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This paper discusses the use of high-performance incompatible, enhanced-strain and hybrid stress elements for the St
Venant torsion and bending of composite prismatic shafts, formulated in terms of the warping function. The properties of
the shaft are uniform along its length but piece-wise constant and orthotropic across its cross-section. In order to analyse
composite shafts whose microstructural details are difficult to be modelled directly by finite element discretisation, the
two-scal e asymptotic (or mathematical) homogeni sation approach is also discussed; the resulting equilibrium equations can
be readily solved by the aforementioned high-performance elements.
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Introduction

S Venant torsion and bending of prismatic shaftsare
fundamental problemsin the theory of elasticity and
of wideinterest in engineering design, seee.g. Pilkey
(2002). It is also an essential ingredient in the
development of advanced (Timoshenko) beam theory
with shear correction (Gruttmann and Wagner, 2001)
and/or torsional warping (Battini and Pacoste, 2002;
Gruttmann et al, 2000; Simo and Vu-Quoc, 1991).

Many useful analytical solutionsfor torsion and
bending of isotropic homogeneous shafts have been
presented in books on theory of elasticity, e.g.
Timoshenko and Goodier (1969). Karihaloo and Hemp
(1987) and Pilkey (2002) have discussed optimization
of cross-sectional shapes of shafts. Most recently,
Romano et al. (2012) revisited the St Venant beam
theory under shear and torsion with specia attention
to the notions of shear and twist centres; they used
Matlab to solvethe boundary val ue problemsfor smple
regions.

Development of finite element approaches for
the analysis of St Venant torsion began aimost at the
same time as the finite element method itself. A

* Author for Correspondence: E-mail: karihaloob@cardiff.ac.uk

detailed discussion of the various approaches can be
found in Desai (1979). Many early finite elements
are based on stresses or stress functions and are
limited to simply connected cross-sections. Xiao et
al. (1999) haveintroduced an optimised hybrid stress
element; Karihaloo et al. (2001) have developed
displacement-incompatible and enhanced-strain
elements. These high-performance elements are
applicable for simply aswell as multiply connected
Cross-sections.

Since the pioneering work of Mason and
Herrmann (1968) on the devel opment of atriangular
displacement element from the principle of minimum
potential energy, many studies have been carried out
on the finite element analysis of &t Venant bending.
Gruttmann et al. (1999) and Gruttmann and Wagner
(2001) formulated St Venant bending in terms of the
bending warping function, which can be solved in a
similar manner to thetorsional warping function. They
introduced adisplacement compatible element to solve
for bending warping, and amethod for computing the
shear correction factors for Timoshenko beamswith
arbitrary cross-sections assuming uncoupling of the
strain energy for bending and torsion, and equivalence
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of the strain energy fromthe average and equilibrium
shear stresses. Jog and Mokashi (2014) studied
bending of isotropic homogeneous bars with special
attention to the torsion effect caused by the shearing
forces that do not pass through the shear centre.

Lekhnitskii (1963) has explored torsion and
bending of orthotropic homogeneous beams with
simply connected cross-sections, making recourseto
stressfunctions. Kosmatkaand Dong (1991) studied
prismatic anisotropic beams using the Ritz method
based on the principl e of minimum potential energy.

Kourtis et al. (2009) formulated compatible
elements based on a combined warping function for
torsion and transverse shearing of isotropic or
transversely isotropic materials. They assumed that
the elastic and shear moduli are spatial functions
across the cross-section and considered the effects
of their gradients; Poisson’s ratio was assumed to be
constant. With the use of Matlab to solve the boundary
value problems for simple regions, Barretta (2013)
studied orthotropic St Venant beams with aspatially
constant Poi sson tensor and fibre-wise homogeneous
moduli of elasticity and shear with special attention
on shear and twist centres. Jog and Mokashi (2014)
studied torsion of prismatic compound anisotropic bars
using 4- and 9-node compatibl e el ements. Mokosand
Sapountzakis (2005) al so studied bending of composite
beams with constant Poisson’s ratio and piece-wise
constant moduli of elasticity and shear by aboundary
element method.

For composite shafts whose microstructural
detailsare difficult to model directly using thefinite
element discretisation, Karihaloo et al. (2001)
introduced thetwo-level asymptotic (or mathematical)
homogeni sation approach for periodic microstructures
to the analysis of torsion. Yuan et al. (2003) used
two-level homogeni sation to thetopol ogy optimisation
of cross-section for composite shafts under St Venant
torsion.

Thispaper will discussthe solution of St Venant
torsion and bending of prismatic composite shaftsvia
high-performance finite elements or two-scale
homogenisation. For St Venant bending, theviolation
of the assumption of zero in-plane shear strain ~
over the cross-section by Gruttmann et al. (1999
and Gruttmann and Wagner (2001) aswell asKourtis
et al. (2009) will be resolved; for two-scale

homogenisation, the first order formulation of
Karihaloo et al. (2001) will be generalised to higher
order following Xiao and Karihal oo (2009).

This paper isorganised asfollows: wewill first
discuss the formulation of St Venant torsion of
prismatic composite shafts in terms of the warping
function and high-performanceincompatible, strain-
enhanced and hybrid stress elements for solving the
warping function. This will be followed by the
formulation of St Venant bending in terms of the
warping function, highlighting itssimilarity totorsion.
We will next discuss the two-scale homogenisation
andfiniteelementsfor solving theresulting equilibrium
equations; followed by numerical examplesandfinally
conclusionsand discussion.

S Venant Torsion of Prismatic Composite Shaft

Take the origin at the centroid of one end section, z-
axisaong the axis of the shaft, x and y axes coincide
with the principa axes of the section and formaright
hand system with z. Orthotropic materials are
considered. The principal directions of orthotropy
coincide with the coordinate axes. The material
properties are uniform along the length, but can be
piece-wise constant across the cross-section. The
initial stresses and strains will be ignored in the
derivation of St Venant solutions, but added in the
devel opment of high-performance elements.

Under the assumptionthat o, =0, =0, = 7,, =0,
the displacements corresponding to unit angle of twist
per unit length are

u=-yz (@D}
V =Xz
W= (X y)

wherep(x, y) is the warping function. The non-
vanishing strainsare

Y= Px—Y
Yy = Pyt X )

where a comma denotes partial differentiation. The
non-vanishing stresses are

T =G (Ve =70 + T,
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T =G (Ve = 15) + Ty ©)

where G, and G, are shear moduli; 42 and vy, are

initial strainsincluding thermal strains; TSZ and 7'32
areinitial stresses.

Theequilibriumequationis

Taax T Ty =0,iNA 4
and boundary conditionis

TN+ 7,0, = 0, on oA (5)

where (nx, ny) isthe unit outward normal to 0A, with
A the cross-section domain.

Denote the shear stress vectors

Lol

and shear strain vectors

Y_rhk_gf—uxw o[

Y] ey~ 6Y)] v O
where f,(x, y) =y and f,(x, y) = X, and modulus and
compliance matrices

G 0

' " 1/G, 0
D:

'C_[ 0 UG, ®

0 G,

the potential functional whose stationary condition
gives (4) and (5) can be written as

M, () =fAEv2Dv +(-Dy " +1°)y }dA ©)

The Hellinger-Reissner functional whose
stationary condition gives (2)-(5) can be written as

dA

o 1 T T 0 0
I%Mﬂ—LF?CPH@—Y+&)
(10)
By relaxing the compatibility condition (2) inthe

potential functional (9), or employing Legendre
transformation on the Hellinger-Reissner functional
(10), one arrivesat the 3-field Hu-Washi zu functional

My (pry T) =

— f
flvTDv —aTly 7T Dy )Ty A
A2 SD,y_fZ

(11)
4-node | ncompatible/Srain-enhanced Element

For the 4-node element shown in Fig. 1, thewarping
function is divided into a compatible part ?q and an
incompatiblepart o, :

Y=, tp, (12)

interpolated from nodal values

Pq is

0=, 0,5:9,] usingthebilinear shapefunctions

N, as
v, =Ng (13
where
N = [N,N,N;N,] (14)
and
1
N, = Z(1+ §€)(1+nn) (15)
n
3
4

o
Uis

Fig. 1: A plane four-noded quadrilateral element
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(¢&,n) represent the element isoparametric
coordinates, (gi ), ) aretheisoparametric coordinates
of point i with the global coordinates
(%.,¥,),i=1,2,34,p, isrelated tothe element inner

parameters )\ viathe shape functions N

0, = N,A (16)

Here, two incompatible terms are employed in
each element as derived in Karihaloo et al. (2001)
and Pian and Wu (2006)

2(3,, 3, (17)
‘JO ‘JO/'7

where Jor J; and J, are related to the element
Jacobian asfollows

3= 3o+ 3+ I =(ab, —ah)

+(ab, —a,b)¢ + (ab; —ab,)n (18)

Thecoefficients and (i = 1, 2, 3) are dependent
on the element nodal co-ordinates (x;, y;) (i=1, 2, 3,
4) asfollows:

_ % N
212 812:1 ! _11 1 _1% Y-
b 4-1 -1 1 11% Ys (19)

X4 y4
With the above assumed warping function (12)

together with (13) and (16), we have the shear strains
from (7)

v g

-
f—l"—
50
N K
—_—
I
SRl

el e

Substituting (20) into (9) and making use of the
stationary condition, yields

Kg= f (21)
where the e ement stiffness matrix and nodal vector
are

K =Ko — KKKy

A’

f :KqAK;AlfA— f,

(22)
inwhich
K K BT
qq gA |
K;A K/\A _"[ BI D[B BA]dA
f _ BT —f 0 0
{fi}—{ B] ol {f - ]“ R @

The element inner parameters \ are recovered
asfollows

A=K Kgua- K, (24)

Alternatively, we can substitute the compatible
bilinear interpolation of warping functionin (13) and
the shear strains (20) (the shear strains compatible
with warping (13) are enhanced with B, A) into the
Hu-Washizu potential (11), an equivalent strain-
enhanced element can be obtained.

4-node Hybrid Stress Element

In optimisation of the element trial stresses, the
constant stresses are generally isolated to remain
unperturbed to ensure the element isableto passpatch
tests, see e.g., Pian and Wu (2005). Since St Venant
torsion cannot have a constant shear stressfield, in
the devel opment of the 4-node hybrid stress element,
Xiao et al. (1999) did not isolate the constant shear
stresses in optimisation of the element trial stresses
and obtained thefollowing optimised trial stresses

By
{sz}: ab,—ab¢ aafl ap aﬂ 3,
Ty bbn = ab,—abn by bf ga (25)

with 4 stress parameters 3, ,, 3, and 3,. The tria
stresses (25) satisfy the optimal parameter matching
condition, and the resulting element performs as good
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as the well-known Pian-Sumihara element for plane
stresg/strain problems (Pian and Sumihara, 1984).

However, the element with trial stresses (25)
will fail for asquare element with nodes numbered as
inFig. 2(a), which hasnodal coordinates

X =h=aX=X=a=y,=y,=a
andy,=y,=-a (26)
giving
a,=a,=0,a,=aandb,=-a,b,=b,=0 (27)
with the use of (19). Thetrial stresses (25) become

B
B
T 0 0 —ap O0]|5
A

yz

{Tu}:[o 0 0 at (28)

and the resulting H matrix (its definitionis givenin
(37) below) will not be invertible. This problem can
be resolved by renumbering the nodesinto the pattern
showninFig. 2(b), which gives

AV

1 (-a, a) 4 (a, a)

Q)

=Y

2 (-a, -a) 3 (a, -a)

4 (-a, a) 3 (a, a)

®)

o

| (-a, -a) 2 (a, -a)

Fig. 2: Two typical node numbering patterns for a 4-node
square element with side length 2a

X, =X, =-a,X=X=a=y,=-ay,=a
andy,=y,=a (29)
and
a,=aa=3a=0, b1= b2= 0, b3=a (30)
Thetrial stresses (25) become

By
Tel_|a> 0 an 0}|5
T.] 10 a 0 af||f; (31)

4
and theresulting H matrix will beinvertible.

Alternatively, the constant shear stresses can
be isolated from the stress optimisation procedure,
and theinitial assumed stresses of Xiao et al. (1999)
can now be divided into constant and higher order
parts as

TX221077050B;1
{Tyz} [010507]}6'6

=B +|o, Icp.l]{gl'l}

p={tho = {5} {2}
o =g gou=f )
Enforcement of the stress optimisation condition

on the higher order stresses (¢, B, +¢,B,) in(32)

following Xiao et al. (1999) (or Pian and Wu (2005))
resultsin

(32)

° 5
G @
a

Substitution of (33) into (32) gives the final
optimisedtrial stresses

(ol 280 )
YIS gj ort =of (34)

Ty
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Substitution of the warping function (13) into
(7) gives the shear strain vector

oof-eacf} o

Substitution of (34) and (35) into (10) gives

_ 11 N,s
=

HHp(q,B)z—%BTHB +BT(Ga+f) (3p)

where
H= f »"CodA
G= [ ¢"BdA

37)

A
v T[]—f 0 0
f_qu> [{f2 1}—7 +C7°|dA

Vanishing of thefirst order variation of I, (36) gives

~HB +Gq+f =0, BTG =0 (38)

Thestress parameters can be computed from thefirst
equation of (38)

B=H'Gq+H*f (39)
Substitution of (39) into the second equation of (38)
gives

G'H 'Gg=-G"H*f (40)
or the stiffness matrix

K=G'H"'G (41)

and nodal |oad vector
f=—G'H'f (42)

of the element.

Numerical tests confirm that the element
resulting from (34) performs as good as the original
element using trial stresses(25), but doesnot require
renumbering the nodes for the special pattern shown

inFig. 2(a).

St Venant Torsionless Bending of Prismatic
Composite Shaft

Under the assumption that thenormal strain ¢, islinear

with respect to x, y and z, according to the el ementary
beam theory, and stresses Oy Oy and Ty are neglected

e, = (& +82)x+ (B +b,2)y
S @)
where 4,,4,,b, and b, areconstants, thenon-vanishing
strains are related to the stresses as

VZX
g, =——=0,
EZ
V.
&, :—Ezyaz
V,e
g, =——>0,
EZ
1
EZ :EO'Z
B (44)
Vye _G_szyz
1
=—T
Ve G *

Thedisplacements

u=-v,

§@+@a%+@+@awﬂ
+0,(y,2)

V=@ 2+ 26 6y

+92(X1 Z)

+[50 +512+%5222]y+90(x, y)  (45)
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where §, and 60 areconstants; ¢ (x,y) isthewarping
function dueto bending, and

0,(y.2) :évzy(él L 8,2y —h(2)

1 -~ -~ 46
0.0:) =3B B¢ —h(m O
and functions h,(z) and h,(2) satisfy
A oA 1.,
h,=3 +312+§a22
=B +Bz+ 20,7 “n
The non-vanishing shear strains are
Ve =Px — fl(x’ y) N
/sz = SO,y - f2(X7 y) (48)
where
1., -~ 1 .,
fl(Xl y) = sz EaZX + bzxy] - Evzya2y
2(49)

~ 1~ 1 -~
f,(x y)=-v, [azxy+§b2y2] +§szbzx

Theshear stressesarerel ated to the shear strains
(48) inthe same manner as (3) after adding theinitial
stresses and strains into (44) and satisfying the
equilibriumequation

Tyz,x + Tyz,y =—0,,= _Ez(é2X+ 6Zy) = fO(X, y)v in
A (50)

and boundary condition for stress free cylindrical
surface (5).

Constants 4, and b, must be known before

solving for thewarping function dueto bending; they
can be computed from the shear forces Q, and Qy as
follows.

. ELQ-ELQ
%= El,,.El, —(El,)"’
62 _ El nyy —El nyx (51)

2
El,,El,—(El,)

where

El, = fA E,y’dAEl, — J/: E,x°dA, Elxy(52)
- [ E, xydA

A comparison with theformulation of St Venant
torsion discussed above shows that the present
formulation for St Venant bending appears identical

to torsion except that a body force f,(x,y) now

appears. The4-node quadrilateral incompatible/strain-
enhanced and hybrid stress elements for torsion can
thus be readily used for the analysis of St Venant
bending.

The potential functional whose stationary
condition gives (50) and (5) now becomes
I, ()=
1
[ 15V DY + (DY )y + fop|dA (53)

2
The Hellinger-Reissner functional whaose stationary
condition gives (48) together with (3), (50) and
boundary condition (5) becomes

()=
fA \—%’ETC’C +t7(¢ —y°+Ct°%)+ fogpldA (54)

By relaxing the compatibility condition (48) in the
potential functional (53), or employing Lengendre
transformation on the Hellinger-Reissner functional
(54), one arrives at the Hu-Washizu functional

HHW(@!Y 11:):

1 ; e, —f(xy)
S \ET oy T [Y‘Lo,y +f2(x,y)}]
+(=Dy ° +1°)y + fop]dA (55)

I ncompatible/Strain-enhanced Element

Substitution of (12) together with (13) and (16) into
(48) givesthe shear strains (20). Substitution of (20)
into (53) yields (21)-(24) with the only difference
that



190

Bhushan Lal Karihaloo and Qi-Zhi Xiao

ol

in place of (23).

dA+ [ «m:}fodA (56)

Hybrid Stress Element

Substitution of the warping and shear stress
interpolations (13) and (34) into (54) yields

HHR(q,B)z—gﬁTHB

2" (57)
+B"(Ga+ f)+f'q

whereH, G and f arethe same as (37), but
f:f N f,dA (58)

A

Vanishing of the first order variation of II,.
(57) gives

~HB +Gq+ f =0
BTG+ f =0 (59)
Fromthefirst equation of (59) we can obtainthe stress
parameters in the same manner as (39), substitution
of them into the second equation of (59) gives

G'H'Gq=-G"H 'f — f (60)

Thestiffness matrix isthe same as (41), but the nodal
load vector now becomes

f—_GHf—f (61)

Two-scale Asymptotic Homogenisation

Assume the microstructure of the cross-section A
occupied by the composite material to be locally
periodic with a period defined by a statistically
homogeneous volume element, denoted by the
representative unit cell (RUC) or volume element
(RVE) withsizeY, asshowninFig. 3. In other words,
thecomposite material isformed by aspatia repetition

Macroscopic view

X =Ey

g=<l

RUCY

y2 Inclusion
Matrix

o M

Fig. 3: lllustration of a problem with two length scales

of the RUC. The problem has two length scales; a
global length scale D that is of the order of the size of
section A, and alocal length scale d that is of the
order of the RUC and proportional to the wavelength
of the variation of the micro-structure. The size of
the RUC is much larger than that of the constituents
but much smaller than that of the section. Therelation
between the global coordinate systemx; for the section
and the local system y, for the minimum RUC can
then be written as

y="i=12 (62)
where ¢ isavery small positive number representing
the scaling factor between thetwo length scales. The
local coordinate vector y, is regarded as a stretched
coordinate vector in the microscopic domain.

For an actual composite shaft subjected to
external forces, field quantities such as warping
function, shear strains and stresses are assumed to
have slow variations from point to point with
macroscopic (global) coordinate x as well as fast
variationswith local microscopic coordinatey within
asmall neighbourhood of size ¢ of agiven point x

U = U (%) =¢" (%)
Vaj = Vs (xy) (63)
T3 = T4 (% Y)
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wherej =1,2. Thesuperscript e denotesY-periodicity
of the corresponding function.

The unknown displacement u;, the non-zero

strain v;; and stress 75; can be solved from the
following equations

Equilibrium:

0T, J-
OX;

]

=f in A (64)

where f, = 0for torsion; it is defined asin (50) for
bending.

Kinematical:
ous
. f,(xy)
-,
YVao ou, £,0xy) in A (65)
0
Condtitutive:
Tgi:DiT<7§j_'ng>+T§j in A (66)

together with the traction free condition on the surface
of the shaft, and the traction and displacement
conditions at the interfaces between the micro-

constituents. The material property tensor D; is

symmetric with respect to indices (i, j). The
convention of summation over therepeated indicesis
used.

The displacement u;(x,y) is expanded in
powers of the small number e as

us (%, y) = U (%, y) +eu (, )

+e2u? (%, y) + 0P (%, y).... (67)

where u{®,u?,u{?,..., are Y-periodic functionswith
respect to y. Substituting (67) into (65) gives the

expansion of thestrain 73,

Yo (Y =+ + a7 P+ (68)

where
ALY = oug”
3j ayj
oul®
0) _ -0 (0) 0) __ 3
Vaj = Vxzj T Vyzjr Vxaj = %, — I
(0) (€N
R
X 0 AL
0 _ auf n dug Kk>1 (69)
uox, oy, =~

Substituting (68) into the constitutive relation

(66) gives the expansion of the stress 75

)=t ) per 4 (70)
where
Tér ) = Dijfyé}l)
0 0 0 0
Ty = D; <7§j) - 7§i))+73i (71)

Té:() = Dij 'Yg;) k>1

Inserting the asymptotic expansion for the stress
field (70) into the equilibrium equation (64) and
collecting the terms of like powers in ¢ gives the
following sequence of equilibrium equations

5 875”
O™): —/—=0 72
9y 9o
oY) : 3] 3j =0
() —ax,. 3, (73)
orl? o7
O(°): B f
() ox Ty, (74)
9 orled
O("): 43 _—0k>1 (75)

ox. ay. -

J J
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0(5‘2) Equilibrium: Solution Sructure of u?

We first consider the O(¢~*) equilibrium equation

(72) inY. Premultiplyingit by u{” , integrating over
Y, followed by integration by parts, yields

(-1

ory
fug»LdY = PP 7§ ndr -
Y 8yi Y
(0) (0)
f Ou, D, ou, dY =0 76
Y 8yj 8yl

where 0Y denotes the boundary of Y. The boundary
integral termin (76) vanishesdueto the periodicity of
the boundary conditionsin Y, because u{® and 75"

are identical on the opposite sides of the unit cell,
while the corresponding normals dj are in opposite
directions. Taking into account the positive definiteness

of the symmetric constitutive tensor D, [ we have
ouf” ©) _ 0
dy, =0=uy’ =uy ' (X) (77)
and
7P Y) =0, 750 (xy) = (78)

0(8'1) Equilibrium: First-Order Homogeni-

sation and Solution Structure of u

Next, we proceed to the O(e* ) eqilibrium equation

(73). From (69) and (71) and taking into account (78),
it followsthat

8T§Oj)
% =0 (79)
or
0 ©
8_y1( 7y (U5 ))_ [%‘3'( s )™ 73|] (80)

assuming that

=75 (X) (81)

Based on the form of theright-hand side of (80)
which permits aseparation of variables, u{® may be
expressed as

Vs =75 (X),75

U y) =x5' W1 W) -] (8

where x5’ (y) isaY-periodic function defined in the

unit cell Y. Substituting (82) into (80), and taking into
account the arbitrariness of the macroscopic strain

field, 7. (W”)— %) withinaunit cell, we have

0 9D,
gy (Dinsa 06" ()=~ (83)

i i

We can also write

=0, D)7 (@

3
In 8y|

O(EO) Equilibrium: Second-Order Homogeni-
sation

We now consider the O(c°) equilibrium equation
(74).

Solution Structure of u{?

Without loss of generality, assume of,/0f =0.
Differentiating equation (74) with respect to y, gives

827'3 Ly 827'§? of,

:—:0
ay,0x, oy 0y; 0y, (85)

From (69) and (71), and making use of (82)

i) _ 1 _
T3 = Dij%j = Dij

ou®  ou?
73 + 3
OX ay,
8u(2)

oy

(86)

Xs (y) (/}/XBn (U(O)) ’YBn (X)) +—

|l

j
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Making use of (84) and (86), we thus have 9
fo=—"1 +87[D” (’753 73)"’721']"’
(2) __ 1.3no (o) 0 i
ug” (X,y) =95 (y) o (7o (W) =73 (87) 5
+=—Dixs (Y)] (Vig)n Yon) (92)

from (85).

Solution of 1Y

Integrating (74) over theunit cell domain Yyields
9 ) 3]
6—XjfT3JdY+f—dY [ty (g9)

Taking into account the periodicity of Télj) ony,

the second term vani shes. Substituting (84) into (88)
yields

aixj{ﬁj. O WO) -3+l = (e

Thisis an equilibrium equation for a homogeneous
medium (cf. (64)) with constant material properties

D, , which are usually termed as the homogenised
or effective material properties and are given by

0,20,

where Y isthe area of the unit cell.

3n

dx
[5m + ] (90)

In the widely used first-order homogenisation,
displacements to order are solved; in alike manner

the equations to order O(¢™*) are considered.
Equation (89) results from constraints from higher-

order equilibriumandisused directly to solvefor u{® .
Hence no more constraints are required.

Solution of 1p3™ (y)
Withtheuseof (84), (86), (87) and (90), (74) becomes

9
oy

where

\113”0
p, 2"0)
oy,

]BXO (’yx3n 73n) + f =0 (91)

j

ay,

]
Constraints from Higher-Order Solutions

If the expansion istruncated to the second-order term
us? , its contribution to the O(e") order equilibrium
equation needs al so to be considered. The unwanted
higher-order term u{® in the equation can be
eliminated by integrating the complete O(¢") order
equilibrium equation over Y. We thus have

J { e wn, + W(y)”
Y ayl
8Xj (9XO ( ><3n( 30)) 73n> =0 (93)
or
3no (y)

f D,

O(eh) Equilibrium:
Homogenisation

Y = f D "(Y)AY (g4

Third-Order

Solution of u®

With the use of (69), (71) and (86), equation (75)
becomes

OX. ay;  0x

] J

ory o 5
Py U8

0 ou?
D. 3n ©) 1Oy __ 40 3
{ jl XS (y)axl (’Yxsn(us ) 73n)+ ayl }
o[ (o af]]
' Y {Dn\ + o, =0 (95)
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Assume D;; isnot explicitly dependent onx, u?
can a'so be separated into x- and y-dependent terms

2

0 (0) 0
(y)axp—axo(%sn - 73n) (96)

(3) __ 3nop
u3 - 3

(95) can berewritten into the following equations

0 D oul? _{G_p
ay, j ay, 0 (97)
where

-9

OX.
{Dll

]
0 ou?
W{ Y } (©8)

Constraints from Higher-Order Terms

3n 0 [ 0 auéz)
X y Z{VUxan — Van +
3 ( )3)(1( 3 3 ) ay,

For the same reason as in solving for u{?, we need
asotoconsider the O(¢*) order equilibrium equation.
Again, integration of the complete O(¢*) order

equilibriumequation over Y gives
)
9

|D

dy=0

®
3 9% [ (0), (0 0}, 0u
5P g a8+

l (99)

or
8¢3nop no
f Dy —— dY:‘f D45 (y)dY (100)
Y Y1 Y

Obvioudly, termshigher than thethird-order can
be solved in asimilar way. The controlling equations
for the pth order (p > 3) displacements are

0 ous”
_[D” ;
J

—fM_p
oy, 0 (101)

(o 9 {D-. our?  our ”
o oy,
0 { AuP? }
———10;— 102
ox | 1 ox (102)
with constraints from higher order terms
(p-D) ©)
f Dj| [0U3 i O0u, ]dY -0 (103)
Y 8X:I. 8yl

However, in the numerical implementation,
although it is only required to solve a second-order
equilibrium equation onthe RUC (cf. (91) and (97)),
itisactually limited by the requirement of the higher-

order derivatives of the solution u{” at the macro
scale (cf. (92) and (98)).

Solution of Equilibrium Equations from
Homogenisation

To solve the torsion or bending of compoasite shafts
by the homogeni sation method, wewill first solvefor
x5’ (y) from equation (83) assuming it to be a Y-
periodic functiondefined in Y. The effective material
properties 5jk are given by (90). We then solve the

homogeneous St Venant torsion or bending problem
(89) and obtain the macroscopic fields: warping

displacement u(®, strains 79, and stresses (given

by Dj ~Q). If the distribution of the microscopic
fields in the neighborhood of point x is of interest,
ul? (82) can then be obtained from x,* (y) and u{°.

u? can next be solved from (91) with constraints

(93) or (94); ul® can be solved from (97) with
constraints (99) or (100). Higher-order displacement
terms can be solved inasimilar way. Thestrains vs;

and stresses 7,; can be calculated from (69) and
(71), respectively. Equations(89), (91), (97) and (101)
arestandard second order partial differentia equations
in solid mechanics. They can be solved in asimilar
way. However, for a problem defined on the unit cell
Y the periodic boundary conditions and constraints
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from higher-order equilibrium should be enforced
appropriately.

As all the equilibrium equations can be solved
similarly, only equation (83) is discussed.
Corresponding to (83), thevirtua work principle states
that

x O ank 3k aDjk .
[ o W(Dj, o )Y + [ 6 5 dY =0

Y i 1 Y j

(104)

or

[ LAEHATY Y+ f 66X3 =D,dY =0
Y 8yi

where §y3 arearbitrary Y-periodic functions defined
intheunit cell Y.

It is easy to prove that (104) is the first order
variation of thefollowing potential functional

10y ax
L,06)=| = |-y
P [ 2 0y, b; oy,

O 105
+[ GXK D, dY (109

i

If we define the strain

~ 6X3k
k __ 3

Ya 8)’i (106)
and the stress

74 =D, 75 sothat 75 =C;75, (107)

which are Y-periodic functions in the unit cell, we
have a2-field Hellinger-Reissner functional

HHR(X§k7~§J) f[ 7-31 T;j
47 0 +D, 0 1dY
oy, ay.

i j

(108)

By relaxing the compatibility condition in the
potential (105) or by employing Legendre

transformation on the Hellinger-Reissner (108) one
arrives at the 3-field Hu-Washizu functiona

HW(X3 17;(1!%;1 f [_ 73| |J’731
8><3 1dY (109)

j

0 X3
oy,

7—f:‘n (73] ) + D

The general isoparametric compatible elements

are not satisfactory because of the gradients of 3

that appear in (90) in the evaluation of the
homogenised materia properties. The shapefunctions

in (12)-(17) can be adapted to interpolate \3* to

formulate an equivalent displacement-incompatible
element from the potential functional (105), or
enhanced-strain element from the Hu-Washizu
functional (109); adaption of the interpolation (13)-

(15) for 3 and (34) for 7 can formulate an

equivalent hybrid stress element from the Hellinger-
Reissner functional (108).

Strictly speaking, solution of the Y-periodic
functions on the RVE needs to satisfy the periodic
conditions on the boundary, including the primary
compatible displacement functions as well as the
incompati bl e di splacement/strain-enhanced termsfor
incompati bl e/strai n-enhanced elements and assumed
stresses for hybrid stress elements. The periodic
constraints on compatible displacements can be
imposed by a penalty function approach (Karihal oo
et al. 2001; Xiao and Karihaloo, 2009), which can
also be used to enforce the constraints from higher
order terms; imposition of such constraints on
incompatible displacements, enhanced-strains or
stressesisdifficult. However, numerical results (Feng
and Wu, 2001; Karihaloo et al. 2001; Sun et al. 2001)
show that neglecting the periodic constraints on these
element interna fiel dsdoesnot deterioratethe solution.

Numerical Results

The performance of theincompatible/strain-enhanced
element isalmost identical to thehybrid stresselement,
we therefore only give the results from one of them
inthefollowing examples.

Torsion of Compound Square Shaft

Torsion of the compound sguare shaft of unit side
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length composed of two equa in homogeneousregions
showninFig. 4 with unit angle of twist per unit length
is analysed. Asin Ely and Zienkiewicz (1960) and
Jog and Mokashi (2014), G, isfixedat 1withE, =
2.5and v,=0.25, threedifferent values of GzlGl =1,
2and 3 (v, =V,) areconsidered. The cross-section is
discretised into 88 four-node elements fol lowing Jog
and Mokashi (2014); for the case G,/G, = 3 afine
discretisation of 40x40 is also used. The torsional
rigidities obtained by the hybrid stress element are
compared against the analytical solution of
Muskhelishvilli (1953), therdlaxation finitedifference
method of Ely and Zienkiewicz (1960), and the 4-
node element solution of Jog and Mokashi (2014) in
Table 1. For a homogeneous shaft, the solution of
Muskhelishvilli (1953) isidentical to Timoshenko and
Goodier (1969), as expected. The results from the
hybrid stress element are the most accurate. The x-
coordinate of the centroid and effective shear modulus
are given in Table 2. The warping at A (0.5, -0.25)
and D (0.5, —0.25) relative to the centroid, and shear
stresses at B (-0.5, 0) and C (0.5, 0) (Fig. 4) from the
hybrid stress element are given in Table 3. For a
homogeneous shaft, G, = G,, the warping and shear
stresses agree reasonably well with the analytical
solutions ¢, = -, =0.0347, 7, = oy, = 0.6753
given by Timoshenko and Goodier (1969) despitethe
coarse mesh adopted. For the case GZIGl = 3, the
results from the coarse mesh agree well with those
from the fine mesh.

AV

67! (7

Fig. 4: Square cross-section of unit side length composed of
two equal inhomogeneous regions

Table 1: Torsional rigidity for compound sguar e shaft

G,/G, Muskheli- Ely and Jogand  Present hybrid
shvilli Zienkiewicz Mokashi eement
(1953) (1960) (2014)
0.1406 0.1388 0.1425 0.1398
0.1970 0.1941 0.1997 0.1957
0.2394 0.2358 0.2430 0.2377(0.2396")

*“From refined discretisation 40x40

Table 2: x-coordinate of centroid and effective shear
modulus

G,/G Discretisation X G

1 C eff
8x8 0 1
8x8 1.3479
8x8 -0.125 1.5647
40x 40 -0.125 1.5628

Table 3: Warping and shear stressesfor torsion of compound
square shaft

G,/G, Discretisation ¢ at A TyzatB paD TyzatC

1 8x8 0.03532 -0.6691 -0.03532 0.6691
2 8x8 0.04044 -1.2023 -0.03020 0.7370
3 8x8 0.04300 -1.7016 -0.02764 0.7709

40x 40 0.04224 -1.7102 -0.02728 0.7801

Bending of Compound Square Shaft

We now consider torsion-less bending of the above
compound square shaft. The shear stresses given by
the hybrid stress element at the centre are given in
Table 4. Jump in the tangential stressesis noticed at
the interface between different materials, and
increases with the ratio G,/G,. For a homogeneous
shaft, G,= G,,theanaytical solutionist,, =1.4104
forQ,=1and Qy =0,and =1.4104for Q,=0and Qy
=1 (Timoshenko and Goodier, 1969); the solution of
the hybrid stress element agrees favourably with the
analytical solution despite the coarse mesh adopted.
In order to verify the accuracy of the hybrid stress
element for inhomogeneous shafts, we analyse a
cantilever of length 10 under transverse loading at
the free end. The cantilever is divided into 16 x 16
(section) x 40 (Iength) 20-noded hexahedral elements.
Theresults at themiddle section arealso included in
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X2

80

80

(A)

Y2

20
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®

Fig. 5. Geometry of a composite shaft of square profile (A) and RUC (B)

Table 4, agreeing reasonably with the hybrid stress
element with the fine discretisation.

Torsion of a Square Composite Shaft

The example for the torsion of a composite shaft
analysed by Karihaloo et al. (2001) is adopted to
illustrate thefirst order homogenisation method. The
composite shaft has a sguare cross-section (length of
side=80), asshownin Fig. 5(A); the microstructure
of the cross-sectionislocally periodic with aperiod
defined by aRUC shown in Fig. 5(B), i.e. it consists
of anisotropic circular fibre of diameter 10 embedded
in an isotropic square matrix with side 20. Assume
that the scaling factor € = 0.25. The problemis solved
intwo stages. First, we solvethe RUC shownin Fig.
5(B) by using the incompatible/strain-enhanced

Table 4: Shear stresses at centre of compound squar e shaft
under bending

G,/G, Discretisation Q=1 Qy =1
left right left right
8x8 13760 13760 13760 1.3760
8x8 13981 13024 1.8553 0.9277
8x8 13916 1.2297 21163 0.7054
40x 40 13289 12912 21658 0.7219
1616 x 40 13077 13038 23265 0.7755

20-noded hexahedral element

element to obtain the field ¢ and its derivatives

0

ay. X3 and cal cul ate the homogeni sed moduli from

]

(90). Second, we solvethetorsion of the square shaft
shown in Fig. 5(A) with the obtained homogenised
moduli by using the hybrid stress element. Only a
quarter of the cross-section, the shaded part shown
inFig. 5(A), isdicretised because of symmetry. The
warping displacements are fixed on the axes of
symmetry. In this way, we calculate the warping
displacement, torsional rigidity and theangle of twist
per unit length, as well as the shear stresses and
strains. With the results so obtai ned, we can calcul ate
the first order warping displacement from (82) and
the local strain and stress fields from (69) and (71),
respectively.

The shaded quarter in Fig. 5(A) is discretised
into 400 quadrilateral elements and 441 nodes, as
shown in Fig. 6(A). The RUC shownin Fig. 5(B) is
discretised into 896 quadrilateral elements and 929
nodes, as shownin Fig. 6(B).

The fibre and the matrix are considered to be
isotropic with the shear moduli, G,=10and G, =1,
respectively. The computed homogeni sed shear moduli
are

C, C,| [138271 —0.00138
gm C,|~| Ym  1.38467
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Thus the macroscopic behaviour of the
composite shaft isalsoisotropic.

The isotropic shaft of square cross-section
showninFig. 5(A) isnow analysed with the obtained
homogenised shear moduli. One unit of torque is
applied on the quarter section with its units being
consistent with those of the shear moduli. The
computed result for thetorsional rigidity 4 x 1.9927 x
10% is very close to the accurate value 7.9856 x 106
obtained from the formula 0.1406G(2b)2 where the
shear modulus G = 1.38271, and thelength of side of
the square cross-section 2b = 80 in the present
example. The distribution of warping displacement,
and of normal and tangential shear stresses, which
aregiven by

Th =T, COSO+ 7, SN0
T, =—T,Sin0+ 7, cosf

(A)

®)

Fig. 6: Discretised meshes used in the computation: (A)
Mesh of a quarter of the cross-section shown in Fig.
5(A); (B) Mesh of the RUC shown in Fig. 5(B)

T, x10%

whereb isthe anglefromthe axisy, asshowninFig.
5(B), along the interface between the fibre and the
matrix adjacent to the point with global co-ordinates
(x, =30, x,=30) areplotted in Fig. 7. Filled triangles
represent computed data. In Fig. 7(B) and (C), data
linked by broken lines represent the results obtained
from the matrix side (a line segment represents the
distribution of stresswithin anelement), the continuous
solid linerepresentsthe polynomial fit of the computed
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Fig. 7: Distribution of warping displacement (A), normal
shear stress, (B) and tangential shear stress and (C)
along the interface from the homogenisation method
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results obtained from the fibre side of the interface
sincethey are not satisfactorily smooth. From Fig. 7,
the tangential shear stress 7, has a significant
discontinuity acrosstheinterface, while other fields
are continuous adjacent to the interface.

Conclusions and Discussion

Formulation of the St Venant torsion of prismatic
composite shafts with properties uniform along the
length and piece-wise constant orthotropic acrossthe
cross-sectionisgiven intermsof thewarping function.
The principal axes of al constituents of the cross-
section areassumed to be parallel . High-performance
incompatible, strain-enhanced and hybrid stress
elements for solving the warping function are
discussed. In particular, a hybrid stress element
devel oped earlier hasbeenimproved to avoid the need
of a special node numbering pattern for square
elements.

Formulation of the St venant bending (or
shearing) of Gruttmann et al. (1999) and Gruttmann
and Wagner (2001) for prismatic homogeneous
isotropic shaftsin terms of the warping function has
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