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1. INTRODUCTION

In the long history of number theory, one of the classical problems is to determine exact formulas for

the number of representations of a positive integern as a sum of2k squares, that is, the number of

integral solutions of

x2
1 + x2

2 + · · ·+ x2
2k−1 + x2

2k = n,

denoted byRk(n). Such a classical but interesting problem has been explored and studied by many

mathematicians since it was introduced. As a result, formulas forRk(n) for various cases have been
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Foundation of Guangdong Province (Grant No. 2019A1515011323) and the Sun Yat-sen University Research Grant for

Youth Scholars (Grant No. 19lgpy244).
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found. For example, fork = 1, 2, 3 and4, i.e., sums of2, 4, 6 and8 squares, (reformulated) formulas

for Rk(n) are originally due to Jacobi [11],

R1(n) = 4
∑

d|n

(−4
d

)
,

R2(n) = 8
∑

d|n
d− 32

∑

d|n
4

d,

R3(n) = −4
∑

d|n

(−4
d

)
d2 + 16

∑

d|n

( −4
n/d

)
d2,

R4(n) = 16
∑

d|n
d3 − 32

∑

d|n
2

d3 + 256
∑

d|n
4

d3

where, here and throughout this work,
(

D
·
)

denotes the quadratic character for discriminantD. The

result fork = 5, i.e., sum of10 squares, was due (without proof) in part to Eisenstein [8], and fully

described (without proof) by Liouville [13]. The results for1 ≤ k ≤ 9 were all proved by Glaisher

[9]. Now if one sets

θ(τ) :=
∞∑

m=−∞
qm2

, (1.1)

where, here and throughout the remainder of this work,τ denotes a complex number with positive

imaginary part andq = e2πiτ , then one has the well known relation
∞∑

m=0

Rk(m)qm = θ(τ)2k,

where the function inτ on the right hand side is known [22, Chapter 1] to be a modular form of weight

k with Nebentypus
(−4
·

)k
for Γ0(4). By such a nice relation and thanks to the theory of classical

modular forms, we know that the modular formθ(τ)2k has the following interesting decomposition

θ(τ)2k = E∗
k(τ) + Ck(τ), (1.2)

whereE∗
k(τ) is an Eisenstein series whosen-th Fourier coefficient is some divisor function inn, and

Ck(τ) is a cusp form whosen-th Fourier coefficient is of order substantially lower than that ofE∗
k(τ).

Then as a consequence, formulas forRk(n) follows from equating the Fourier coefficients on both

sides of (1.2). Such a modular form theoretic intrinsic ofθ(τ)2k indirectly allows Ramanujan [19],

[20, Eqs. (145)-(147)] to “completely” solved (without proof) the problem in around 1916. To state

Ramanujan’s fascinating results, we need the Dedekind eta function, which is defined by

η(τ) :=q1/24
∞∏

j=1

(1− qn).
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Here and throughout the remainder of this work, we writeηm for η(mτ) for any positive integer

m.

Theorem1.1— (Ramanujam). Supposek is a positive integer. Letθ(τ) be defined by (1.1). Then

θ(τ)2k = Fk(τ) + θ(τ)2k
∑

1≤j≤ (k−1)
4

ck,jx
j (1.3)

whereck,j are numerical rational constants that depend onj andk,

x = x(τ) :=
η24
1 η24

4

η48
2

,

andFk(τ) is an Eisenstein series defined by

F1(τ) := 1 + 4
∞∑

j=1

qj

1 + q2j
,

and fork ≥ 1,

F2k(τ) := 1− 4k(−1)k

(22k − 1)B2k

∞∑

j=1

j2k−1qj

1− (−1)k+jqj
,

and

F2k+1(τ) := 1 +
4(−1)k

E2k

∞∑

j=1

(
(2j)2kqj

1 + q2j
− (−1)k+j(2j − 1)2kq2j−1

1− q2j−1

)
.

HereBk andEk are the Bernoulli numbers and Euler numbers, respectively, defined by

u

eu − 1
=

∞∑

k=0

Bk

k!
uk and

1
coshu

=
∞∑

k=0

Ek

k!
uk.

Theorem 1.1 (formula 1.3) was proved first by Mordell [16] utilizing the theory of modular forms,

and thus giving credits to Mordell as well, it is now called the Ramanujan–Mordell Theorem (resp. the

Ramanujan–Mordell formula). An elementary proof was given by Cooper in [5] by making skillful

use of Ramanujan’s1ψ1 formula. Inspired by the beauty of the Ramanujan–Mordell formula, it

will be very interesting if one can extend it to other2k-ary quadratic forms. Such extensions and

developments have recently been initiated by Cooper, Kane and the second author of the present

work in [6], in which they extended the Ramanujan–Mordell formula to the modular forms (theta

functions)(θ(τ)θ(mτ))k associated to the2k-ary quadratic forms

x2
1 + · · ·+ x2

k + m
(
x2

k+1 + · · ·+ x2
2k

)
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for m ∈ {3, 7, 11, 23}, and analogously obtained a beautiful unifiedpolynomial representation(or

called Ramanujan–Mordell type representation) for the cusp form componentCk(τ). Subsequently,

the second author of the present work further extends the Ramanujan–Mordell formula to the cases

m ∈ {2, 4} in [23], and in the end, he indicates the essence of the existence of these beautiful

Ramanujan–Mordell type formulas for(θ(τ)θ(mτ))k and how one can give an attempt to other cases.

Based on the comments given in [23, Section 4], in this work we further explore such an interesting

topic. We aim to treat the uncharted cases,m = 5 andm = 8, whose associated quadratic forms

are of discriminants20k and32k, respectively, and obtain their corresponding Ramanujan–Mordell

type formulas. We conclude this introduction section by stating the main results of the present work

and presenting several explicit examples. To this end, we first define the (quasi) Eisenstein series of

integral weightk with Nebentypusχ andψ. Suppose thatχ andψ are primitive Dirichlet characters

with conductorsM andN , respectively. Fork = 1 with χ trivial or k ≥ 2 such thatχ(−1)ψ(−1) =

(−1)k, let the (quasi) Eisenstein seriesEk,χ,ψ(τ) be defined by

Ek,χ,ψ(τ) := δM,1 − 2k

Bk,ψ

∑

n≥1

σk−1;χ,ψ(n)qn, (1.4)

whereδa,b denotes the Kronecker delta,Bk,ψ denotes the generalized Bernoulli number with respect

to the characterψ, i.e.,
N∑

a=1

ψ(a)xeax

eNx − 1
=

∞∑

k=0

Bk,ψ

k!
xk,

and

σk−1;χ,ψ(n) :=
∑

d|n
ψ(d)χ(n/d)dk−1.

We write1 for the trivial character,χD for the quadratic character
(

D
·
)

for discriminantD and

Ek(τ) for the (quasi) Eisenstein seriesEk,1,1(τ) for SL2(Z). It is known [21, Theorem 5.8] that

Ek,χ,ψ(τ) is a weightk modular form forΓ0(MN) with Nebentypusχ/ψ. We are ready to state the

main result of this work in the following theorem.

Theorem1.2— For m ∈ {5, 8}, let xm = xm(τ) be defined by

xm =





η3
1η4η5η

3
20

η4
2η

4
10

if m = 5,

η2
1η4η8η

2
32

η3
2η

3
16

if m = 8.

(1.5)
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LetFk,m(τ) be defined by

Fk,m(τ) =

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(−1)`E2`(τ)−(−1)`2E2`(2τ)+(−4)`E2`(4τ)+5`E2`(5τ)−5`2E2`(10τ)+20`E2`(20τ)
−(−1)`+(−4)`−5`+20` if k = 2` andm = 5,

E2`+1,1,χ−20 (τ) + (−20)`E2`+1,χ−20,1(τ) if k = 2` + 1 ≥ 3 andm = 5,

E1,1,χ−20 (τ) if k = 1 andm = 5,

(−1)`E2`(τ)−(−1)`E2`(2τ)−8`E2`(16τ)+32`E2`(32τ)
−8`+32` if k = 2` andm = 8,

E2`+1,1,χ−8 (4τ) + (−1)`2`−1E2`+1,χ−8,1(τ) if k = 2` + 1 ≥ 3 andm = 8,

1
3 E1,1,χ−8 (τ) + 2

3 E1,1,χ−8 (4τ) if k = 1 andm = 8.

Furthermore, letl(k, m) be defined by

l(k, m) =





3`− 2 if k = 2` andm = 5,

3` + 1 if k = 2` + 1 andm = 5,

2k − 1 if k ≥ 2 andm = 8,

2 if k = 1 andm = 8.

Then there exist rational numberscj,k,m depending onk, j andm such that

(θ(τ)θ(mτ))k = Fk,m(τ) + (θ(τ)θ(mτ))k
l(k,m)∑

j=1

cj,k,mxj
m. (1.6)

Example1.3 : Fork = 1 or 2, the general formula (1.6) gives the following explicit identities.

θ(τ)θ(5τ) = 1 +
∞∑

n=1

(−20
n

)
qn

1− qn
+

η1η2η10η20

η4η5
, (1.7)

(θ(τ)θ(5τ))2 = 1 +
∞∑

n=1

(
2

nqn

1− qn
− 4

nq2n

1− q2n
+ 8

nq4n

1− q4n
(1.8)

− 10
nq5n

1− q5n
+ 20

nq10n

1− q10n
− 40

nq20n

1− q20n

)
+ 2

η6
2η

6
10

η1η3
4η

3
5η20

,

θ(τ)θ(8τ) = 1 +
2
3

∞∑

n=1

((−8
n

)
qn

1− qn
+ 2

(−8
n

)
q4n

1− q4n

)
+

4
3

η2
2η

2
16

η4η8
− 2

3
η2
1η

2
32

η2η16
, (1.9)

(θ(τ)θ(8τ))2 = 1 +
∞∑

n=1

(
nqn

1− qn
− nq2n

1− q2n
+ 8

nq16n

1− q16n
− 32

nq32n

1− q32n

)
+ 3

η7
2η

7
16

η2
1η

3
4η

3
8η

2
32

(1.10)

− 4
η4
2η

4
16

η2
4η

2
8

+ 2
η2
1η2η16η

2
32

η4η8
.
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The identity (1.7) was given first in [3] by Berkovich and Yesilyurt making use of Ramanujan’s

1ψ1 summation formula. Equivalent forms of identities (1.8) and (1.10) were given in [2] and [1],

respectively. To the best knowledge of the authors, identity (1.9) has not yet appeared in any literature.

In the next section, some preliminary results for preparing for the proof of Theorem 1.2 are given.

The proof of Theorem 1.2 is given in the last section with a concluding remark regarding potential

extensions to other related cases.

2. PRELIMINARY RESULTS

This section is devoted to presenting several preliminary results that will be used for the proof of

Theorem 1.2.

The following lemma gives the transformation formulas for certain concernedEk,χ,ψ(τ) under

the action of some Fricke involutions.

Lemma2.1 — LetEk,χ,ψ(τ) be defined as in (1.4). Then fork = 1,

Ek,1,χ−20

(
− 1

20τ

)
=

(20τ)k

i
√

20
Ek,1,χ−20(τ),

Ek,1,χ−8

(
− 1

8τ

)
=

(8τ)k

i
√

8
Ek,1,χ−8(τ),

and fork ≥ 3,

Ek,1,χ−20

(
− 1

20τ

)
=

(20τ)k

i
√

20
Ek,χ−20,1(τ),

Ek,χ−20,1

(
− 1

20τ

)
=
√

20τk

i
Ek,1,χ−20 (τ) ,

Ek,1,χ−8

(
− 1

8τ

)
=

(8τ)k

i
√

8
Ek,χ−8,1(τ),

Ek,χ−8,1

(
− 1

8τ

)
=
√

8τk

i
Ek,1,χ−8 (τ) .

PROOF : These are well-known, see, e.g., [15, Section 7]. 2

Lemma2.2 — Under the transformationτ → τ + 1
2 , the following identities hold.

Whenk is even,

Ek

(
τ +

1
2

)
= −Ek(τ) + (2k + 2)Ek(2τ)− 2kEk(4τ);
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whenk is odd,

Ek,1,χ−20

(
τ +

1
2

)
= −Ek,1,χ−20(τ) + 2Ek,1,χ−20(2τ),

Ek,χ−20,1

(
τ +

1
2

)
= −Ek,χ−20,1(τ) + 2kEk,χ−20,1(2τ),

Ek,1,χ−8

(
τ +

1
2

)
= −Ek,1,χ−8(τ) + 2Ek,1,χ−8(2τ),

Ek,χ−8,1

(
τ +

1
2

)
= −Ek,χ−8,1(τ) + 2kEk,χ−8,1(2τ).

PROOF : The proofs are similar to that of [6, Lemma 3.2], so we omit the details.

Here and throughout the remainder of this work, writeords(f) for the order of vanishing of a

modular formf at a cusps, which is defined as follows. For a cusps, let Ms ∈ SL2(Z) such that

Ms(i∞) = s. Suppose thatf is of levelΓ andg := f |kMs = qh
N + o(qh

N ), whereqN = e2πiτ/N

andN is the smallest positive integer such thatTN or−TN ∈ M−1
s ΓMs with T =

(
1 1

0 1

)
. Then

ords(f) := h. The preceding two lemmas are now used to compute the order of vanishing ofFk,m(τ)

at the cusp12 and yield the following results.

Lemma2.3 — LetFk,m = Fk,m(τ) be defined as in Theorem 1.2. Then

ord1/2(Fk,m) =





2 if k even andm = 5,

1
2 if k odd andm = 5,

1 if k ≥ 2 andm = 8,

0 if k = 1 andm = 8.

PROOF: One can first check thatFk,m(τ) is a modular form of weightk with Nebentypus
(−4m

·
)k

for Γ0(4m). Also, one can note thatπ : X(Γ0(4m)) ³ X(Γ0(4m) + 4m) is a degree 2 projective

morphism, whereΓ0(4m) + 4m denotes the discrete group generated byΓ0(4m) and its Fricke

involution

(
0 −1

4m 0

)
, and that the cusp12 of the latter modular curve ramifies as two cusps in the

former modular curve, each of ramification index 1. Thus, the local coordinate of the cusp1
2 remains

the same, which is of widthm, and one can proceed with the standard way to compute the order of

vanishing ofFk,m as a modular form forΓ0(4m). We give the proof to the casek ≥ 3 odd and
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m = 5, and leave the details of the other cases to the reader. One has fork = 2` + 1 ≥ 3,

(2τ + 1)−kFk

(
τ

2τ + 1

)

= (2τ + 1)−k

(
E2`+1,1,χ−20

(
τ

2τ + 1

)
+ (−20)`E2`+1,χ−20,1

(
τ

2τ + 1

))

= (2τ + 1)−k

(
E2`+1,1,χ−20

( −1
4τ + 2

+
1
2

)
+ (−20)`E2`+1,χ−20,1

( −1
4τ + 2

+
1
2

))

= (2τ + 1)−k

(
−E2`+1,1,χ−20

( −1
4τ + 2

)
+ 2E2`+1,1,χ−20

( −1
2τ + 1

)

− (−20)`E2`+1,χ−20,1

( −1
4τ + 2

)
+ 22`+1(−20)`E2`+1,χ−20,1

( −1
2τ + 1

) )
by Lemma 2.3

= (2τ + 1)−k

(
− 202`+1

i
√

20

(
2τ + 1

10

)2`+1

E2`+1,χ−20,1

(
2τ + 1

10

)

+ 2
202`+1

i
√

20

(
2τ + 1

20

)2`+1

E2`+1,χ−20,1

(
2τ + 1

20

)

− (−20)`

√
20
i

(4τ + 2)2`+1 E2`+1,1,χ−20

(
4τ + 2

20

)

+ 22`+1(−20)`

√
20
i

(2τ + 1)2`+1 E2`+1,1,χ−20

(
2τ + 1

20

) )
by Lemma 2.3

= Cq
1
10 + O(q

1
5 )

for some nonzero constantC. Hence, the order of vanishing ofFk,m for k ≥ 3 odd andm = 5 at the

cusp1
2 is 1

2 . 2

The next two lemmas are useful for computing the order of vanishing ofθ(τ)θ(mτ) andxm(τ)

at cusps.

Lemma2.4 — If f(τ) =
∏

d|N ηrd
d for some positive integerN with k = 1

2

∑
d|N rd ∈ Z, with

the additional properties that ∑

d|N
drd ≡ 0 (mod 24)

and ∑

d|N

N

d
rd ≡ 0 (mod 24),

thenf(τ) satisfies

f

(
aτ + b

cτ + d

)
= χ(d)(cτ + d)kf(τ)
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for every

(
a b

c d

)
∈ Γ0(N). Here the characterχ is defined by Jacobi symbolχ(d) =

(
(−1)ks

d

)

wheres =
∏

d|N drd .

PROOF : See Gordon and Hughes [10], or Newman [17, 18]. 2

Lemma2.5 — Let a, c and N be positive integers withc|N and gcd(a, c) = 1. If f(τ) =
∏

d|N ηrd
d satisfies the conditions of Lemma 2.4 forN , then the order of vanishingorda/c(f) of f(τ)

at the cuspa/c is
N

24

∑

d|N

gcd(c, d)2rd

gcd(c,N/c)cd
.

PROOF : See Biagioli [4], Ligozat [12] or Martin [14]. 2

By the eta-quotient representation [11] ofθ(τ), i.e.,

θ(τ) =
η5
2

η2
1η

2
4

,

and the definitions ofxm(τ), using Lemmas 2.4 and 2.5, direct computations give the order of van-

ishing ofθ(τ)θ(mτ) andxm at the cusps 0,12 and 1
4 , which are the cusps ofX(Γ0(4m) + 4m) for

m ∈ {5, 8}, as follows.

Lemma2.6 — Letθ(τ) andxm = xm(τ) be defined as in (1.1) and (1.5), respectively. Then

ords(θ(τ)θ(mτ)) =





0 if s = 0 or 1
4 , andm = 5 or 8,

3
2 if s = 1

2 andm = 5,

2 if s = 1
2 andm = 8,

and form ∈ {5, 8},

ords(xm) =





1 if s = 0,

−1 if s = 1
2 ,

0 if s = 1
4 .

3. PROOF OFTHEOREM 1.2 AND A REMARK

In this section, we give the proof to Theorem 1.2, and conclude this work with a remark regarding

potential extensions to other cases.

PROOF OFTHEOREM 1.2 : Let Fk,m(τ) and l(k, m) be defined as in Theorem 1.2. Then ac-

cording to the definition ofFk(τ), one can easily check that Fk,m(τ)

(θ(τ)θ(mτ))k is a modular function for
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Γ0(4m) + 4m with no poles on the open modular curveY (Γ0(4m) + 4m). By Lemmas 2.3 and 2.6,

one can check that Fk,m(τ)

(θ(τ)θ(mτ))k has only poles at the cusp12 of orderl(k, m). Also, by Lemma 2.6,

the modular functionxm(τ) has a simple pole at the cusp1
2 and a simple zero at the cusp0, which is

equivalent toi∞ underΓ0(4m) + 4m, and thus one can tell that Fk,m(τ)

(θ(τ)θ(mτ))kxm(τ)l(k,m)
is a modular

function forΓ0(4m) + 4m with only poles at the cusp0 of orderl(k, m) and with no poles or zeros

at the cusp12 . Then inductively, there are rational numbersbj,k,m such that

Fk,m(τ)

(θ(τ)θ(mτ))k xm(τ)l(k,m)
−

l(k,m)∑

j=1

bj,k,mx−j
m

is holomorphic at the cusp0, and thus holomorphic everywhere on the compact modular curve

X(Γ0(4m) + 4m), which must be a constantC. Sincex−1
m has a zero at the cusp12 , while

Fk,m(τ)

(θ(τ)θ(mτ))kxm(τ)l(k,m)
is holomorphic and nonvanishing at the cusp1

2 , then the constantC is nonzero.

Rearranging both sides by multiplying both sides byx
l(k,m)
m , one has

bk,l(k,m),m (θ(τ)θ(mτ))k = Fk,m(τ) + (θ(τ)θ(mτ))k
l(k,m)∑

j=1

cj,k,mxj
m

by settingcj,k,m = bk,l(k,m)−j,m andck,l(k,m),m = C. Taking τ → i∞, one hasbk,l(k,m),m = 1

according to the definition ofFk. This completes the proof.

Remark3.1 : As indicated in [23, Section 4], to obtain a Ramanujan–Mordell type formula asso-

ciated to the2k-ary quadratic form,

x2
1 + · · ·+ x2

k + m
(
x2

k+1 + · · ·+ x2
2k

)
,

one way is to consider a genus zero Fuchsian subgroupΓ containingΓ0(4m) that is commensurable

with SL2(Z) such that it has a uniformizerπ(τ) with locations of poles the same as the locations of

zeros ofθ(τ)θ(mτ) onX0(4m), andθ(τ)θ(mτ)|1 γ = c(γ)θ(τ)θ(mτ) for some constantc depend-

ing onγ. The first condition is for the purpose of obtaining a unified polynomial representation for the

cusp forms part, and the second condition guarantees that there is no other inequivalent class of the

quadratic form in consideration involved. As we know, one of the most famous families of genus zero

Fuchsian subgroups that is commensurable withSL2(Z) is the so called moonshine discrete groups

[7], which are obtained by adjoining certain Atkin–Lehner involutions to the Hecke groupsΓ0(N)

and whose uniformizers can be easily constructed by using Dedekind eta function and making use of

Lemmas 2.4 and 2.5. More or less directly, we first note thatθ(τ)θ(mτ)|1γ = χ−4m(γ)θ(τ)θ(mτ)

for γ ∈ Γ0(4m) and θ(τ)θ(mτ)|1
(

0 −1

4m 0

)
= −iθ(τ)θ(mτ). These observations motivate us
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to first consider the moonshine discrete groupΓ0(4m) + 4m obtained by adjoining the Fricke in-

volution

(
0 −1

4m 0

)
to Γ0(4m). There are only eight such groups [7], namely,Γ0(4m) + 4m for

m = 1, 2, 3, 4, 5, 6, 8 or 9. The case form = 1 is the fascinating Ramanujan–Mordell formula, the

cases form = 2, 3 or 4 have been studied in [6, 23], and the results form = 5 or 8 have been treated

in this work. Now a question will be certainly raised to ask how about the cases form = 6 or 9. To

answer this question, we first note that by the proof of Theorem 1.2, the beautifully unified polyno-

mial representation for the cusp form part follows from the fact thatθ(τ)θ(mτ) andxm(τ) for m = 5

or 8 do satisfy the first condition mentioned above, while one can check using Lemmas 2.4 and 2.5,

θ(τ)θ(mτ) for m = 6 or 9 has zeros at twoΓ0(4m) + 4m inequivalent cusps (thus, twoΓ0(4m)

inequivalent cusps), which can never be canceled out by just one uniformizer forΓ0(4m) + 4m. So

if one keeps consideringΓ0(4m) + 4m as the larger group containingΓ0(4m) to work on, then one

needs another uniformizer to cancel out the other zeros. Such a uniformizer can be easily obtained

by shifting the location of poles of the pre-chosen one through some fractional linear transformation.

Following these discussions, we may obtain Ramanujan–Mordell type formulas form = 6 or 9 as

follows. Letxm = xm(τ) andym = ym(τ) be defined by

xm =





η3
1η3

4η3
6η3

24

η5
2η3η8η5

12

if m = 6,

η2
1η4η

2
6η9η

2
36

η3
2η3η12η3

18

if m = 9,

and ym =





η1η
2
2η3η8η

2
12η24

η4
4η4

6

if m = 6,

η2
2η3

3η3
12η

2
18

η4η8
6η9

if m = 9.

Let Fk,m(τ) be defined by

Fk,m(τ)

=





((− 2
3

)` + 1
)((− 8

3

)`
E2`(8τ) + E2`(3τ)

)

−
((− 8

3

)` + 1
) ((− 2

3

)`
E2`(4τ) + E2`(6τ)

) if k = 2` andm = 6,

E2`+1,1,χ−24(τ) + (−24)`E2`+1,χ−24,1(τ) if k = 2` + 1 ≥ 3 andm = 6,

2kEk(4τ)− (2k + 3k)Ek(6τ) + 3kEk(9τ) if k = 4` andm = 9,

(
2k + (3i)k

) (
Ek(3τ)(2i)kEk(12τ)

)

− (1 + (2i)k) (2kEk(4τ) + (3i)kEk(9τ))
if k = 4` + 2 andm = 9,

2kEk,1,χ−4 (τ)+(−2k+2(−1)`3k)Ek,1,χ−4 (3τ)−2(−1)`3kEk,1,χ−4 (9τ)

+2kEk,χ−4,1(τ)+ 2k

2 (−1)`(−2k+2(−1)`3k)Ek,χ−4,1(3τ)+ 12k

2 (−1)`Ek,χ−4,1(9τ)
if k = 2` + 1 ≥ 3 andm = 9.
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Moreover, letlx(k, m), ly(k,m) andl(k, m) be defined by

lx(k, m) =





3` if k = 2` andm = 6,

3` + 1 if k = 2` + 1 andm = 6,

10` if k = 4` andm = 9,

10` if k = 4` + 2 andm = 9,

5` + 2 if k = 2` + 1 andm = 9,

ly(k, m) =





` if k = 2` andm = 6,

` if k = 2` + 1 andm = 6,

2` if k = 4` andm = 9,

2` if k = 4` + 2 andm = 9,

` if k = 2` + 1 andm = 9,

and

l(k,m) =





4`− 3 if k = 2` andm = 6,

4` + 1 if k = 2` + 1 andm = 6,

12`− 4 if k = 4` andm = 9,

12` + 3 if k = 4` + 2 andm = 9,

6` if k = 2` + 1 andm = 9.

Then there are rational numberscj,k,m depending onj, k andm such that

Fk,m(τ) = (θ(τ)θ(mτ))k
yly(k,m)

m xlx(k,m)
m

l(k,m)∑

j=0

cj,k,mx−j
m . (3.1)

We leave the proof of (3.1) as an interesting exercise to the reader.

Finally, one may also be curious about if the other moonshine discrete group containingΓ0(4m) for m = 6

or 9 would work or not. For example, form = 6, there are two other moonshine discrete groups obtained from

Γ0(24), namely,Γ0(24)+8 andΓ0(24)+, which both contain

(
8 −3

24 −8

)
. However, one can check that under

the action of

(
8 −3

24 −8

)
, θ(τ)θ(6τ) is transformed to its inequivalent classθ(2τ)θ(3τ), and this would force

one to getθ(2τ)θ(3τ) involved when he tries to establish a “Ramanujan–Mordell type” formula forθ(τ)θ(6τ)

throughΓ0(24) + 8 or Γ0(24)+.
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