, R \cup \alpha S)$, where $\bar{H} = H \rtimes \langle \alpha \rangle$.

3. Construction

In this section, we shall construct an infinite family of tetravalent vertex-transitive non-Cayley graphs.

Construction 3.1 — Let $m_1, m_2 > 1$ be two odd integers such that $(m_1, m_2) = 1$. Let $t \in \mathbb{Z}_{m_2}^*$ be such that $t^2 \equiv -1 \pmod{m_2}$. Let $H = \langle r \rangle \times \langle s \rangle \cong \mathbb{Z}_{m_2} \times \mathbb{Z}_{m_1} (\cong \mathbb{Z}_{m_1 m_2})$. Set $R = \{r, r^{-1}\}$, $L = \{r^t, r^{-t}\}$ and $S = \{1, s\}$. Let

$$X_{m_1,m_2,t} = \operatorname{BiCay}(H,R,L,S).$$

It will be shown in Theorem 3.3 that the graph $X_{m_1,m_2,t}$ is a connected tetravalent vertex-transitive non-Cayley graph. Note that the smallest graph in this infinite family of graphs is $X_{3,5,2}$ with order 30. Clearly,

$$X_{3,5,2} = \text{BiCay}(H, \{r, r^{-1}\}, \{r^2, r^{-2}\}, \{1, s\}),$$

where $H = \langle r \rangle \times \langle s \rangle \cong \mathbb{Z}_5 \times \mathbb{Z}_3$. Furthermore, one may see Appendix I for the adjacency matrix of $X_{3,5,2}$. Below we shall prove a lemma which is useful in the proof of Theorems 3.3 and 4.3.

Lemma 3.2 — Let n > 7 be an odd integer, and let X be a connected tetravalent vertex-transitive bi-Cayley graph over a cyclic group of order n. If $3 \mid |\operatorname{Aut}(X)_v|$ for some $v \in V(X)$, then either X is edge-transitive or is of 0-type.

PROOF: Let $A=\operatorname{Aut}(X)$. Suppose that $3\mid |A_v|$ for some $v\in V(X)$. Assume that X is not edge-transitive. We may let $X=\operatorname{BiCay}(H,R,L,S)$, where $H=\langle a\rangle\cong\mathbb{Z}_n$ and $1\in S$. Suppose that X is not of 0-type. Then X is of 2-type since $|H_0|=|H_1|=n$ is odd.

For any $v \in V(X)$, let A_v^* be the subgroup of A_v fixing the neighborhood N(v) of v pointwise. Let $T \in \operatorname{Syl}_3(A_v)$. Suppose $T \leq A_v^*$. Then $T \leq A_u$ for every $u \in N(v)$. Since X is vertex-transitive, one has $A_v/A_v^* \cong A_u/A_u^*$, implying that $T \leq A_u^*$. The connectedness of X implies that T fixes every vertex of X, forcing T=1, a contradiction. Thus $T \nleq A_v^*$ and hence $\mathbb{Z}_3 \cong TA_v^*/A_v^* \leq A_v/A_v^* \leq S_3$ considering X is not edge-transitive. Then $A_v/A_v^* \cong \mathbb{Z}_3$ or S_3 . It follows that for any $v \in V(X)$, there is a unique vertex $u \in N(v)$ such that $A_v = A_u$.

Set $F=\{\{u,v\}\in E(X)\mid A_v=A_u\}$ and $\Gamma=X-F$. Then Γ is a cubic graph. For any $g\in A$ and $\{u,v\}\in F$, one has $\{u,v\}^g=\{u^g,v^g\}$. Furthermore, $A_{u^g}=A_u^g=A_v^g=A_{v^g}$. It follows that $\{u,v\}^g=\{u^g,v^g\}\in F$ and hence $F^g=F$. Consequently, A is a vertex-transitive automorphism group of Γ . Since $3\mid |A_v/A_v^*|$, A is also arc-transitive on Γ .

If Γ is connected, then Γ is a cubic arc-transitive bi-Cayley graph over $H \cong \mathbb{Z}_n$. Since n > 7, by [12, Theorem 1.1], Γ is a bipartite graph with H_0 and H_1 as its two partition sets, forcing X is of type 1, a contradiction.

If Γ is disconnected, then since Γ is cubic and $|V(\Gamma)|=2n$, each component of Γ has order 2m with $m\mid n$. Let Γ_i $(0\leq i\leq n/m-1)$ be the n/m components of Γ , and let $B_i=V(\Gamma_i)$. Set $\Omega=\{B_i\mid 0\leq i\leq n/m-1\}$. Then Ω is an A-invariant partition of $V(\Gamma)=V(X)$. Consider the quotient graph X_Ω of X relative to Ω , and let K be the kernel of A acting on Ω . Recall that H_0 and

 H_1 are the two orbits induced by R(H) acting on $V(\Gamma)$. Since X is of type 2, $X[H_0] \cong X[H_1]$ are of valency 2. So for each $0 \le i \le n/m-1$, $B_i \cap H_0 \ne \emptyset$ and $B_i \cap H_1 \ne \emptyset$. Then R(H) is transitive on Ω . Since $R(H) \cong \mathbb{Z}_n$ and $|\Omega| = n/m$, the kernel $K \cap R(H)$ of R(H) acting on Ω is isomorphic to \mathbb{Z}_m . It follows that for each $0 \le i \le n/m-1$, $|B_i \cap H_0| = |B_i \cap H_1| = m$. If K is transitive on some B_i , then K is transitive on all B_j . Since Γ_i is of valency 3, the quotient graph X_Ω would have valency 1, and so $X_\Omega \cong K_2$. This forces that n/m = 2, contradicting that n is odd. Thus, K is intransitive on each B_i . Note that $B_i \cap H_0$ and $B_i \cap H_1$ are two orbits of $K \cap R(H)$ acting on B_i . So, $B_i \cap H_0$ and $B_i \cap H_1$ are also the two orbits of K on B_i . Let A_{B_i} be the subgroup of A fixing B_i setwise. Then A_{B_i} is arc-transitive on Γ_i . Clearly, $K \subseteq A_{B_i}$. Then $B_i \cap H_0$ and $B_i \cap H_1$ are two independent sets. This implies that each Γ_i is bipartite with $B_i \cap H_0$ and $B_i \cap H_1$ as its two bipartition sets. Again this would force that X is of type 1, a contradiction.

Now we give the main result of this section.

Theorem 3.3 — The graph $X_{m_1,m_2,t}$ is a connected tetravalent VNC-graph.

PROOF: Let $X=X_{m_1,m_2,t}$ and $A=\operatorname{Aut}(X)$. It is easy to see that H has an automorphism β such that $r^\beta=r^t$ and $s^\beta=s^{-1}$. Furthermore, we have $R^\beta=L$, $L^\beta=R$ and $S^\beta=S^{-1}$. By Proposition 2.2, we have $1\neq \delta_{\beta,1,1}\in A$, and so X is vertex-transitive.

From [13, Theorem 1.1], one can obtain that $X_{m_1,m_2,t}$ is not edge-transitive. Since X is of valency 4, the vertex-stabilizer A_{1_0} is a $\{2,3\}$ -group. It is easy to see that $m_1m_2 \geq 15$. If $3 \mid |A_{1_0}|$, then by Lemma 3.2, X is of type 0, a contradiction. Thus, A_{1_0} is a 2-group. Hence R(H) is a cyclic Hall 2'-subgroup of A. By Wielandt theorem, every Hall 2'-subgroup of A is conjugate to R(H).

Suppose that X is a Cayley graph. Then A has a subgroup G acting regularly on V(X), and so $|G|=2|H|=2m_1m_2$. Let $J\leq G$ be such that $|J|=m_1m_2$. Then there exists $a\in A$ such that $R(H)^a=J$. It follows that $R(H)^a=J\leq G$, and hence $R(H)\leq G^{a^{-1}}$. Clearly, $G^{a^{-1}}$ is also regular on V(X). Clearly, $G^{a^{-1}}\cong R(H)\rtimes \mathbb{Z}_2$. By Proposition 2.2, there exists an involution $\delta_{\alpha,x,y}\in G$ for some $\alpha\in \operatorname{Aut}(H), x,y\in H$. By the definition of $\delta_{\alpha,x,y}, \alpha$ swaps R and L, and $S^\alpha=y^{-1}xS^{-1}$. Noting that $1_0^{\delta_{\alpha,x,y}}=x_1, x_1^{\delta_{\alpha,x,y}}=1_0$ since $\delta_{\alpha,x,y}$ has order 2. It follows that $(yx^\alpha)_0=1_0$, and hence $yx^\alpha=1$.

As α swaps R and L, we have $r^{\alpha}=r^{t}$ or r^{-t} , and hence $r^{\alpha^{2}}=r^{t^{2}}=r^{-1}$. Then

$$r_0 = r_0^{\delta_{\alpha,x,y}^2} = (xr^{\alpha})_1^{\delta_{\alpha,x,y}} = (yx^{\alpha}r^{\alpha^2})_0 = (r^{-1})_0,$$

which forces that $r = r^{-1}$, a contradiction. Thus, X is a VNC-graph, as required.

4. CLASSIFICATION

Throughout this section, we shall let n > 1 be an odd integer.

Lemma 4.1 — Let X be a connected tetravalent vertex-transitive graph of order 2n. If Aut(X) has a non-trivial normal 2-subgroup, then X is a Cayley graph.

PROOF: Assume that M is a non-trivial normal 2-subgroup of $\operatorname{Aut}(X)$. Since n is odd, each orbit of M has length 2, and so the quotient graph X_M has order n. This implies that X_M has valency 4 or 2. For the former, one may see that M is semiregular on V(X), and so $M \cong \mathbb{Z}_2$. Again, considering n > 1, R(H)M must be regular on V(X), and so X is a Cayley graph on R(H)M. For the latter, we have $X_M \cong C_n$ and so $\operatorname{Aut}(X_M) \cong D_{2n}$. Let K be the kernel of $\operatorname{Aut}(X)$ acting on $V(X_M)$. Then $\operatorname{Aut}(X)/K$ is a vertex-transitive automorphism group of X_M , and since n is odd, we have either $\operatorname{Aut}(X)/K \cong \mathbb{Z}_n$ or $\operatorname{Aut}(X)/K \cong D_{2n}$. It then follows that $\operatorname{Aut}(X)/K$ is edge-transitive on X_M , and so the subgraphs of X induced by any two adjacent orbits of M are isomorphic. Consequently, the subgraph induced by any two adjacent orbits of M is isomorphic to $K_{2,2}$, and so $X \cong C_n[2K_1]$, which is a Cayley graph, as required. \square

Lemma 4.2 — Let X be a connected tetravalent vertex-transitive bi-Cayley graph over an abelian group H of order n. If $\operatorname{Aut}(X)$ has no non-trivial normal 2-subgroups and the vertex stabilizer $\operatorname{Aut}(X)_v$ of $v \in V(X)$ is a 2-group, then X is normal.

PROOF: Let $A = \operatorname{Aut}(X)$. Let P be a Sylow 2-subgroup of A such that $A_v \leq P$. Clearly, $|A| = 2|A_v||H|$. Since n is odd, one has $|P| = 2|A_v|$, and so |A| = |H||P|. It follows that A = R(H)P. According to a theorem of Kegel and Wielandt (see [9, VI, 4.3]), a product two pairwise commutative nilpotent groups is solvable. It follows that A is solvable. Then every minimal normal subgroup of A is an elementary abelian p-group for some prime divisor p of n because A has no non-trivial normal 2-subgroups. Let $M = \operatorname{Core}_A(R(H)) = \bigcap_{g \in A} R(H)^g$. The argument above implies that $M \neq 1$. Note that M is the maximum normal subgroup of A contained in R(H). Since R(H) is an abelian group, one has $1 \neq M \leq R(H) \leq C_A(M)$. Suppose that M < R(H). Let N/M be a minimal normal subgroup of A/M contained in $C_A(M)/M$. Again since A is solvable, one has $N/M \cong \mathbb{Z}_2^r$ or \mathbb{Z}_p^s for some integers r, s. For the former, since $N \leq C_A(M)$, one has $N = M \times Q$ with $Q \cong \mathbb{Z}_2^r$. So Q is characteristic in N and so normal in A considering $N \subseteq A$. This is contrary to our assumption that A has no non-trivial normal 2-subgroups. For the latter, we have $M < N \leq R(H)$ and $N \subseteq A$. This is contrary to our assumption that M is a maximum normal subgroup of A. Thus M = R(H), and hence $R(H) \subseteq A$, as desired.

The following is the main result of this paper.

Theorem 4.3 — Let X be a connected tetravalent vertex-transitive bi-Cayley graph over a cyclic group of odd order n. Then X is a VNC-graph if and only if $X \cong X_{m_1, m_2, t}$.

PROOF: By Theorem 3.3 we can get the sufficiency. We only need to prove the necessity.

Let $H = \langle a \rangle \cong \mathbb{Z}_n$ and let $X = \operatorname{BiCay}(H, R, L, S)$ be a connected tetravalent vertex-transitive non-Cayley graph. By Proposition 2.1, we will assume that $1 \in S$. Since H is abelian, H has an automorphism that inverses every element of H, and we shall always use α to denote this automorphism.

Since n is odd, the induced subgraphs $X[H_0]$ and $X[H_1]$ are of even valency, and so X is of type 0 or 2. Suppose that X is of type 0. We have $S^{\alpha} = S^{-1}$, and by Proposition 2.2, X is a Cayley graph, a contradiction. Thus, X is of type 2. If X is edge-transitive, then by [13, Theorem 1.1], we have $X \cong \text{BiCay}(H, \{a, a^{-1}\}, \{a, a^{-1}\}, \{1, a^2\})$. For convenience of the statement, we may let $R = L = \{a, a^{-1}\}$ and $S = \{1, s\}$. Then $R^{\alpha} = L$, $L^{\alpha} = R$, $S^{\alpha} = S^{-1}$, and again by Proposition 2.2, X is also a Cayley graph, a contradiction.

In the remainder of the proof, we will assume that X is of type 2 and is not edge-transitive. Let $A = \operatorname{Aut}(X)$. Then $|A_v| = 2^s 3^t$ for each $v \in V(X)$. If t > 0, then by Lemma 3.2, we must have n = 3, 5 or 7. If n = 3, then by [19], X is a Cayley graph, and if n = 5 or 7, then by MAGMA [5], X is a Cayley graph. A contradiction occurs.

Thus, t=0, and hence each vertex-stabilizer A_v is a 2-group. If A has a non-trivial normal 2-subgroup, then by Lemma 4.1, X is a Cayley graph. In the remainder of the proof, assume that A has no non-trivial normal 2-subgroups. Since A_v is a 2-group, from Lemma 4.2 it follows that $R(H) \subseteq A$. Recall that X is of type 2. Then |R| = |L| = |S| = 2. Assume that $S = \{1, s\}$ for some $S \in H$. Since X is vertex-transitive, by Proposition 2.2, there exist $\beta \in \operatorname{Aut}(H)$ and $y \in H$ such that $1_0^{\delta_{\beta,1,y}} = 1_1$, $R^{\beta} = L$, $L^{\beta} = R$ and $S^{\beta} = y^{-1}S^{-1}$. The last equality implies that $\{1, s\}^{\beta} = S^{\beta} = \{y^{-1}, y^{-1}s^{-1}\}$. It follows that either y=1 and $S^{\beta}=s^{-1}$, or $y^{-1}=s$ and $s^{\beta}=s$.

Since X is connected, by Proposition 2.1, we have $\langle R, L, S \rangle = H$. In the remainder of the proof, we will assume that $\langle S \rangle \cong \mathbb{Z}_{m_1}$ and $\langle R \rangle = \langle L \rangle \cong \mathbb{Z}_{m_2}$ for some $m_1, m_2 \in \mathbb{Z}_n$. Let $R = \{r, r^{-1}\}$. Then $\langle L \rangle = \langle R \rangle = \langle r \rangle$, and so $L = \{r^t, r^{-t}\}$ for some $t \in \mathbb{Z}_{m_2}^*$. Recall that $S = \{1, s\}$. Then $H = \langle r, s \rangle = \langle r \rangle \langle s \rangle$. Suppose that $M = (m_1, m_2)$. Then $M = (m_1, m_2)$ is $M = (m_1, m_2)$. Then $M = (m_1, m_2)$ is $M = (m_1, m_2)$.

As β swaps R and L, it follows that $r^{\beta}=r^t$ or r^{-t} and

$$t^2 \equiv \pm 1 \pmod{m_2}.\tag{4}$$

It follows that $(r^{\frac{m_2}{m}})^\beta=(r^{\frac{m_2}{m}})^t$ or $(r^{\frac{m_2}{m}})^{-t}$. Since $s^\beta=s$ or s^{-1} , one has $(s^{\frac{m_1}{m}})^\beta=s^{\frac{m_1}{m}}$ or

 $s^{-\frac{m_1}{m}}$. As $\langle s^{\frac{m_1}{m}} \rangle = \langle r^{\frac{m_2}{m}} \rangle \cong \mathbb{Z}_m$, it follows that

$$t \equiv \pm 1 \pmod{m}. \tag{5}$$

Suppose that $t^2 \equiv 1 \pmod{m_2}$. If m = 1, then we have $H = \langle r \rangle \times \langle s \rangle$, and hence there exists $\beta_t \in \operatorname{Aut}(H)$ such that

$$r^{\beta_t} = r^t, s^{\beta_t} = s^{-1}$$

An easy computation shows that $R^{\beta_t} = L, L^{\beta_t} = R$ and $S^{\beta_t} = S^{-1}$. Clearly, β_t has order 2. By Proposition 2.2 (2), X would be a Cayley graph, a contradiction.

Let m>1. Assume that $m_2=p_1^{\ell_1}p_2^{\ell_2}\dots p_k^{\ell_k}$, where p_1,p_2,\dots,p_k are pairwise distinct primes. Without loss of generality, we may assume that $m=p_1^{\ell_1'}p_2^{\ell_2'}\dots p_j^{\ell_j'}$ with $j\leq k$ and $1\leq \ell_l'\leq \ell_l(1\leq l\leq j)$. Let $m_2'=p_1^{\ell_1}p_2^{\ell_2}\dots p_j^{\ell_j}$. Then $\langle r\rangle=\langle r^{m_2'}\rangle\times\langle r^{m_2'}\rangle$, and then $H=\langle r,s\rangle=\langle r^{m_2'}\rangle\times\langle r^{m_2'}\rangle$, $s\rangle$.

Let $t \equiv 1 \pmod m$. Since $t^2 \equiv 1 \pmod {m_2}$, one has $t^2 \equiv 1 \pmod {m'_2}$. If $t \not\equiv 1 \pmod {m'_2}$, then since m_2 is odd, one has $t \not\equiv 1 \pmod {p_i}$ for some $1 \le i \le j$. This is impossible because $p_i \mid m$ and $t \equiv 1 \pmod m$. Thus, $t \equiv 1 \pmod {m'_2}$. Then there exist $\beta_t \in \operatorname{Aut}(H)$ such that

$$(r^{m'_2})^{\beta_t} = r^{-tm'_2}, (r^{\frac{m_2}{m'_2}})^{\beta_t} = r^{-\frac{m_2}{m'_2}}, s^{\beta_t} = s^{-1}.$$

An easy computation shows that $R^{\beta_t} = L, L^{\beta_t} = R$ and $S^{\beta_t} = S^{-1}$. Clearly, β_t has order 2. Again by Proposition 2.2 (2), X would be a Cayley graph, a contradiction.

Let $t \equiv -1 \pmod{m}$. With a similar argument as in the above paragraph, we obtain that $t \equiv -1 \pmod{m'_2}$. Then there exist $\beta_t \in \operatorname{Aut}(H)$ such that

$$(r^{m'_2})^{\beta_t} = r^{tm'_2}, (r^{\frac{m_2}{m'_2}})^{\beta_t} = r^{-\frac{m_2}{m'_2}}, s^{\beta_t} = s^{-1}.$$

An easy computation shows that $R^{\beta_t} = L, L^{\beta_t} = R$ and $S^{\beta_t} = S^{-1}$. Clearly, β_t has order 2. Again by Proposition 2.2 (2), X would be a Cayley graph, a contradiction.

Thus, $t^2 \equiv -1 \pmod{m_2}$, and hence $t^2 \equiv -1 \pmod{m}$. On the other hand, by Eq. (5), we have $t^2 \equiv 1 \pmod{m}$. This implies that $m \mid 2$, and so m = 1 because m is odd. So $\langle r \rangle \cap \langle s \rangle = 1$, and hence $H = \langle r \rangle \times \langle s \rangle$. Consequently, we have $X \cong X_{m_1, m_2, t}$, completing the proof.

ACKNOWLEDGEMENT

This work was partially supported by the National Natural Science Foundation of China (11671030, 11271012) and the Fundamental Research Funds for the Central Universities (2015JBM110).

REFERENCES

- I. Antončič, A. Hujdurović, and K. Kutnar, A classification of pentavalent arc-transitive bicirculants, J. Algebr. Comb., 41 (2015), 643-668.
- 2. A. Araluze, I. Kovács, K. Kutnar, L. Martínez, and D. Marušič, Partial sum quadruples and bi-abelian digraphs, *J. Combin. Theory Ser. A*, 119 (2012), 1811-1831.
- 3. N. Biggs, Algebraic graph theory, 2nd ed., Cambridge University Press, Cambridge, 1993.
- 4. J. A. Bondy and U. S. R. Murty, *Graph theory with applications*, New York: Elsevier North Holland. 1976.
- 5. W. Bosma, C. Cannon, and C. Playoust, The MAGMA algebra system I: The user language, *J. Symbolic Comput.*, **24** (1997), 235-265.
- 6. M. Conder, I. Estélyi, and T. Pisanski, *Vertex-transitive Haar graphs that are not Cayley graphs*, arXiv: 1603. 05851 [math. GR] 2016.
- 7. H. W. Cheng, M. Ghasemi, and S. Qiao, Tetravalent vertex-transitive graphs of order twice a prime square, *Graph & Combin.*, **32** (2016), 1763-1771.
- 8. M. J. de Resmini and D. Jungnickel, Strongly regular semi-Cayley graphs, *J. Algebr. Combin.*, **1** (1992), 171-195.
- 9. B. Huppert, Eudliche Gruppen 1, Springer-Verlag, Berlin, 1967.
- 10. R. Frucht, I. E. Graver, and M. E. Watkins, The groups of the generalised Petersen graphs, *Proc. Camb. Phil. Soc.*, **70** (1971), 211-218.
- 11. A. Hujdurović, K. Kutnar, and D. Marušič, Vertex-transitive generalized Cayley graphs which are not Cayley graphs, *European J. Combin.*, **46** (2015), 45-50.
- 12. I. Kovács, A. Malnič, D. Marušič, and Š. Miklavič, One matching bi-Cayley graphs over abelian groups, *European J. Combin.*, **30** (2009), 602-616.
- 13. I. Kovács, B. Kuzman, A. Malnič, and S. Wilson, Characterization of edge-transitive 4-valent bicirculants, *J. Graph Theory.*, **69** (2012), 441-463.
- 14. K. H. Leung and S. L. Ma, Partial difference triples, J. Algebr. Combin., 2 (1993), 397-409.
- 15. Y. F. Luo and X. Gao, On the extendability of bi-Cayley graphs of finite abelian groups, *Discrete Math.*, **309** (2009), 5943-5949.
- 16. D. Marušič, On vertex symmetric digraphs, Discrete Math., 36 (1981), 69-81.
- 17. D. Marušič, Strongly regular bicirculants and tricirculants, Ars Combin., 25 (1988), 11-15.
- 18. A. Malnič, D. Marušič, and P. Šparl, On strongly regular bicirculants, *European J. Combin.*, **28** (2007), 891-900.

- 19. B. D. McKay and C. E. Praeger, Vertex-transitive graphs that are not Cayley graphs, II, *J. Graph Theory.*, **4** (1996), 321-334.
- 20. D. Marušič and T. Pisanski, Symmetries of hexagonal molecular graphs on the torus, *Croat. Chemica Acta.*, **73** (2000), 969-981.
- 21. T. Pisanski, A classification of cubic bicirculants, Discrete Math., 307 (2007), 567-578.
- 22. H. Wielandt, Finite Permutation Groups, Academic Press, New York, 1964.
- 23. J.-X. Zhou, Tetravalent vertex-transitive graphs of order 4p, J. Graph Theory, 71 (2012), 402-415.
- 24. M.-M. Zhang and J.-X. Zhou, Trivalent vertex-transitive bi-dihedrants, *Discrete Math.*, **340** (2017), 1757-1772.
- 25. J.-X. Zhou and Y.-Q. Feng, Cubic bi-Cayley graphs over abelian groups, *European J. Combin.*, **36** (2014), 679-693.
- 26. J.-X. Zhou and Y.-Q. Feng, The automorphisms of bi-Cayley graphs, *J. Combin. Theory Ser. B*, **116** (2016), 504-532.

Appendix I — The Adjacency Matrix of $X_{3,5,2}$

