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1. INTRODUCTION

In the long history of number theory, one of the classical problems is to determine exact formulas for
the number of representations of a positive integas a sum ok squares, that is, the number of
integral solutions of

2 2 2 2
$1+$2+"'+x2k_1+1'2k:n,

denoted byR(n). Such a classical but interesting problem has been explored and studied by many
mathematicians since it was introduced. As a result, formula®fdr.) for various cases have been
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found. For example, fak = 1, 2, 3and4, i.e., sums of, 4, 6 ands squares, (reformulated) formulas
for Ry (n) are originally due to Jacobi [11],

Ri(n) =43 (_d4>

dn
Ro(n) =8) d—32) d,
dln d
—4 2 —4 2
Ra(n) = —4) —)d +16) w7 a2,
dn dn
Ra(n) =16 d* —32) d*+256) d°
din dlg d|g

where, here and throughout this WO(I@) denotes the quadratic character for discrimin@ntThe
result fork = 5, i.e., sum ofl0 squares, was due (without proof) in part to Eisenstein [8], and fully
described (without proof) by Liouville [13]. The results for< k < 9 were all proved by Glaisher
[9]. Now if one sets

o(r) = > ¢, (1.1)

m=—00
where, here and throughout the remainder of this worenotes a complex number with positive
imaginary part ang = ¢2™'7, then one has the well known relation

S Ru(m)g™ = 0(r),
m=0

where the function i on the right hand side is known [22, Chapter 1] to be a modular form of weight
k with Nebentypus(;“)k for T'y(4). By such a nice relation and thanks to the theory of classical
modular forms, we know that the modular foftfr)?* has the following interesting decomposition

0(1)?* = Ei (1) 4 Ci(7), (1.2)

whereL; (1) is an Eisenstein series whoséh Fourier coefficient is some divisor functionsin and
Cy(7) is a cusp form whose-th Fourier coefficient is of order substantially lower than thabpr).

Then as a consequence, formulasy(n) follows from equating the Fourier coefficients on both
sides of (1.2). Such a modular form theoretic intrinsi@6f)?* indirectly allows Ramanujan [19],
[20, Egs. (145)-(147)] to “completely” solved (without proof) the problem in around 1916. To state
Ramanujan’s fascinating results, we need the Dedekind eta function, which is defined by

n(r) =g T - q").
=1
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Here and throughout the remainder of this work, we wijtefor n(m7) for any positive integer

Theoreml.1— (Ramanujam). Suppogss a positive integer. Lei(7) be defined by (1.1). Then

0(1)% = Fy(1) + 0(1)%* Z ek ja’ (1.3)

. (k—1)
1<j< g

wherecy, ; are numerical rational constants that dependjoand,

24,24
x=x(r) = n 774 ,

772

and I (7) is an Eisenstein series defined by

00 .
q]
Fl(T) :1+4 E quj,
i=1

and fork > 1,
2k 1

F%(T) =1 22k ng Z k+qu

and

A=DF S 2D ()25 — 1)g¥ !
1 + q2j 1— q2j—1 '

Here B, and &, are the Bernoulli numbers and Euler numbers, respectively, defined by

and =
ev — 1 k' coshu k'
k= k=

Theorem 1.1 (formula 1.3) was proved first by Mordell [16] utilizing the theory of modular forms,
and thus giving credits to Mordell as well, it is now called the Ramanujan—Mordell Theorem (resp. the
Ramanujan—Mordell formula). An elementary proof was given by Cooper in [5] by making skillful
use of Ramanujan’sy; formula. Inspired by the beauty of the Ramanujan—Mordell formula, it
will be very interesting if one can extend it to oth#¢-ary quadratic forms. Such extensions and
developments have recently been initiated by Cooper, Kane and the second author of the present
work in [6], in which they extended the Ramanujan—Mordell formula to the modular forms (theta
functions)(6(7)8(mr))* associated to th2k-ary quadratic forms

a3+ ap+m (2 o+ 73)
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for m € {3,7,11,23}, and analogously obtained a beautiful uniffgelynomial representatiofor

called Ramanujan—Mordell type representation) for the cusp form comp6hént. Subsequently,

the second author of the present work further extends the Ramanujan—Mordell formula to the cases
m € {2,4} in [23], and in the end, he indicates the essence of the existence of these beautiful
Ramanujan—Mordell type formulas f#(7)6(m))* and how one can give an attempt to other cases.
Based on the comments given in [23, Section 4], in this work we further explore such an interesting
topic. We aim to treat the uncharted cases= 5 andm = 8, whose associated quadratic forms

are of discriminant@0* and32¥, respectively, and obtain their corresponding Ramanujan—Mordell
type formulas. We conclude this introduction section by stating the main results of the present work
and presenting several explicit examples. To this end, we first define the (quasi) Eisenstein series of
integral weightt with Nebentypusy andv. Suppose that and« are primitive Dirichlet characters

with conductors\ and N, respectively. Fok = 1 with x trivial or £ > 2 such thaty(—1)y(—1) =

(—1)k, let the (quasi) Eisenstein seri&s , () be defined by

2k
Ekvx,w( ) = om1 — B Ok— 1,x,w( )q" (1.4)

kY >t
whered, ;, denotes the Kronecker deltg;, , denotes the generalized Bernoulli number with respect
to the charactet), i.e.,
Z - Brw o
eN”” -1 kT
k=0
and

k-1, (1 Zw x(n/d)d*1.

dln

We write 1 for the trivial charactery p for the quadratic characteé@) for discriminantD and
Ey(7) for the (quasi) Eisenstein seriés; 1 1(7) for SLo(Z). It is known [21, Theorem 5.8] that
Ej (1) is a weighttc modular form forl'g (M N) with Nebentypusy/¢. We are ready to state the
main result of this work in the following theorem.

Theoreml.2— For m € {5, 8}, letx,, = z,,(7) be defined by

3 3
n4ansnsy .
T |f m = 5,
210
T = (1.5)
2 2
7717747787732 |f m = 8

773 77%6
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Let F}, ., (7) be defined by
S (1) By (= (—1)* 285y (2r) + (=) By (4r) 45 By (57)= 5028 (107)+20 By (207) if k = 2¢andm = 5
—(=1)f+(-4)f—5f 420" '
E2041,1,x_o0(T) + <*20>£E2€+1‘x_2o,1(7) if k =204+ 1> 3andm = 5,
E1,1,x_90(7) if k = 1landm =5,
Fr,om (1) =
(1) B (1) = (= 1) By (2r) 8" g (167)+32¢ gy (327) k< 2¢andm < 8
—8ly32f .
Eory1,1,x_g(4m) + (=1)°2°  Bapyq s g 1(7) if k =20+ 1> 3andm = 8,
'%El,l,x_s(7)+%Elylwx_s(zh) if k =1andm = 8.
Furthermore, let (k, m) be defined by
3¢ —2 ifk=20andm =5,
3+1 ifk=20+1andm =5,
l(ka m) =
2k —1 ifk>2andm = 8§,
2 if k=1andm = 8.
Then there exist rational numbertsg,, ,,, depending ork, j andm such that
I(k,m)
k
(0(T)0(mT))" = Fim(7) + (0(7 Z Cj kT (1.6)

1087

Examplel.3: Fork = 1 or 2, the general formula (1.6) gives the following explicit identities.

0(r)0(57) =1+ i (—20> q" 4 Mm2monz2o wn
—\n/J1l=q" nans
2n an
ngq nq
’ - s 1.8
(6(r)o( +Z(1_q g »
on 10n 20n 6.6
B 10&5 20, 1on — 40 — 20 7712))77;0 ;
1-— q n 1— q n 1— q n ,'71774775?720

) 0 _8 qn _8 q4n 4772772 2 772772
0(T)0(87) =1+ = <> +2<> + =216 21132 1.9
(motsT) ( n " n)1l—q¢" )  3nms  3mme (1.9)

) n 2n 16n 32n InT
nq ng ng ng 5716
0(7)0(87))* =1+ - +38 — 32 +3—5 2130 (1.10)

_ 47727716 277%772771677%2
774778 14718
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The identity (1.7) was given first in [3] by Berkovich and Yesilyurt making use of Ramanujan’s
191 summation formula. Equivalent forms of identities (1.8) and (1.10) were given in [2] and [1],
respectively. To the best knowledge of the authors, identity (1.9) has not yet appeared in any literature.

In the next section, some preliminary results for preparing for the proof of Theorem 1.2 are given.
The proof of Theorem 1.2 is given in the last section with a concluding remark regarding potential

extensions to other related cases.
2. PRELIMINARY RESULTS
This section is devoted to presenting several preliminary results that will be used for the proof of

Theorem 1.2.

The following lemma gives the transformation formulas for certain concefiied, (7) under
the action of some Fricke involutions.

Lemma2.1 — LetEy, , (7) be defined as in (1.4). Then fér= 1,

1 (207)%
E’%LX—zo ( > Ek717X—20(7)7

~507 ) = Yo
E1x_s <_817> = (f\;)ngk,l,x_g(T)a
and fork > 3,
Eri1x o0 <_217> = (fj%kEk,xm,l(T),
Erx_s01 (-2017> = 2?Tk By _s0 (1)
PrRooOF: These are well-known, see, e.g., [15, Section 7]. O

Lemma2.2 — Under the transformation— 7 + % the following identities hold.

Whenk is even,

By ( ¥ ) = —B(r) + (2 + 2)Ey(2r) - 2By (47);
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whenk is odd,

= _E’%LX—QO (T> + 2Ek717><—20 (27—)7

=
+

~— —
|

~Ejox 201(T) + 28 Eg _501(27),

= —Ek71’X78 (T) + 2Ek717X—8 (27‘),

t

JW

=

b

2

[==
/\/\]\/\

+
N~ N~ N~

1
X—8,1 <T + ) = _E’ﬁXf&l(T) + QkEk,Xf&l@T)-

PrROOF: The proofs are similar to that of [6, Lemma 3.2], so we omit the details.

Here and throughout the remainder of this work, writé( f) for the order of vanishing of a
modular formf at a cusps, which is defined as follows. For a cusplet M, € SLy(Z) such that
My(ico) = s. Suppose thaf is of levelT andg := f[xMs = ¢ + o(q};), whereqy = e2™7/N

1 1
andN is the smallest positive integer such tAaY or — TV ¢ M7'TM, with T = (0 ) Then
1

ords(f) := h. The preceding two lemmas are now used to compute the order of vanisHiipg,f)

at the cusp} and yield the following results.

Lemma2.3 — LetFy, ,,, = F,.,(7) be defined as in Theorem 1.2. Then

2 if k even andn = 5,

5 if k odd andm = 5,
ordl/z(ka) =

1 ifk>2andm =38,

0 fk=1andm =S8.

PrROOF: One can first check thd, ,,,(7) is a modular form of weight with Nebentypus{ﬂ)k
for I'o(4m). Also, one can note that : X (I'g(4m)) — X (I'o(4m) + 4m) is a degree 2 projective
morphism, wherds(4m) + 4m denotes the discrete group generatedlgydm) and its Fricke

. . 0
involution
4m

former modular curve, each of ramification index 1. Thus, the local coordinate of th%caapains
the same, which is of widtim, and one can proceed with the standard way to compute the order of
vanishing ofFj, ,,, as a modular form fof'o(4m). We give the proof to the case > 3 odd and

-1 . :
> , and that the cusp of the latter modular curve ramifies as two cusps in the
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m = 5, and leave the details of the other cases to the reader. One has-fof + 1 > 3,

-
2r +1)7FF
(2 + 1) F <2 +1>
T T
(2r +1)7* Eor1,1,x 20 (2T+1> + (—20)6E25+1,x720,1 (27+ 1>>

-1 1 -1 1
2 1 “*+ (B —_— = —20 ‘g —_— 4 =
T+ < 2041,1,x_20 (47' ) + 2) + ( ) E2041 0,1 (47_ ; + 2>>

-1

—1
2T+ 17" = Eart1,1,x 20 <47+2> +2E2041,1,x_ 2 <27+1>

-1 -1
4 4 J4
- (_20) E2£+LX720,1 <47_ n 2> + 22 +1(_20) E2£+1,X720,1 (27_ T 1> )by Lemma 2.3

202+1 /95 4+ 1\ H! 2r +1
_ -k _

20241 /o7 41\ ¥H! 27 + 1
+ 2 < ) E2f+17X—2071 ( >

iv20 20 20
a7 + 2
- 02 4+ 97 B ()

21 +1
20

g\f

+ 2241 (—20) 27 + 1) Eari114 0 < > ) by Lemma 2.3

= Cqo + 0(q5)

for some nonzero consta@t Hence, the order of vanishing &y, ,,, for £ > 3 odd andmn = 5 at the
cuspi is 1. o

The next two lemmas are useful for computing the order of vanishidgof (mr) andx,, (1)
at cusps.

Lemma2.4 —If f(7) = [yn n,* for some positive integeN with & = %Zdw rq € Z, with
the additional properties that
Zdrd =0 (mod 24)
dIN
and
N
Z = 0 (mod 24),
N
then f(7) satisfies

F(550) = x@er + atso)
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a
for every (

C
wheres = [, d".

b
d) € T'o(N). Here the charactey is defined by Jacobi symbgl(d) = (%)

PrROOF: See Gordon and Hughes [10], or Newman [17, 18]. O

Lemma2.5 — Leta, ¢ and N be positive integers witle| N andged(a,c) = 1. If f(1) =
[Ty~ n," satisfies the conditions of Lemma 2.4 f1, then the order of vanishingd, . (f) of f(7)

atthe cusp/cis
N ged(e, d)?ryg

24 an ged(e, N/c)ed

PROOF: See Biagioli [4], Ligozat [12] or Martin [14]. O
By the eta-quotient representation [11]4f ), i.e.,
5
0(r) = 2

g

and the definitions of,,,(7), using Lemmas 2.4 and 2.5, direct computations give the order of van-
ishing of ¢(7)0(m) andz,, at the cusps 03 and }, which are the cusps of (I'o(4m) + 4m) for
m € {5, 8}, as follows.

Lemma2.6 — Letf(7) andx,, = x,,(7) be defined as in (1.1) and (1.5), respectively. Then

0 ifs=0ori andm =5ors8,
ords(6(7)0(m7)) =< 2 if s=%andm =5,
2 ifs:%andm:&
and form € {5, 8},
1 if s=0,
ords(zm) = { -1 if s =3,
0 if s = %.

3. PROOF OFTHEOREM 1.2 AND A REMARK

In this section, we give the proof to Theorem 1.2, and conclude this work with a remark regarding
potential extensions to other cases.

PROOF OFTHEOREM 1.2: Let F}, ,,(7) andl(k, m) be defined as in Theorem 1.2. Then ac-

. . . Frm (7) . .
cording to the definition of}(7), one can easily check th () is a modular function for
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['o(4m) 4+ 4m with no poles on the open modular cui¢l'y(4m) + 4m). By Lemmas 2.3 and 2.6,
Fk,m(T)

one can check th o m )T has only poles at the cus})of orderl(k,m). Also, by Lemma 2.6,

the modular function:,,,(7) has a simple pole at the cu%pand a simple zero at the cu8pwhich is

equivalent taioo underl’g(4m) + 4m, and thus one can tell th‘?&(f)g(m}:];;giﬂ(ﬂl(k,m)

function for'y(4m) + 4m with only poles at the cusp of orderl(k, m) and with no poles or zeros

is a modular

atthe cusp,. Then inductively, there are rational numbéys ,,, such that

I(k,m)
Fiem(T) —j
> — b.: T J
k m Z j,kJ)’L m
(O(T)0(m7))" 2 (7)1 Em) =

is holomorphic at the cusp, and thus holomorphic everywhere on the compact modular curve

X(To(4m) + 4m), which must be a constarit. Sincez,,' has a zero at the cusp, while
Fk,m(T)
(O(r)O () (7)1 o)

Rearranging both sides by multiplying both sidesﬂgﬁ’m), one has

is holomorphic and nonvanishing at the c%sp)hen the constard is nonzero.

l(k,m)
bk g(hm),m (B(T)0(mT))* = Fie(r) + (0(1)0(m7))" D" ¢jpomth,
=1

by settingc; k.m = b i(k,m)—jm aNACy y(k,m),;m = C. Takingr — oo, one hasy, k. m)m = 1
according to the definition af. This completes the proof.

Remark3.1 : As indicated in [23, Section 4], to obtain a Ramanujan—Mordell type formula asso-
ciated to thek-ary quadratic form,

i+t ap+m (el o+ a3

one way is to consider a genus zero Fuchsian subdgratgntainingl’o(4m) that is commensurable

with SL2(Z) such that it has a uniformizer(7) with locations of poles the same as the locations of
zeros off(7)0(mr) on Xo(4m), and@(7)0(mr)|, v = c(v)0(7)8(m7) for some constant depend-

ing on~. The first condition is for the purpose of obtaining a unified polynomial representation for the
cusp forms part, and the second condition guarantees that there is no other inequivalent class of the
guadratic form in consideration involved. As we know, one of the most famous families of genus zero
Fuchsian subgroups that is commensurable With(Z) is the so called moonshine discrete groups

[7], which are obtained by adjoining certain Atkin—Lehner involutions to the Hecke gribg(p¥)

and whose uniformizers can be easily constructed by using Dedekind eta function and making use of
Lemmas 2.4 and 2.5. More or less directly, we first note @tajf (m7)|1y = x—am(7)0(7)0(m7)

0 -1
for v € T'o(4m) and 6(7)0(m7)|, (4 0 ) = —if(7)0(m7). These observations motivate us
m
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to first consider the moonshine discrete grduyfg4m) + 4m obtained by adjoining the Fricke in-

0o -1
volution (4 0 to I'o(4m). There are only eight such groups [7], namély(4m) + 4m for
m

m =1,2,3,4,5,6,8 or 9. The case forn = 1 is the fascinating Ramanujan—Mordell formula, the
cases form = 2,3 or 4 have been studied in [6, 23], and the resultsifoe 5 or 8 have been treated

in this work. Now a question will be certainly raised to ask how about the cases for6 or 9. To
answer this question, we first note that by the proof of Theorem 1.2, the beautifully unified polyno-
mial representation for the cusp form part follows from the factéitajd(mr) andz,,(7) form = 5

or 8 do satisfy the first condition mentioned above, while one can check using Lemmas 2.4 and 2.5,
6(7)0(mt) for m = 6 or 9 has zeros at twd'o(4m) + 4m inequivalent cusps (thus, twit,(4m)
inequivalent cusps), which can never be canceled out by just one uniformiZéy(fon) + 4m. So

if one keeps consideringy(4m) + 4m as the larger group containifig (4m) to work on, then one
needs another uniformizer to cancel out the other zeros. Such a uniformizer can be easily obtained
by shifting the location of poles of the pre-chosen one through some fractional linear transformation.
Following these discussions, we may obtain Ramanujan—Mordell type formulas fer6 or 9 as
follows. Letx,, = z,,(7) andy,, = y,(7) be defined by

3,3,,3,.3 2 2
77157]477677§4 if m = 6, 77177277317817127724 if m — 6,
21318712 N4Me

2, .2 9 2,33 ,2
771;747767797;36 if ;m =9, 772773778127718 if m =9
N2M3M12718 N4MgMN9

Let F}, ,,,(7) be defined by
Fk,m(T)
Ly ) (( 8 (87) +E2e(37-))

) + ) E o )
- ((_%)K“‘l) (( %) Eo(47) + Eop(67 )) it k = 2¢ andm =6,

Eori11.x i (7) + (=24) Eapi1 5,1 (7) if k=2¢+1>3andm =6,

28 By (41) — (28 + 3%) By (67) + 3" By (97) if k= 4¢andm =9,

2k + (30 (E(37)(20)* Ex (12 ,
( + (39) )(k (37)(20) " B ™) if k = 4¢ + 2 andm = 9,
— (1 + (22) ) (2 Ek(47’) + (31) Ek(gT))

2" B 1 x, (T)H(=24+2(=1)3%)Ep 1,5, (37)—2(=1)"3"Ep 1,5 _,(97)
F2E By 1 (1) (—1)E(~2542(~1)13R) By, 1 (37)+ 125 (1) ¢ gy ,.1(97)

ifk=20+1>3andm = 9.
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Moreover, let, (k, m), [, (k, m) andl(k, m) be defined by

3¢ if k= 2¢andm = 6, ¢ if k=2¢andm =6,
3¢+1 ifk=20+1andm =6, ¢ ifk=2(+1andm =6,
ly(k,m)=q10¢  if k=4¢andm =9, ly(k,m) = q2¢ if k=4¢andm =9,
10¢ if k=4¢+2andm =9, 20 ifk=40+2andm =9,
5(+2 ifk=2(+1andm =9, ¢ ifk=2{+1andm =9,

and
40 -3 if k=2¢andm = 6,

4+1 ifk=2¢0+1andm =6,
I(k,m)=<120—4 if k=4¢andm =9,
120+3 ifk=4¢/+2andm =29,

6/ if k=2¢4+1andm = 9.

Then there are rational numberts; ., depending ory, k¥ andm such that

I(k,m)
Fln (1) = (0(1)0(m7))* ylyEmgletm N o)y i, 3.2)
7=0

We leave the proof of (3.1) as an interesting exercise to the reader.

Finally, one may also be curious about if the other moonshine discrete group coni&jing) for m = 6
or 9 would work or not. For example, fon = 6, there are two other moonshine discrete groups obtained from

8
I'o(24), namelyI'y(24) + 8 andI'y(24)+, which both contair(24 ) . However, one can check that under

8§ =3
the action of<24 <) 6(7)0(67) is transformed to its inequivalent clag®r)6(37), and this would force

one to get(27)0(37) involved when he tries to establish a “Ramanujan—Mordell type” formuléfoyd (67)
throughl'(24) + 8 or 'y (24)+.
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