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Introduction

St Venant torsion and bending of prismatic shafts are
fundamental problems in the theory of elasticity and
of wide interest in engineering design, see e.g. Pilkey
(2002). It is also an essential ingredient in the
development of advanced (Timoshenko) beam theory
with shear correction (Gruttmann and Wagner, 2001)
and/or torsional warping (Battini and Pacoste, 2002;
Gruttmann et al, 2000; Simo and Vu-Quoc, 1991).

Many useful analytical solutions for torsion and
bending of isotropic homogeneous shafts have been
presented in books on theory of elasticity, e.g.
Timoshenko and Goodier (1969). Karihaloo and Hemp
(1987) and Pilkey (2002) have discussed optimization
of cross-sectional shapes of shafts. Most recently,
Romano et al. (2012) revisited the St Venant beam
theory under shear and torsion with special attention
to the notions of shear and twist centres; they used
Matlab to solve the boundary value problems for simple
regions.

Development of finite element approaches for
the analysis of St Venant torsion began almost at the
same time as the finite element method itself. A

detailed discussion of the various approaches can be
found in Desai (1979). Many early finite elements
are based on stresses or stress functions and are
limited to simply connected cross-sections. Xiao et
al. (1999) have introduced an optimised hybrid stress
element; Karihaloo et al. (2001) have developed
displacement-incompatible and enhanced-strain
elements. These high-performance elements are
applicable for simply as well as multiply connected
cross-sections.

Since the pioneering work of Mason and
Herrmann (1968) on the development of a triangular
displacement element from the principle of minimum
potential energy, many studies have been carried out
on the finite element analysis of St Venant bending.
Gruttmann et al. (1999) and Gruttmann and Wagner
(2001) formulated St Venant bending in terms of the
bending warping function, which can be solved in a
similar manner to the torsional warping function. They
introduced a displacement compatible element to solve
for bending warping, and a method for computing the
shear correction factors for Timoshenko beams with
arbitrary cross-sections assuming uncoupling of the
strain energy for bending and torsion, and equivalence
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of the strain energy from the average and equilibrium
shear stresses. Jog and Mokashi (2014) studied
bending of isotropic homogeneous bars with special
attention to the torsion effect caused by the shearing
forces that do not pass through the shear centre.

Lekhnitskii (1963) has explored torsion and
bending of orthotropic homogeneous beams with
simply connected cross-sections, making recourse to
stress functions. Kosmatka and Dong (1991) studied
prismatic anisotropic beams using the Ritz method
based on the principle of minimum potential energy.

Kourtis et al. (2009) formulated compatible
elements based on a combined warping function for
torsion and transverse shearing of isotropic or
transversely isotropic materials. They assumed that
the elastic and shear moduli are spatial functions
across the cross-section and considered the effects
of their gradients; Poisson’s ratio was assumed to be
constant. With the use of Matlab to solve the boundary
value problems for simple regions, Barretta (2013)
studied orthotropic St Venant beams with a spatially
constant Poisson tensor and fibre-wise homogeneous
moduli of elasticity and shear with special attention
on shear and twist centres. Jog and Mokashi (2014)
studied torsion of prismatic compound anisotropic bars
using 4- and 9-node compatible elements. Mokos and
Sapountzakis (2005) also studied bending of composite
beams with constant Poisson’s ratio and piece-wise
constant moduli of elasticity and shear by a boundary
element method.

For composite shafts whose microstructural
details are difficult to model directly using the finite
element discretisation, Karihaloo et al. (2001)
introduced the two-level asymptotic (or mathematical)
homogenisation approach for periodic microstructures
to the analysis of torsion. Yuan et al. (2003) used
two-level homogenisation to the topology optimisation
of cross-section for composite shafts under St Venant
torsion.

This paper will discuss the solution of St Venant
torsion and bending of prismatic composite shafts via
high-performance finite elements or two-scale
homogenisation. For St Venant bending, the violation
of the assumption of zero in-plane shear strain xy
over the cross-section by Gruttmann et al. (1999)
and Gruttmann and Wagner (2001) as well as Kourtis
et al. (2009) will be resolved; for two-scale

homogenisation, the first order formulation of
Karihaloo et al. (2001) will be generalised to higher
order following Xiao and Karihaloo (2009).

This paper is organised as follows: we will first
discuss the formulation of St Venant torsion of
prismatic composite shafts in terms of the warping
function and high-performance incompatible, strain-
enhanced and hybrid stress elements for solving the
warping function. This will be followed by the
formulation of St Venant bending in terms of the
warping function, highlighting its similarity to torsion.
We will next discuss the two-scale homogenisation
and finite elements for solving the resulting equilibrium
equations; followed by numerical examples and finally
conclusions and discussion.

St Venant Torsion of Prismatic Composite Shaft

Take the origin at the centroid of one end section, z-
axis along the axis of the shaft, x and y axes coincide
with the principal axes of the section and form a right
hand system with z. Orthotropic materials are
considered. The principal directions of orthotropy
coincide with the coordinate axes. The material
properties are uniform along the length, but can be
piece-wise constant across the cross-section. The
initial stresses and strains will be ignored in the
derivation of St Venant solutions, but added in the
development of high-performance elements.

Under the assumption that x = y = z = xy = 0,
the displacements corresponding to unit angle of twist
per unit length are

u = – yz (1)

v = xz

w = (x, y)

where(x, y) is the warping function. The non-
vanishing strains are

xz = ,x – y

yz = ,y + x (2)

where a comma denotes partial differentiation. The
non-vanishing stresses are

0 0( )xz xz xz xz xzG     
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0 0( )yz yz yz yz yzG      (3)

where Gxz and Gyz are shear moduli; 0
xz  and 0

yz  are

initial strains including thermal strains; 0
xz  and 0

yz

are initial stresses.

The equilibrium equation is

, , 0xz x yz y   , in AA (4)

and boundary condition is

0xz x yz yn n   , on A (5)

where (nx, ny) is the unit outward normal to A, with
A the cross-section domain.

Denote the shear stress vectors

0
0

0,xz xz

yz yz

 
 

                     
  (6)

and shear strain vectors

0
, 1 0

0
, 2

( , )
,

( , )
xxz xz

yz y yz

f x y

f x y

 
  

                                    
  (7)

where f1(x, y) = y and f2(x, y) = x, and modulus and
compliance matrices

0 1/ 0
,

0 0 1/
xz xz

yz yz

G G

G G

   
       
   

D C (8)

the potential functional whose stationary condition
gives (4) and (5) can be written as

2 0 01Π ( ) ( )
2

T
p A

dA        D D     (9)

The Hellinger-Reissner functional whose
stationary condition gives (2)-(5) can be written as

0 01
( , ) ( )

2
T T

HR
A

dA
 
      
  
 C C      

(10)

By relaxing the compatibility condition (2) in the Fig. 1: A plane four-noded quadrilateral element

potential functional (9), or employing Legendre
transformation on the Hellinger-Reissner functional
(10), one arrives at the 3-field Hu-Washizu functional

, 1 0 0

, 2

( , , )

1
( )

2

HW

xT T T

A
y

f
dA

f






 

                     
 D D

 

      

                                                                      (11)

4-node Incompatible/Strain-enhanced Element

For the 4-node element shown in Fig. 1, the warping
function is divided into a compatible part q and an
incompatible part:

q     (12)

q is interpolated from nodal values

 1 2 3 4, . ,
   q  using the bilinear shape functions

iN as

q  Nq (13)

where

 1 2 3 4N N N N N (14)

and

  1
1 1

4i i iN       (15)
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 ,   represent the element isoparametric

coordinates,  ,i i   are the isoparametric coordinates

of point i with the global coordinates

 , , 1,2,3,4,i ix y i   is related to the element inner

parameters   via the shape functions N

= N (16)

Here, two incompatible terms are employed in
each element as derived in Karihaloo et al. (2001)
and Pian and Wu (2006)

 1 2

2 2
1 2

1 2

0 0

,

2

3

N N

N N

J J

J J

  

  

 



   

      

N

(17)

where J0, J1 and J2 are related to the element
Jacobian as follows

0 1 2 1 2 3 1( )J J J J a b a b     

1 2 2 1 2 3 3 2( ) ( )a b a b a b a b     (18)

The coefficients  and  (i = 1, 2, 3) are dependent
on the element nodal co-ordinates (xi, yi) (i = 1, 2, 3,
4) as follows:

1 1
1 1

2 2
2 2

3 3
3 3

4 4

1 1 1 11
1 1 1 1

4 1 1 1 1

x ya b x ya b x ya b x y

 
  
  (19)

With the above assumed warping function (12)
together with (13) and (16), we have the shear strains
from (7)

   1
2

[ ]
xz

yz

fx
f

y






                             

 qN N 

   1
2

[ ] f
f
 B B q

 (20)

Substituting (20) into (9) and making use of the
stationary condition, yields

K q f (21)

where the element stiffness matrix and nodal vector
are

1 1,T
qq q q q q     

    K K K K K K K f f f

(22)

in which

 
T

qq q
T T
q

A

dA


  

   
   
     


K K B D B B
K K B

    0 01

2

T
q

T

A

f f dAff 

                
 B D

B
  (23)

The element inner parameters  are recovered
as follows

1 1T
q      K K Kq f (24)

Alternatively, we can substitute the compatible
bilinear interpolation of warping function in (13) and
the shear strains (20) (the shear strains compatible
with warping (13) are enhanced with B) into the
Hu-Washizu potential (11), an equivalent strain-
enhanced element can be obtained.

4-node Hybrid Stress Element

In optimisation of the element trial stresses, the
constant stresses are generally isolated to remain
unperturbed to ensure the element is able to pass patch
tests, see e.g., Pian and Wu (2005). Since St Venant
torsion cannot have a constant shear stress field, in
the development of the 4-node hybrid stress element,
Xiao et al. (1999) did not isolate the constant shear
stresses in optimisation of the element trial stresses
and obtained the following optimised trial stresses

 
1

1 3 1 2 1 2 1 3 2

32 3 1 3 2 3 1 3

4

xz

yz

a b a b a a a a
b b a b a b b b


     
    



                  
(25)

with 4 stress parameters 1, 2, 3 and 4. The trial
stresses (25) satisfy the optimal parameter matching
condition, and the resulting element performs as good
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as the well-known Pian-Sumihara element for plane
stress/strain problems (Pian and Sumihara, 1984).

However, the element with trial stresses (25)
will fail for a square element with nodes numbered as
in Fig. 2(a), which has nodal coordinates

x1 = x2 = –a, x3 = x4 = a, = y1 = y4 = a

and y2 = y3 = –a (26)

giving

a1 = a2 = 0, a3 = a and b1 = –a, b2 = b3 = 0 (27)

with the use of (19). The trial stresses (25) become

 
1

2

3

4

0 0 0
0 0 0

xz

yz

a
a


 
  



                
(28)

and the resulting H matrix (its definition is given in
(37) below) will not be invertible. This problem can
be resolved by renumbering the nodes into the pattern
shown in Fig. 2(b), which gives

x1 = x4 = –a, x2 = x3 = a, = y2 = –a y4 = a

and y3 = y4 = a (29)

and

a1 = a, a2 = a3 = 0, b1 = b2 = 0, b3 = a (30)

The trial stresses (25) become

 
1

2
2

2
3

4

0 0
0 0

xz

yz

a a
a a


 
 



                 
(31)

and the resulting H matrix will be invertible.

Alternatively, the constant shear stresses can
be isolated from the stress optimisation procedure,
and the initial assumed stresses of Xiao et al. (1999)
can now be divided into constant and higher order
parts as

  1

6

1 0 0 0
0 1 0 0

xz

yz

  
  

             





  | I
c I II

II
     

     531

2 64
, , ,c I II


     

0 0, 00I II
 


       

  
  (32)

Enforcement of the stress optimisation condition

on the higher order stresses ( )I I II II    in (32)

following Xiao et al. (1999) (or Pian and Wu (2005))
results in

3

3

1

1

0

0
II I

a

b
b

a

 
 
 
  
 
 
  

 
(33)

Substitution of (33) into (32) gives the final
optimised trial stresses

 
1

1 3 2

31 3

4

1 0 ,0 1
xz

yz

a a
b b


   
  



                 
or   (34)

(A)

(B)

Fig. 2: Two typical node numbering patterns for a 4-node
square element with side length 2a
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Substitution of the warping function (13) into
(7) gives the shear strain vector

   1 ,

,

y y
x x





        
  

J B N
q qN (35)

Substitution of (34) and (35) into (10) gives

1 ˆ( ) ( )
2

T T
   Gq H q f   , (36)

where

  0 0

2

T

A
T

A

T

A

dA

dA

dAf




      





H C

G

C


 






  1ff

(37)

Vanishing of the first order variation of HR  (36) gives

ˆ 0, 0T    H G G q f (38)

The stress parameters can be computed from the first
equation of (38)

1 1 ˆ  H G H q f (39)

Substitution of (39) into the second equation of (38)
gives

1 1 ˆTG H G G H Tq = - f (40)

or the stiffness matrix

T -1K = G H G (41)

and nodal load vector

1 ˆT = G Hf f (42)

of the element.

Numerical tests confirm that the element
resulting from (34) performs as good as the original
element using trial stresses (25), but does not require
renumbering the nodes for the special pattern shown
in Fig. 2(a).

St Venant Torsionless Bending of Prismatic
Composite Shaft

Under the assumption that the normal strain z is linear

with respect to x, y and z, according to the elementary
beam theory, and stresses x, y and xy are neglected

1 2 1 2
ˆ ˆˆ ˆ( ) ( )

0
z

x y xy

a a z x b b z y
  
   
   (43)

where
1 2 1̂ˆ ˆ, ,a a b and

2̂b are constants, the non-vanishing

strains are related to the stresses as

1

1

1

zx
x z

z

zy
y z

z

zx
x z

z

z z
z

yz yz
yz

xz xz
xz

v

E
v

E
v

E

E

G

G

 

 

 

 

 

 













(44)

The displacements

2
1 2 1 2

1 ˆ ˆˆ( ) ( ) )
2zxu v a a z x b b z xy
 
    
  

1( , )g y z

2
1 2 1 2

1 ˆ ˆˆ ˆ( ) ( ) )
2zyv v a a z xy b b z y

 
    
  

2 ( , )g x z

2
1 2 2

1ˆ ˆ ˆ
2

w a a z a z x
      

2
0 1 2

1ˆ ˆ ˆ ( , )
2

b b z b z y x y
       (45)
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where 0â  and
0̂b are constants;  (x,y) is the warping

function due to bending, and

2
1 1 2 1

2
2 1 2 2

1 ˆ ˆ( , ) ( ) ( )
2
1 ˆ ˆ( , ) ( ) ( )
2

zy

zx

g y z v a a z y h z

g x z v b b z x h z

  

   (46)

and functions h1(z) and h1(z) satisfy

2
1, 0 1 2

2
2, 0 1 2

1ˆ ˆ ˆ
2
1ˆ ˆ
2

z

z

h a a z a z

h b b z b z

  

   (47)

The non-vanishing shear strains are

, 1

, 2

( , )
( , )

xz x

yz y

f x y
f x y

 
 
 
  ` (48)

where

2 2
1 2 2 2

2 2
2 2 2 2

1 1ˆˆ ˆ( , )
2 2

1 1ˆ ˆˆ( , )
2 2

zx zy

zy zx

f x y v a x b xy v a y

f x y v a xy b y v b x

     
     

(49)

The shear stresses are related to the shear strains
(48) in the same manner as (3) after adding the initial
stresses and strains into (44) and satisfying the
equilibrium equation

, , , 2 2 0
ˆˆ( ) ( , ),xz x yz y z z zE a x b y f x y        in

A (50)

and boundary condition for stress free cylindrical
surface (5).

Constants 2â and
2̂b must be known before

solving for the warping function due to bending; they
can be computed from the shear forces Qx and Qy as
follows.

2 2

2 2

ˆ ,
. ( )

ˆ
. ( )

xx x xy y

yy xx xy

yy y xy x

yy xx xy

EI Q EI Q
a

EI EI EI
EI Q EI Q

b
EI EI EI










(51)

where

2 2, ,xx z yy z xy
A

A

z

A

EI E y dA EI E x dA EI

E xydA

 



 
 (52)

A comparison with the formulation of St Venant
torsion discussed above shows that the present
formulation for St Venant bending appears identical

to torsion except that a body force 0 ( , )f x y  now

appears. The 4-node quadrilateral incompatible/strain-
enhanced and hybrid stress elements for torsion can
thus be readily used for the analysis of St Venant
bending.

The potential functional whose stationary
condition gives (50) and (5) now becomes

0 0
0

( )
1

( )
2

p

T T

A
f dA





 
 
    
  

 D D    (53)

The Hellinger-Reissner functional whose stationary
condition gives (48) together with (3), (50) and
boundary condition (5) becomes

0 0
0

( , )
1

( )
2

HR

T

A
f dA





 
 
     
  

 C C



      (54)

By relaxing the compatibility condition (48) in the
potential functional (53), or employing Lengendre
transformation on the Hellinger-Reissner functional
(54), one arrives at the Hu-Washizu functional

, 1

, 2

( , , )
1 ( , )

( , )2

Hw

T x

A y

f x y
f x y







 
               

 D

 

   

0 0
0( ) ]TD f dA       (55)

Incompatible/Strain-enhanced Element

Substitution of (12) together with (13) and (16) into
(48) gives the shear strains (20). Substitution of (20)
into (53)  yields (21)-(24) with the only difference
that
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  T
q

T

A

f
f 

 
 
  

 B
B

  0 01
0

2

T

T

A

f dA f dAfD  


                      
 N

N (56)

in place of (23).

Hybrid Stress Element

Substitution of the warping and shear stress
interpolations (13) and (34) into (54) yields

1
( , )

2
ˆ ˆ( )

T
HR

T T

H

G

  



 

  

q

q f f q
(57)

where H, G and f̂  are the same as (37), but

0
ˆ

A

= f dA
T

f N (58)

Vanishing of the first order variation of HR
(57) gives

ˆ 0
ˆ 0T T

H G
G



   

 
q f

f (59)

From the first equation of (59) we can obtain the stress
parameters in the same manner as (39), substitution
of them into the second equation of (59) gives

1 1 ˆ ˆT T  G H G G Hq f f (60)

The stiffness matrix is the same as (41), but the nodal
load vector now becomes

1 ˆ ˆTG H f f f (61)

Two-scale Asymptotic Homogenisation

Assume the microstructure of the cross-section A

occupied by the composite material to be locally
periodic with a period defined by a statistically
homogeneous volume element, denoted by the
representative unit cell (RUC) or volume element
(RVE) with size Y, as shown in Fig. 3. In other words,
the composite material is formed by a spatial repetition

of the RUC. The problem has two length scales; a
global length scale D that is of the order of the size of
section A, and a local length scale d that is of the
order of the RUC and proportional to the wavelength
of the variation of the micro-structure. The size of
the RUC is much larger than that of the constituents
but much smaller than that of the section. The relation
between the global coordinate systemxi for the section
and the local system yi for the minimum RUC can
then be written as

1,2i
i

x
y i


  (62)

where  is a very small positive number representing
the scaling factor between the two length scales. The
local coordinate vector yi is regarded as a stretched
coordinate vector in the microscopic domain.

For an actual composite shaft subjected to
external forces, field quantities such as warping
function, shear strains and stresses are assumed to
have slow variations from point to point with
macroscopic (global) coordinate x as well as fast
variations with local microscopic coordinate y within
a small neighbourhood of size  of a given point x

3 3

3 3

3 3

( , ) ( , )
( , )
( , )

j j

j j

u u x y x y
x y
x y

  

 

 


 
 

 



(63)

Fig. 3: Illustration of a problem with two length scales
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where j = 1,2. The superscript  denotes Y-periodicity
of the corresponding function.

The unknown displacement 3u , the non-zero

strain 3 j
  and stress 3 j

  can be solved from the

following equations

Equilibrium:

3
0

j

j

f
x




   in A (64)

where 0f  = 0 for torsion; it is defined as in (50) for

bending.

Kinematical:

3
1

31 1

32 3
2

2

( , )

( , )

u
f x y

x
u

f x y
x





 



                            

  in A (65)

Constitutive:

 0 0
3 3 3 3i ij j j jD           in A (66)

together with the traction free condition on the surface
of the shaft, and the traction and displacement
conditions at the interfaces between the micro-

constituents. The material property tensor ijD  is

symmetric with respect to indices (i, j). The
convention of summation over the repeated indices is
used.

The displacement 3 ( , )u x y  is expanded in

powers of the small number e as

(0) (1)
3 3 3

2 (2) 3 (3)
3 3

( , ) ( , ) ( , )
( , ) ( , )....

u x y u x y u x y
u x y u x y

 
 

 
  (67)

where (0) (1) (2)
3 3 3, , ,...,u u u  are Y-periodic functions with

respect to y. Substituting (67) into (65) gives the

expansion of the strain 3 j
 :

1 ( 1) (0) ( 1)
3 3 3 3( , ) ....j j j jx y          (68)

where

(0)
( 1) 3
3

(0)
(0) (0) (0) (0) 3
3 3 3 3 1

1

, .

j
j

j x j y j x j

u

y
u

f
x



   

 




   



(0) (1)
(0) (0)3 3
32 2 3

1
( ) ( 1)

( ) 3 3
3

,

, 1

x y j
j

k k
k
j

j j

u u
f

x y
u u

k
x y

 




 
  
 
 

  
 

(69)

Substituting (68) into the constitutive relation

(66) gives the expansion of the stress 3 j


1 ( 1) (0) (1)
3 3 3 3( , ) ...j j j jx y         (70)

where

 
( 1) ( 1)
3 3
(0) (0) (0) 0
3 3 3 3
( ) ( )
3 3 , 1

i ij j

i ij j j j
k k
i ij j

D
D
D k

 
   
 

 
  
 

(71)

Inserting the asymptotic expansion for the stress
field (70) into the equilibrium equation (64) and
collecting the terms of like powers in  gives the
following sequence of equilibrium equations

( 1)
32( ) : 0j

j

O
y





 


 (72)

( 1) (0)
3 31( ) : 0j j

j j

O
x y

 



  

 
  (73)

(0) (1)
3 30

0( ) : j j

j j

O f
x y

 


 
 

  (74)

( ) ( 1)
3 3( ) : 0, 1

k k
j jk

j j

O k
x y

 


 
  

  (75)
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 2O  Equilibrium: Solution Structure of (0)
3u

We first consider the 2O( )  equilibrium equation

(72) in Y. Pre-multiplying it by (0)
3u , integrating over

Y, followed by integration by parts, yields

( 1)
3(0) (0) ( 1)

3 3 3
j

j j
jY Y

u dY u n d
y










 

 

(0) (0)
3 3 0ji

j iY

u u
D dY

y y

 


  (76)

where Y denotes the boundary of Y. The boundary
integral term in (76) vanishes due to the periodicity of

the boundary conditions in Y, because (0)
3u and ( 1)

3 j


are identical on the opposite sides of the unit cell,
while the corresponding normals dj are in opposite
directions. Taking into account the positive definiteness
of the symmetric constitutive tensor Dij , we have

(0)
(0) (0)3
3 30 ( )

j

u
u u x

y


  

 (77)

and

( 1) ( 1)
3 3( , ) 0, ( , ) 0j jx y x y    (78)

 -1O  Equilibrium: First-Order Homogeni-

sation and Solution Structure of (1)
3u

Next, we proceed to the  01O   equilibrium equation

(73). From (69) and (71) and taking into account (78),
it follows that

(0)
3 0j

jy




 (79)

or

 (0) (1) (0) (0) 0
3 3 3 3 3( ) ( )ji

ji y i x i i
j j

D
D u u

y y
  

       (80)

assuming that

0 0 0 0
3 3 3 3( ), ( )i i i ix x     (81)

Based on the form of the right-hand side of (80)

which permits a separation of variables, (1)
3u  may be

expressed as

(1) 3 (0) (0) (0)
3 3 3 3 3( , ) ( ) ( )j

x j ju x y v u       (82)

where  3
3

j y  is a Y-periodic function defined in the

unit cell Y. Substituting (82) into (80), and taking into
account the arbitrariness of the macroscopic strain

field,  (0) 0
3 3 3x j ju   within a unit cell, we have

 (0) 3
3 3( ( )) jkk

ji y i
j j

D
D y

y y
 




  (83)

We can also write

 
3

(0) (0) 0 03
3 ln 3 3 3

n

j jl x n n j
l

D
y


    

           (84)

 0O  Equilibrium: Second-Order Homogeni-

sation

We now consider the 0( )O   equilibrium equation
(74).

Solution Structure of (2)
3u

Without loss of generality, assume 0 / 0if f   .

Differentiating equation (74) with respect to yi gives

2 (0) 2 (1)
3 3 0 0j j

i j i j i

f

y x y y y

   
  

     (85)

From (69) and (71), and making use of (82)

(1) (2)
( ) (1) 3 3
3 3

(2)
3 (0) (0) 0 3
3 3 3 3( ) ( ( ) ( ))

i
i ij j ij

j j

n
ij x n n

j j

u u
D D

x y

u
D u

x y
y x

 

  

           
        

(86)
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Making use of (84) and (86), we thus have

(2) 3 (0) (0) 0
3 3 3 3 3( , ) ( ) ( ( ) ( )no

x n n
o

u u
x

  


 


x y y x (87)

from (85).

Solution of 0
3u

Integrating (74) over the unit cell domain Y yields

(1)
3(0)

3 0
j

j
Y Y Y

j j

dY dY f dY
x y





 

    (88)

Taking into account the periodicity of (1)
3 j  on Y,,

the second term vanishes. Substituting (84) into (88)
yields

  (0) (0) 0 0
3 3 3 3 0jl x l l j

j

D u f
x

  
       (89)

This is an equilibrium equation for a homogeneous
medium (cf. (64)) with constant material properties

jlD , which are usually termed as the homogenised

or effective material properties and are given by

3
31

,
n

jn jn jn jl ln
Y

l

D D dY D D
Y y



            

(90)

where Y is the area of the unit cell.

In the widely used first-order homogenisation,
displacements to order  are solved; in a like manner

the equations to order 1( )O   are considered.

Equation (89) results from constraints from higher-

order equilibrium and is used directly to solve for (0)
3u .

Hence no more constraints are required.

Solution of 3
3

no (y)

With the use of (84), (86), (87) and (90), (74) becomes

 
3

(0) 03
3 3 0

( ) ˆ 0
no

jl x n n
j 1 o

D f
y y x

 
          

y
(91)

where

 (0) 0 0
0 0 3 3 3jl x l l j

j

f f D
x

  
        

 3 (0) 0
3 3 3( )n

jl x n n
j i

D y
y x

  
       (92)

Constraints from Higher-Order Solutions

If the expansion is truncated to the second-order term
(2)
3u , its contribution to the 1( )O   order equilibrium

equation needs also to be considered. The unwanted

higher-order term (3)
3u  in the equation can be

eliminated by integrating the complete 1( )O   order

equilibrium equation over Y. We thus have

3
3 3
3

1

( )
( ) .

no
n

jl lo

Y

y
D dY

y


 

           
 y

 
2

(0) (0) 0
3 3 3( ) 0x n n

j o

u
x x

 


 
  (93)

or

3
33
3

1

( )
( )

no
n

jl jo

Y Y

D dY D dY
y







 
y

y (94)

1( )O   Equilibrium: Third-Order
Homogenisation

Solution of (3)
3u

With the use of (69), (71) and (86), equation (75)
becomes

(1) (2)
3 3j j

j j jx y x

   
 

  

   
(2)

3 (0) (0) 0 3
3 3 3 3

1 1

( )n
jl x n n

u
D u

x y
  

             
y

(2) (3)
3 3

1 1

0jl
j

u u
D

y x y

                 
(95)



194 Bhushan Lal Karihaloo and Qi-Zhi Xiao

Assume Dij is not explicitly dependent on x, (3)
ku

can also be separated into x- and y-dependent terms

   
2

(3) 3 (0) 0
3 3 3 3

nop
x n n

p o

u y
x x

  


 
  (96)

(95) can be rewritten into the following equations

(3)
(3)3

0
1

0jl
j

u
D f

y y

          (97)

where

(3)
0

j

f
x




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Constraints from Higher-Order Terms

For the same reason as in solving for (2)
3u , we need

also to consider the 2( )O   order equilibrium equation.

Again, integration of the complete 2( )O   order

equilibrium equation over Y gives
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Obviously, terms higher than the third-order can
be solved in a similar way. The controlling equations
for the pth order (p > 3) displacements are
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with constraints from higher order terms

( 1) ( )
3 3
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p p

jl
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u u
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           (103)

However, in the numerical implementation,
although it is only required to solve a second-order
equilibrium equation on the RUC (cf. (91) and (97)),
it is actually limited by the requirement of the higher-

order derivatives of the solution (0)
3u  at the macro

scale (cf. (92) and (98)).

Solution of Equilibrium Equations from
Homogenisation

To solve the torsion or bending of composite shafts
by the homogenisation method, we will first solve for

 3
3

j y  from equation (83) assuming it to be a Y-

periodic function defined in Y. The effective material

properties jkD  are given by (90). We then solve the

homogeneous St Venant torsion or bending problem
(89) and obtain the macroscopic fields: warping

displacement (0)
3u , strains (0)

3x j  and stresses (given

by jkD (0)
3x i ). If the distribution of the microscopic

fields in the neighborhood of point x is of interest,
(1)
3u (82) can then be obtained from  kl

l y  and (0)
3u .

(2)
3u  can next be solved from (91) with constraints

(93) or (94); (3)
3u can be solved from (97) with

constraints (99) or (100). Higher-order displacement

terms can be solved in a similar way. The strains 3 j

and stresses 3 j  can be calculated from (69) and

(71), respectively. Equations (89), (91), (97) and (101)
are standard second order partial differential equations
in solid mechanics. They can be solved in a similar
way. However, for a problem defined on the unit cell
Y the periodic boundary conditions and constraints



Torsion and Bending of Composite Shafts 195

from higher-order equilibrium should be enforced
appropriately.

As all the equilibrium equations can be solved
similarly, only equation (83) is discussed.
Corresponding to (83), the virtual work principle states
that

3
3 33
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or

3 3 3
3 3 3

1

0
k k k

jl jk
j jY Y

D dY D dY
y y y

    
 

   

where 3
3

k  are arbitrary Y-periodic functions defined

in the unit cell Y.

It is easy to prove that (104) is the first order
variation of the following potential functional
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If we define the strain
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and the stress

3 3
k k

j jl lD    so that 3 3
k k
l ij jC   (107)

which are Y-periodic functions in the unit cell, we
have a 2-field Hellinger-Reissner functional
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 (108)

By relaxing the compatibility condition in the
potential (105) or by employing Legendre

transformation on the Hellinger-Reissner (108) one
arrives at the 3-field Hu-Washizu functional
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The general isoparametric compatible elements

are not satisfactory because of the gradients of 3
3

k
that appear in (90) in the evaluation of the
homogenised material properties. The shape functions

in (12)-(17) can be adapted to interpolate 3
3

k  to

formulate an equivalent displacement-incompatible
element from the potential functional (105), or
enhanced-strain element from the Hu-Washizu
functional (109); adaption of the interpolation (13)-

(15) for 3
3

k  and (34) for 3
k
i  can formulate an

equivalent hybrid stress element from the Hellinger-
Reissner functional (108).

Strictly speaking, solution of the Y-periodic
functions on the RVE needs to satisfy the periodic
conditions on the boundary, including the primary
compatible displacement functions as well as the
incompatible displacement/strain-enhanced terms for
incompatible/strain-enhanced elements and assumed
stresses for hybrid stress elements. The periodic
constraints on compatible displacements can be
imposed by a penalty function approach (Karihaloo
et al. 2001; Xiao and Karihaloo, 2009), which can
also be used to enforce the constraints from higher
order terms; imposition of such constraints on
incompatible displacements, enhanced-strains or
stresses is difficult. However, numerical results (Feng
and Wu, 2001; Karihaloo et al. 2001; Sun et al. 2001)
show that neglecting the periodic constraints on these
element internal fields does not deteriorate the solution.

Numerical Results

The performance of the incompatible/strain-enhanced
element is almost identical to the hybrid stress element,
we therefore only give the results from one of them
in the following examples.

Torsion of Compound Square Shaft

Torsion of the compound square shaft of unit side



196 Bhushan Lal Karihaloo and Qi-Zhi Xiao

length composed of two equal in homogeneous regions
shown in Fig. 4 with unit angle of twist per unit length
is analysed. As in Ely and Zienkiewicz (1960) and
Jog and Mokashi (2014), G1  is fixed at 1 with E1 =
2.5 and 1= 0.25, three different values of G2/G1 = 1,
2 and 3 (v2 = v1) are considered. The cross-section is
discretised into 88 four-node elements following Jog
and Mokashi (2014); for the case G2/G1 = 3 a fine
discretisation of 4040 is also used. The torsional
rigidities obtained by the hybrid stress element are
compared against the analytical solution of
Muskhelishvilli (1953), the relaxation finite difference
method of Ely and Zienkiewicz (1960), and the 4-
node element solution of Jog and Mokashi (2014) in
Table 1. For a homogeneous shaft, the solution of
Muskhelishvilli (1953) is identical to Timoshenko and
Goodier (1969), as expected. The results from the
hybrid stress element are the most accurate. The x-
coordinate of the centroid and effective shear modulus
are given in Table 2. The warping at A (–0.5, –0.25)
and D (0.5, –0.25) relative to the centroid, and shear
stresses at B (–0.5, 0) and C (0.5, 0) (Fig. 4) from the
hybrid stress element are given in Table 3. For a
homogeneous shaft, G2 = G1, the warping and shear
stresses agree reasonably well with the analytical
solutions A = –D = 0.0347, Cyz  = –Byz = 0.6753
given by Timoshenko and Goodier (1969) despite the
coarse mesh adopted. For the case G2/G1 = 3, the
results from the coarse mesh agree well with those
from the fine mesh.

Bending of Compound Square Shaft

We now consider torsion-less bending of the above
compound square shaft. The shear stresses given by
the hybrid stress element at the centre are given in
Table 4. Jump in the tangential stresses is noticed at
the interface between different materials, and
increases with the ratio G2/G1. For a homogeneous
shaft, G2 = G1, the analytical solution is xz  = 1.4104
for Qx = 1 and Qy = 0, and  = 1.4104 for Qx = 0 and Qy
= 1 (Timoshenko and Goodier, 1969); the solution of
the hybrid stress element agrees favourably with the
analytical solution despite the coarse mesh adopted.
In order to verify the accuracy of the hybrid stress
element for inhomogeneous shafts, we analyse a
cantilever of length 10 under transverse loading at
the free end. The cantilever is divided into 16 x 16
(section) x 40 (length) 20-noded hexahedral elements.
The results at the middle section are also included in

Fig. 4: Square cross-section of unit side length composed of
two equal inhomogeneous regions

Table 1: Torsional rigidity for compound square shaft

G2/G1 Muskheli- Ely and Jog and Present hybrid
shvilli Zienkiewicz Mokashi element
(1953)  (1960) (2014)

1 0.1406 0.1388 0.1425 0.1398

2 0.1970 0.1941 0.1997 0.1957

3 0.2394 0.2358 0.2430 0.2377 (0.2396*)
*From refined discretisation 40x40

Table 2: x-coordinate of centroid and effective shear
modulus

G2/G1 Discretisation xc Geff

1 8 x 8 0 1

2 8 x 8 1.3479

3 8 x 8 –0.125 1.5647

40 x 40 –0.125 1.5628

Table 3: Warping and shear stresses for torsion of compound
square shaft

G2/G1 Discretisation  at A yz at B  at D yz at C

1 8 x 8 0.03532 –0.6691 –0.03532 0.6691

2 8 x 8 0.04044 –1.2023 –0.03020 0.7370

3 8 x 8 0.04300 –1.7016 –0.02764 0.7709

40 x 40 0.04224 –1.7102 –0.02728 0.7801



Torsion and Bending of Composite Shafts 197

Table 4, agreeing reasonably with the hybrid stress
element with the fine discretisation.

Torsion of a Square Composite Shaft

The example for the torsion of a composite shaft
analysed by Karihaloo et al. (2001) is adopted to
illustrate the first order homogenisation method. The
composite shaft has a square cross-section (length of
side = 80), as shown in Fig. 5(A); the microstructure
of the cross-section is locally periodic with a period
defined by a RUC shown in Fig. 5(B), i.e. it consists
of an isotropic circular fibre of diameter 10 embedded
in an isotropic square matrix with side 20. Assume
that the scaling factor  = 0.25. The problem is solved
in two stages. First, we solve the RUC shown in Fig.
5(B) by using the incompatible/strain-enhanced

(A) (B)

Fig. 5: Geometry of a composite shaft of square profile (A) and RUC (B)

Table 4: Shear stresses at centre of compound square shaft
under bending

G2/G1 Discretisation       Qx = 1        Qy = 1

 left  right  left  right

1 8 x 8 1.3760 1.3760 1.3760 1.3760

2 8 x 8 1.3981 1.3024 1.8553 0.9277

3 8 x 8 1.3916 1.2297 2.1163 0.7054

40 x 40 1.3289 1.2912 2.1658 0.7219

1616 x 40† 1.3077 1.3038 2.3265 0.7755
† 20-noded hexahedral element

element to obtain the field 3
3

k  and its derivatives

3
3

k

jy



 and calculate the homogenised moduli from

(90). Second, we solve the torsion of the square shaft
shown in Fig. 5(A) with the obtained homogenised
moduli by using the hybrid stress element. Only a
quarter of the cross-section, the shaded part shown
in Fig. 5(A), is dicretised because of symmetry. The
warping displacements are fixed on the axes of
symmetry. In this way, we calculate the warping
displacement, torsional rigidity and the angle of twist
per unit length, as well as the shear stresses and
strains. With the results so obtained, we can calculate
the first order warping displacement from (82) and
the local strain and stress fields from (69) and (71),
respectively.

The shaded quarter in Fig. 5(A) is discretised
into 400 quadrilateral elements and 441 nodes, as
shown in Fig. 6(A). The RUC shown in Fig. 5(B) is
discretised into 896 quadrilateral elements and 929
nodes, as shown in Fig. 6(B).

The fibre and the matrix are considered to be
isotropic with the shear moduli, Gf = 10 and Gm = 1,
respectively. The computed homogenised shear moduli
are

11 12

22

1.38271 0.00138
1.38467

C C
Sym C Sym
          
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Thus the macroscopic behaviour of the
composite shaft is also isotropic.

The isotropic shaft of square cross-section
shown in Fig. 5(A) is now analysed with the obtained
homogenised shear moduli. One unit of torque is
applied on the quarter section with its units being
consistent with those of the shear moduli. The
computed result for the torsional rigidity 4 x 1.9927 x
106 is very close to the accurate value 7.9856 x 106

obtained from the formula 0.1406G(2b)2 where the
shear modulus G = 1.38271, and the length of side of
the square cross-section 2b = 80 in the present
example. The distribution of warping displacement,
and of normal and tangential shear stresses, which
are given by

cos sin
sin cos

n xz yz

t xz yz

    
    
 
 

where  is the angle from the axis y1 as shown in Fig.
5(B), along the interface between the fibre and the
matrix adjacent to the point with global co-ordinates
(x1 = 30, x2 = 30) are plotted in Fig. 7. Filled triangles
represent computed data. In Fig. 7(B) and (C), data
linked by broken lines represent the results obtained
from the matrix side (a line segment represents the
distribution of stress within anelement), the continuous
solid line represents the polynomial fit of the computed

(A)

(B)

Fig. 6: Discretised meshes used in the computation: (A)
Mesh of a quarter of the cross-section shown in Fig.
5(A); (B) Mesh of the RUC shown in Fig. 5(B)

(A)

(B)

(C)
Fig. 7: Distribution of warping displacement (A), normal

shear stress, (B) and tangential shear stress and (C)
along the interface from the homogenisation method
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results obtained from the fibre side of the interface
since they are not satisfactorily smooth. From Fig. 7,
the tangential shear stress t has a significant
discontinuity across the interface, while other fields
are continuous adjacent to the interface.

Conclusions and Discussion

Formulation of the St Venant torsion of prismatic
composite shafts with properties uniform along the
length and piece-wise constant orthotropic across the
cross-section is given in terms of the warping function.
The principal axes of all constituents of the cross-
section are assumed to be parallel. High-performance
incompatible, strain-enhanced and hybrid stress
elements for solving the warping function are
discussed. In particular, a hybrid stress element
developed earlier has been improved to avoid the need
of a special node numbering pattern for square
elements.

Formulation of the St venant bending (or
shearing) of Gruttmann et al. (1999) and Gruttmann
and Wagner (2001) for prismatic homogeneous
isotropic shafts in terms of the warping function has

been generalised to piece-wise constant orthotropic
shafts; the requirement of zero in-plane shear strain
over the cross-section, which is implicitly violated by
the assumed strain field of Gruttmann et al. (1999)
and Gruttmann and Wagner (2001), has been satisfied
exactly in the present development. The warping
function for bending can be solved by the same
elements for the torsional warping function. Unlike
Gruttmann et al. (1999) and Gruttmann and Wagner
(2001), where the torsional warping function appears
in the shear strains of bending and needs to be solved
before the solution of bending, the formulation of
bending in the present paper is purely in term of the
warping function for bending.

In order to solve composite shafts for which the
use of a finite element discretisation to represent all
the microstructural details is too expensive or even
impossible, the first order homogenisation for St
Venant torsion (Karihaloo et al., 2001) has been
generalised to higher order homogenisation following
Xiao and Karihaloo (2009) for both St Venant torsion
and bending; a more appropriate method is introduced
to consider the constraints from higher order terms.
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