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A graphT is called abi-circulantif it admits a cyclic group as a group of automorphisms acting
semiregularly on the vertices @f with two orbits. The characterization of tetravalent edge-
transitive bi-circulants was given in several recent papers. In this paper, a classification is given
of connected tetravalent vertex-transitive bi-circulants of order twice an odd integer.
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1. INTRODUCTION

Throughout this paper, groups are assumed to be finite, and graphs are assumed to be finite, simple
and undirected. For the group-theoretic and graph-theoretic terminology not defined here we refer the
reader to [4, 22].

Let G be a permutation group on a setanda € ). Denote byG,, the stabilizer ofx in G, that
is the subgroup of; fixing the pointa. We say that7 is semiregulaon (2 if G, = 1 for everya € Q2
andregularif G is transitive and semiregular.

A graphIis called aCayley graplif it admits a group of automorphisms acting regularly on its
vertex-set/(I"). In that casel” is isomorphic to the grap@ay (G, S) with vertex-setG and edge-set
{{g,z9} : g € G, x € S}, whereS is the subset of elements 6ftaking the identity element to one
of its neighbours (see [3, Lemma 16.3]); and then the automorphism grdupaftains a subgroup
R(G) ={R(g) : g € G}, whereR(g) is the permutation of7 given byz — zg for Vz € G.

If, instead, we require the graghto admit a groupH of automorphisms acting semi-regularly
on V(I") with two orbits, then we call' abi-Cayley graph(for H). In this caseH acts regularly on
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each of its two orbits o (T"), and the two corresponding induced subgraphs are Cayley graphs for
H. In particular, we may label the vertices of these two subgraphs with elements of two ébpies
andH; of H, and find that there are subsétsL andS of H such that the edges of those two induced
subgraphs are of the forfthg, (zh)o} with hy € Hy andz € R, and{h1, (yh),} with h; € H; and

y € L, while all remaining edges are of the forfh, (zh);} with z € S and whereh, andh, are

the elements of{, and H; that represent a givelnc H.

Conversely, ifH is any group, andk, L and S are subsets off such thatly ¢ R = R~! and
1y ¢ L = L1, then the grapi with vertex set being the unioH U H; of two copies ofH and
with edges of the formhg, (xh)o}, {h1, (yh)1} and{ho, (zh):} with z € R, y € L andz € S, and
ho € Hy and hy € H; representing a giveh € H, is a bi-Cayley graph foH. IndeedH acts as a
semi-regular group of automorphisms by right multiplication, withand H; as its orbits on vertices.
We denote this graph by BiCé#f, R, L, S), and denote the group of automorphisms inducefflmn
the graph af(H ). WhenR(H) is normal in Aut X ), the bi-Cayley graptX’ = BiCay(H, R, L, S)
will be called anormal bi-Cayley graplover H.

A bi-Cayley graph over a cyclic group, an abelian group or a dihedral group is also simply called
abicirculant, bi-abelianor bi-dihedrant respectively.

Bi-Cayley graphs form an extensively studied class of graphs (see, for instance, [2, 8, 12-15,
17, 18, 24]. In the study of bi-Cayley graphs, one of the natural problems is: for a given group
H, classify bi-Cayley graphs with specific symmetry properties d¥eiSome partial answers have
been obtained for this problem. For example, Mdret al. [20, 21] classified all trivalent vertex-
transitive bi-circulants, and Zhou and Feng [25] extended this to the classification of trivalent vertex-
transitive bi-abelians. Recently, all tetravalent edge-transitive bi-circulants were classified in [13],
and all pentavalent arc-transitive bi-circulants were classified in [1]. The works listed above provide a
motivation for us to consider the tetravalent vertex-transitive non-Cayley bi-circulants. In this paper,
we shall classify tetravalent vertex-transitive bi-circulant graphs of arddor each odd integet.

The study in the literature on the construction of vertex-transitive non-Cayley graphs also pro-
vides a motivation for us to consider vertex-transitive non-Cayley bi-circulants. As one of the most
important finite graphs, the Petersen graph is a bi-Cayley graph over a cyclic group of.okttge
that the Petersen graph is vertex-transitive but not Cayley. We call a vertex-transitive graph which is
not Cayley avertex-transitive non-Cayley grapbr a VNC-graphfor short. There have been a lot
of work on the classification and construction of VNC-graphs (see, for instance, [16, 10]). In [23]
and [7], Zhouet al. classified all tetravalent VNC-graphs of ordgrand2p? for each primep, in
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[11] Hujdurovic et al. constructed two infinite families of VNC-graphs by using generalized Cay-
ley graphs and in [6] Condeat al. constructed an infinite family of trivalent VNC-graphs as Haar
graphs (namely)-type bi-Cayley graphs) over some non-abelian groups. In this paper, by consider-
ing tetravalent vertex-transitive bi-circulants graphs of ofewith » an odd integer, we construct a
new infinite family of VNC-graphs.

2. PRELIMINARIES

In this section, we introduce basic concepts and terminology as well as some preliminary results which
will be used later in the paper. For a finite, simple and undirected gkaphe useV (X), E(X),

A(X), Aut(X) to denote its vertex set, edge set, arc set and full automorphism group, respectively.
Let X be a connected vertex-transitive graph, andiet Aut(X). For aG-invariantpartition B of

V(X), thequotient graphX is defined as the graph with vertex &such that, for any two vertices

B, C € B, B is adjacent ta” if and only if there existt € B andv € C which are adjacent irX.

Let N be a normal subgroup @f. Then the seB3 of orbits of N in V(X)) is aG-invariant partition

of V(X). In this case, the symbot; will be replaced byX 5. Note that, ifX is vertex-, edge- or
arc-transitive, then so i& y, respectively.

Let X andY be two graphs. Thiexicographic producX [Y] is defined as the graph with vertex
setV(X[Y]) = V(X) x V(Y) such that for any two vertices = (z1,y1) andv = (z2,y2) in
V(X[Y]), uis adjacent ta in X[Y] wheneveq{z;, z2} € E(X) orzy = zo and{y1,y2} € E(Y).

For a positive integen, denote byZ,, the cyclic group of orden as well as the ring of integers
modulon, by Z; the multiplicative group o¥,, consisting of numbers coprime tg by Ds,, the dihe-
dral group of orde@n, and byC,, and K, the cycle and the complete graph of orderespectively.
We callC,, ann-cycle Finally, for two groups\/ and N, N x M denotes a semidirect product &f
by M. For a subgrougd of a groupG , denote byC(H ) the centralizer off in G and byN¢(H)
the normalizer off in G. For a permutation grou@ over a sef) and for a subset of 2, G4 is the
subgroup of fixing A pointwise.

In the following, we introduce some results regarding bi-Cayley graphs. We always assume that
X = BiCay(H, R, L, S) is aconnected bi-Cayley graph over a grdiiplt is easy to get the following
obvious basic facts of bi-Cayley graphs.

Proposition2.1 - [26]. The following hold.

(1) Hisgenerated bR U LU S.
(2) Up to graph isomorphisn can be chosen to contain the identityff
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(3) For any automorphism of H, BiCay (H, R, L, S) = BiCay (H, R*, L*, S%).
(4) BiCay(H, R, L,S) = BiCay(H,L,R,S™!).

The triple(R, L, S) of three subset®, L, S of a groupH is calledbi-Cayley tripleif R = R~!,
L = L7, and1 € S. Two bi-Cayley triple R, L, S) and(R', L', S") of a groupH are said to be
equivalent, denoted byR, L, S) = (R', L', S"), if either (R', L', §') = (L, R, S~ Y or (R, L', S") =
(R, L, S)* for some automorphism of H. The bi-Cayley graphs corresponding to two equivalent
bi-Cayley triples of the same group are isomorphic (see Proposition 2.1 (3)-(4)).

Next we give a result about the automorphisms of the bi-Cayley gkaptBiCay(H, R, L, S).
Recall that for eacly € H, R(g) is a permutation oY’ (X ) defined by the rule

hE9 = (hg);, Vi € Zy, h, g € H, (1)

2

andR(H) = {R(g) | g € H} < Aut(X). For an automorphism of H andz, y, g € H, define two
permutations oV (X) = Hy U H; as following:

504,9:,1/ : ho — (:L‘ha)l, hl — (yha)g,Vh S H, (2)
Oag: ho— (h*)o, h1 — (gh*)1,Yh € H.

Set

| = {Sazy| @ €AUt(H)st. R* =2 Lo, L = y 1Ry, S =y~ 15 12},

3
F = {0ag|a€AUt(H)st. R*=R,L¥=g 'Lg, S =g~ 15}.

Proposition2.2 — [26, Theorem 1.1]. Lef = BiCay(H, R, L, S) be a connected bi-Cayley
graph over the group?. ThenNAut(F)(R(H)) =RH)xFifI =1 andNAut(F)(R(H)) =
R(H)(F,002,y) if I #0andd,,, € I. Furthermore, for any, ., € I, we have the following:

(1) (R(H),dq,.,y) acts transitively ot/ (T").

(2) if a has ordeR andz = y = 1, thenT is isomorphic to the Cayley graph Gay, R U a.5),
whereH = H x (o).

3. CONSTRUCTION

In this section, we shall construct an infinite family of tetravalent vertex-transitive non-Cayley graphs.

Construction3.1 — Letmy, ma > 1 be two odd integers such that;, mo) = 1. Lett € Z;,,
be such that? = —1 (mod my). Let H = (r) x (8) = Zyy X Zmy (=2 Znyms, ). SELR = {r,r~1},
L={rt,r~t} andS = {1, s}. Let
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Xmi,mot = BiCay(H, R, L, S).

It will be shown in Theorem 3.3 that the grapt,, ,.,: iS a connected tetravalent vertex-
transitive non-Cayley graph. Note that the smallest graph in this infinite family of graptigsis
with order30. Clearly,

X352 = BiCay(H, {r, 'r_l}, {7“2, r_2}, {1,s}),

whereH = (r) x (s) = Zs x Zs. Furthermore, one may see Appendix | for the adjacency matrix of
X35,2. Below we shall prove a lemma which is useful in the proof of Theorems 3.3 and 4.3.

Lemma3.2 — Letn > 7 be an odd integer, and I&f be a connected tetravalent vertex-transitive
bi-Cayley graph over a cyclic group of order If 3 | |Aut(X), | for somev € V(X), then eitherX
is edge-transitive or is di-type.

PROOF: Let A = Aut(X). Suppose that | |A,| for somev € V(X). Assume thatX is not
edge-transitive. We may lef = BiCay(H, R, L, S), whereH = (a) = Z,, and1l € S. Suppose that
X is not of 0-type. ThenX is of 2-type since Hy| = |H;| = n is odd.

For anyv € V(X), let A} be the subgroup afl,, fixing the neighborhoodV (v) of v pointwise.
LetT € Syl;(A,). Supposd’ < A%. ThenT < A, foreveryu € N(v). SinceX is vertex-transitive,
one haA, /A = A, /A%, implying thatT" < A?. The connectedness &f implies thatl fixes every
vertex of X, forcingT" = 1, a contradiction. Thug' £ A} and henc&.; =~ T A} /A% < A, /A% < S3
consideringX is not edge-transitive. TheA, /A} = Zs or Ss. It follows that for anyv € V(X),
there is a unique vertex € N(v) such thatd, = A,.

SetF’ = {{u,v} € E(X) | A, = A,} andl’ = X — F'. ThenI is a cubic graph. For any € A
and{u,v} € F, one haju,v}9 = {u9,v9}. FurthermoreA,s = A, = A} = A,q. It follows that
{u,v}9 = {u9,v9} € F and hence’? = F. ConsequentlyA is a vertex-transitive automorphism
group ofl". Since3 | |4,/A}|, Ais also arc-transitive of.

If T is connected, theh is a cubic arc-transitive bi-Cayley graph ovdér= 7Z,,. Sincen > 7,
by [12, Theorem 1.1][" is a bipartite graph witli{y and H; as its two partition sets, forcing is of
type 1, a contradiction.

If T is disconnected, then sinteis cubic andV (I")| = 2n, each component df has orde2m
with m | n. LetI; (0 < i < n/m — 1) be then/m components of’, and letB; = V(I';). Set
Q={B;|0<i<n/m-—1}. ThenQ is anA-invariant partition ofl’(I') = V(X ). Consider the
guotient graphX, of X relative tof2, and letK be the kernel ofd acting on{2. Recall thatH, and
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H, are the two orbits induced b(H) acting onV'(I"). SinceX is of type2, X [Hy] = X[H,] are
of valency2. So foreact) <i <n/m—1, BN Hy # 0 andB; N H, # 0. ThenR(H) is transitive
on(. SinceR(H) = Z,, and|Q| = n/m, the kernelK’ N R(H) of R(H ) acting on(2 is isomorphic
to Z,,. It follows that for eactd < i < n/m — 1, |B; N Hy| = |B; N H1| = m. If K is transitive
on someB;, then K is transitive on allB;. Sincel’; is of valency3, the quotient graptX would
have valencyl, and soX, = K. This forces thati/m = 2, contradicting that is odd. Thus,K
is intransitive on eactB;. Note thatB; N Hy and B; N H; are two orbits ofK N R(H) acting on
B;. So,B; N Hy and B; N H; are also the two orbits ok’ on B;. Let Ap, be the subgroup oft
fixing B; setwise. Them g, is arc-transitive oll’;. Clearly, K < Ap,. ThenB; N Hy andB; N H;
are two independent sets. This implies that éacts bipartite withB; N Hy andB; N Hy as its two
bipartition sets. Again this would force that is of typel, a contradiction. O

Now we give the main result of this section.
Theorem3.3— The graphX,,, m,.: IS a connected tetravalent VNC-graph.

PROOF: Let X = X, m,+ andA = Aut(X). It is easy to see tha! has an automorphism
§ such that? = r* ands® = s~!. Furthermore, we hav®® = L, L’ = RandS? = S~!. By
Proposition 2.2, we have# 51,1 € A, and soX is vertex-transitive.

From [13, Theorem 1.1], one can obtain thaf,, .., iS not edge-transitive. Sinc& is of
valency4, the vertex-stabilized;, is a{2, 3}-group. It is easy to see that;ma > 15. If 3 | |A,],
then by Lemma 3.2X is of type0, a contradiction. Thusd;, is a2-group. HenceR(H) is a cyclic
Hall 2’-subgroup ofA. By Wielandt theorem, every Hall-subgroup ofA is conjugate taR(H).

Suppose thaX is a Cayley graph. Thed has a subgroug: acting regularly on/(X), and
S0|G| = 2|H| = 2mymas. LetJ < G be such thatJ| = mimsy. Then there exista € A such
that R(H)* = J. It follows that R(H)* = J < G, and henceR(H) < G* '. Clearly,G* ' is
also regular o/ (X). Clearly, G% = R(H) » Z,. By Proposition 2.2, there exists an involution
da,zy € G for somea € Aut(H), z, y € H. By the definition ofé, . ,, « swapsR and L, and
S = y~lzS~1. Noting thatlg“*”*y = 71, :nf“’ = 1g sinced, ., has order2. It follows that
(yz)o = 1o, and hencez® = 1.

2 2
As o swapsR and L, we haver® = r! orr—t, and hence®” = r!" = r—1. Then

5(2X,(L',y — (

b,
ro =Tg ooy

2 -
ar )y = (ya®r® o = (Yo,

which forces that = r—!, a contradiction. ThusX is a VNC-graph, as required. O
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4. CLASSIFICATION

Throughout this section, we shall let> 1 be an odd integer.

Lemmad.1 — Let X be a connected tetravalent vertex-transitive graph of atderf Aut(X)
has a non-trivial norm&l-subgroup, thetX is a Cayley graph.

PROOF: Assume thafl/ is a non-trivial norma2-subgroup of AutX ). Sincen is odd, each orbit
of M has lengtl2, and so the quotient grapti,; has ordern. This implies thatX;; has valencyt or
2. For the former, one may see thet is semiregular oV (X)), and soM = Z,. Again, considering
n > 1, R(H)M must be regular o (X ), and saX is a Cayley graph o®(H )M. For the latter, we
have X, = C,, and so AutX,;) = D,,. Let K be the kernel of AUtX) acting onV'(Xy,). Then
Aut(X)/K is a vertex-transitive automorphism group ®f;, and sincen is odd, we have either
Aut(X)/K = Z, or Aut(X)/K = Dy,. It then follows that AutX)/K is edge-transitive oX ;,
and so the subgraphs af induced by any two adjacent orbits &f are isomorphic. Consequently,
the subgraph induced by any two adjacent orbitd/ofs isomorphic toK’; », and soX = C,[2K],
which is a Cayley graph, as required. O

Lemmad.2 — Let X be a connected tetravalent vertex-transitive bi-Cayley graph over an abelian
group H of ordern. If Aut(X) has no non-trivial norma®-subgroups and the vertex stabilizer
Aut(X), of v € V(X) is a2-group, thenX is normal.

PROOF: Let A = Aut(X). Let P be a Sylow2-subgroup of4 such that4, < P. Clearly,
|A| = 2|A4,||H|. Sincen is odd, one has$P| = 2|A,|, and so|A| = |H||P|. It follows that
A = R(H)P. According to a theorem of Kegel and Wielandt (see [9, VI, 4.3]), a product two pair-
wise commutative nilpotent groups is solvable. It follows tHais solvable. Then every minimal
normal subgroup ofl is an elementary abeliargroup for some prime divisqr of n becaused has

no non-trivial normaR-subgroups. Lef/ = Cores(R(H)) = (), 4 R(H)Y. The argument above

€A
implies thatM # 1. Note thatM is the maximum normal subgrgoup dfcontained inR(H). Since
R(H) is an abelian group, one has# M < R(H) < Cs(M). Suppose thal! < R(H). Let
N/M be a minimal normal subgroup of/M contained inC'4(M)/M. Again sinceA is solvable,
one hasN/M = Zi or Zy, for some integers, s. For the former, sinceV < C4(M), one has
N = M x Q with Q = Z5. So(Q is characteristic inV and so normal it consideringV < A.
This is contrary to our assumption thathas no non-trivial normat-subgroups. For the latter, we
haveM < N < R(H) andN < A. This is contrary to our assumption thit is a maximum normal

subgroup ofA. ThusM = R(H), and hence?(H) < A, as desired. O

The following is the main result of this paper.
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Theorem4.3— Let X be a connected tetravalent vertex-transitive bi-Cayley graph over a cyclic
group of odd order. ThenX is a VNC-graph if and only iX = X,,,, 1, ¢

PrRoOOF: By Theorem 3.3 we can get the sufficiency. We only need to prove the necessity.

Let H = (a) = Z, and letX = BiCay(H, R, L, S) be a connected tetravalent vertex-transitive
non-Cayley graph. By Proposition 2.1, we will assume tha S. SinceH is abelian,H has an
automorphism that inverses every elementigfand we shall always useto denote this automor-
phism.

Sincen is odd, the induced subgrapiq Hy| and X [H, ] are of even valency, and s is of type
0 or 2. Suppose thak is of type0. We haveS® = S~!, and by Proposition 2.2X is a Cayley
graph, a contradiction. Thusy is of type2. If X is edge-transitive, then by [13, Theorem 1.1],
we haveX = BiCay(H, {a,a"'},{a,a™'},{1,a%}). For convenience of the statement, we may let
R =L =1{a,a"'}andS = {1,s}. ThenR* = L, L® = R, S* = S~!, and again by Proposition
2.2, X is also a Cayley graph, a contradiction.

In the remainder of the proof, we will assume thatis of type2 and is not edge-transitive. Let
A = Aut(X). Then|A4,| = 253! for eachv € V(X). If t > 0, then by Lemma 3.2, we must have
n = 3,50r7. If n =3, then by [19],X is a Cayley graph, and if = 5 or 7, then by MAGMA [5],
X is a Cayley graph. A contradiction occurs.

Thus,t = 0, and hence each vertex-stabiliz&éy is a2-group. If A has a non-trivial norma2-
subgroup, then by Lemma 4.X, is a Cayley graph. In the remainder of the proof, assumeAtsts
no non-trivial normak-subgroups. Sincd, is a2-group, from Lemma 4.2 it follows that(H) < A.
Recall thatX is of type2. Then|R| = |L| = |S| = 2. Assume thaf = {1, s} for somes € H. Since
X is vertex-transitive, by Proposition 2.2, there exist Aut(H) andy € H such thaﬂg‘”’y =14,
R =L,L% = RandS? = y~1S~1. The last equality implies thdtl, s}° = S8 = {y~,y~1s71}.
It follows that eithery = 1 ands”® = s~!, ory~! = s ands® = s.

SinceX is connected, by Proposition 2.1, we have L, S) = H. In the remainder of the proof,
we will assume thatS) = Z,,, and(R) = (L) = Z,,, for somemy,my € Z,. LetR = {r,r~1}.
Then(L) = (R) = (r), and soL = {r’,r'} for somet € Z . Recall thatS = {1,s}. Then

mo

H = (r,s) = (r)(s). Suppose that, = (m, ms). Then<s%> =(rm) = Zn.
As 3 swapsR and L, it follows thatr® = * orr—* and
t? = 41 (modmsy). (4)

mi

It follows that (r= )% = (r'm )t or (r= )~t. Sinces® = s or s—%, one hagsm )% = s or
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mi m

s~ AS (s ) = () = Z,y,, it follows that

t ==+1 (modm). (5)

Suppose that> = 1 (modms). If m = 1, then we haved = (r) x (s), and hence there exists
B € Aut(H) such that

PP = rt, s =71

An easy computation shows thAf* = L, L’ = R andS% = S~!. Clearly,3; has ordep. By
Proposition 2.2 (2)X would be a Cayley graph, a contradiction.

Letm > 1. Assume thatny = pflp? .. .pi’“, wherepq, po, ” , pr, are pairwise distinct primes.
Without loss of generality, we may assume that= pflp? .. .pjj with j < kandl < £, < 4;(1 <

m2 , m7l2
1 <4). Letmb = pliph? .. .pﬁj. Then(r) = (™) x (r™2), and thenl = (r,s) = (r™2) x (r™2 s).
Lett = 1 (modm). Sincet? = 1 (modmsy), one hag? = 1 (modm). If t # 1 (modm)), then
sincemy is odd, one has # 1 (modp;) for somel < i < j. This is impossible becauge | m and
t =1 (modm). Thus,t =1 (modm/). Then there exis; € Aut(H) such that

m2 m2

(rmé)ﬂt = ptms (7”72)@ =r ma P =g
An easy computation shows th&t* = L, L% = R andS% = S~!. Clearly, 3; has order.
Again by Proposition 2.2 (2)X would be a Cayley graph, a contradiction.

Lett = —1 (modm). With a similar argument as in the above paragraph, we obtain that
—1 (modm,). Then there exisB, € Aut(H) such that

m2 m2

(Tmé)ﬂt = ptma, (r@)ﬁt =r m g0t = g1

An easy computation shows th&t* = L, L% = R andS% = S~!. Clearly, 3; has order.
Again by Proposition 2.2 (2)X would be a Cayley graph, a contradiction.

Thus,t? = —1 (modmy), and hencé? = —1 (modm). On the other hand, by Eq. (5), we have
t2 = 1 (modm). This implies thatn | 2, and som = 1 becausen is odd. So(r) N (s) = 1, and
henceH = (r) x (s). Consequently, we hav€ = X,,,, .., :, completing the proof. 0
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