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This paper deals with the response studies of piezoelectric sandwich composites by the energy method.  The equation of
motion is deduced from the principles of minimum potential energy.  To do this displacement and electrical fields are
required as a priori.  Hence, the above said field functions are described by Non-Uniform Rational B-Splines (NURBS) in
two and three dimensional domains and applied against static and free vibration analyses of thin and very thick sandwich
plates and piezoelectric prismatic bar. Nonlinear variation of the electric potential is considered through the thickness and
modelled by a discrete layer-wise linear scheme.  The present formulation is successfully validated against a finite element
code.
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Introduction

Piezoelectric materials receives attention due to their
potential use as sensors and actuators in vibration
control systems. Constitutive equations for
piezoelectric devices have been developed and
reviewed in the literature by many (EerNisse, 1967;
Bleustein and Tiersten, 1968; Tiersten, 1969). The
coupled electro mechanical equations are
understandably too complex to obtain closed form
solution in most cases. Nevertheless researchers have
been able to model this effect by analytical techniques
for certain boundary and loading conditions. Various
theories based on beam, plate, shell and solid models
were developed by some researchers (Crawly and
de Luis, 1987; Im and Atluri, 1989; Jiang et al., 1991;
Wiciak, 2012). Such analytic models were used for
piezoelectric actuators and sensors. On the other hand,
many resorted to the finite element method as a viable
modelling technique. Allik and Hughes (1970)
implemented a finite element formulation for electro-
elasticity and developed tetrahedral element for the
vibration analysis. Hwang and Park (1993) analyzed
vibration control of laminated plates with integrated

piezoelectric sensors using a quadrilateral plate
element with 12 degrees of freedom. Tzou and Garde
(1989) analyzed electro-elastic Kirchhoff-Love plates.
Their results were acceptable for thin sandwich plates,
but diverged for moderately thick ones. Two-
dimensional theories for plates and shells involving
layer-wise approximation of the electric potential
through the thickness produced a viable modelling
technique for moderately thick piezoelectric laminates.
Saravanos (1997) developed the mechanics of mixed
laminate theory for composite shell structures, in which
a layer-wise distribution of electric potential was
considered. He reported numerical results for
cylindrical laminated piezoelectric panels. Heyliger et
al. (1996) used finite element method to develop a
discrete-layer shell theory applicable to general shells
of revolution. A number of plate and shell theories
have been formulated based on the order of expansion
and variation of electric potential along the thickness.
As inferred from the literature, piezoelectric materials
have been generally used as sensors, actuators and
power harvesters. In majority of these applications
the thicknesses of the piezoelectric devices were
relatively small compared to other dimensions.
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Accordingly, researchers used a two-dimensional
plate or shell model with layer-wise mechanics and
higher order polynomial approximation for electric
potential in the thickness direction (Detwiler et al.,
1995; Heylinger et al., 1996; Fernandes and Pouget,
2001).  These models are quite adequate and served
the purpose they were for.  When the plate gets
thicker, the two dimensional models are not quite as
efficient. Also in all of the above models the electric
potential variation is subjected to some degree of
approximation. Such severe limitations in two
dimensional modelling warranted development of three
dimensional modelling techniques. Ghandi and Hagood,
(1996) developed an eight node element, each having
three mechanical and one electrical degree of
freedom, to model phase transition of electro-
mechanical materials. Koko et al. (1997) used a 20
node thermo-piezoelectric element for modelling smart
composite structures. They reported a comprehensive
analysis on controlling the vibrations of a composite
piezoelectric structures. Lim et al. (1997) performed
transient response analysis on MEMS scale
piezoelectric sensors.  For it, they used a combination
of 20 node solid element, 13 node transition element
and 9 node shell element to model a cantilever plate
with embedded piezoelectric sensor. Although, three
dimensional modelling of piezoelectric materials proves
to be an efficient method, it also has some limitations.
The associated difficulties include locking effects and
increase in degrees of freedom. The shear locking
effect is encountered while modelling relatively thin
plates with solid elements.  To alleviate the locking
problem, selective integration technique in the
thickness direction was used by Braess and
Kaltenbacher (2008) while using a three dimensional
solid element. It is evident from the above brief
literature survey that a much needed attention has to
be paid towards modelling piezoelectric crystals and
thick laminated plates and shells.

The present study aims to propose an efficient
and reliable numerical technique that makes use of
the Non-Uniform Rational B-splines (NURBS) to
represent geometry and displacement fields (Piegl and
Tiller, 1997). These splines are quite capable of
modelling complex geometrical shapes using only a
few control points and have higher order continuity
compared to the traditional finite elements. A
quadrilateral domain with curved edges is considered
for the first order shear deformable plate problems.

Similarly, a hexahedral solid, enclosed by six curved
surfaces, is taken as the basic three dimensional
geometry. Also, the splines with different degrees and
numbers of control points can be used to define the
mechanical and electrical field-functions pertaining
to displacement and electric charge.  This translates
into fewer number of degrees of freedom while
pursuing formulation of a full three dimensional solid
patch. Another advantage of using a three dimensional
model is its inherent ability to incorporate the
electromechanical coupling effectively. This flexibility
in curve generation is exploited further to define the
geometry as well as displacement fields in the
variational method for three dimensional electro-elastic
problems. The present method is successfully tested
against well-established finite element code ANSYS.
Static and free vibration analyses performed on
cantilever sandwich piezoelectric plates reveal
discrepancies in the values of deflection and natural
frequencies, if first order shear deformable and three
dimensional theories are used for considerably thick
plates. Difference in the value of natural frequencies
also increases with mode number. Results on the
vibration of a prismatic bar are also computed and
compared favorably with those from ANSYS.

NURBS Curves

A NURBS curve C() can be described in the
parametric space – 1 <  < + 1 as follows.

( ) ( )k
i iC R p         (1)

where ( )k
iR   = ( )k

i iN w / ( )k
j jN w and the

summation is performed over i = 0 to n. Also, ( )k
iN 

= theB-spline basis functions of degree k (or order
k+1), pi = control point vector and wi = weight vector.

Knot vector i  is a set of non-decreasing parametric

coordinates and constructed for an open curve through
the following equation.
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Depending upon the values of n and k, the open
uniform knot vector appears as
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Such parametric curve can be continuously
differentiated k – 1 times provided that the knot vector
is without multiplicity.  Once the unidirectional curves
are defined separately in x, y, z directions, a NURBS
solid can be created by the tensor product of the three
parametric curves.

, , , ,( , , ) ( , , )q r q rC R p       (4)

The triple summations are performed on the
number of control points in each direction.  The order
and number of control points can be the same in all
directions or different for each direction.  Additionally,
knot insertion and removal techniques can be used to
change the number of the control points.

Formulation

A general description of the formulation for a sandwich
structure with piezoelectric face sheets and elastic
core ispresented in this section.  There are two models
that are considered in this study.  In the extremely
simplified model one, the sandwich structure is
assumed as a singlefirst order shear deformable plate.
Accordingly, the in-plane displacement varies linearly
over the entire thickness of the composite plate, while
the transverse displacement remains the same for all
layers.  Displacement at an arbitrary point in the plate
under this assumption can be described by the
displacement and rotation components at the middle
plane of the plate, which is also known as the reference
plane. It is considered to have four curved boundaries.
NURBS curves are used to define the four curved
boundaries taking benefits from the natural coordinates
–1 < (,) < 1. Three translational components and
two rotational components of thenormal to the plate
at the reference plane are denoted by u1, u2, u3, 1
and 2 respectively.  The electrical charge  that
develops in the piezoelectric layer during bending, is
known to vary nonlinearly in the thickness direction.
In order to incorporate this nonlinear distribution of
along the thickness, a layer is divided into a number
of sublayers and linear distribution is taken in each
sublayer. Both, the displacement and rotational
components are expressed by NURBS surfaces and
their control points are the degrees of freedom.

For the second model, each layer is taken as a

hexahedron formed by six curved NURBS surfaces
defined innatural coordinate system –1 <,,< 1.
Displacement and potential are expressed in a similar
manner as the triple summation in Eq. (4). Controls
points for the four (three displacements u1, u2, u3 and
one potentialfields constitute the degrees of freedom
at a point in the continuum.

The material equations relating stress {},
electric flux density {D}, mechanical strainan {}
delectric field {E} are:

{} = [C]{} – [e]T{E} (5)

{D} = [e]{} + []{E} (6)

Where [C] = elastic stiffness matrix, [e] =
piezoelectric coupling matrix, and [] = dielectric
matrix (Allik and Huges, 1970). Mechanical strains
can be expressed in terms of u1, u2, u3, etc.  In addition,
Maxwell’s equation [E] = –{} is used to express
the electric field {E} in terms of the electric potential
. These are then substituted in the energy functional
 = T – U – W, in which U = the strain energy, T =
the kinetic energy and W = the work done by externally
applied electrical and/or mechanical loads.  After
applying the stationary condition on the energy
functional, two coupled equations can be obtained.
By eliminating the electric potential, the two are
merged into one equation of motion for the forced
vibration analysis of a piezoelectric structure.

[ ]{ } [ ]{ } [ ]{ } { ( )}M C K F t       (7)

Here, vector of control points associated with
mechanical displacement = {}.  Others are:over-
dot = time derivative, [M] = mass matrix, and [C] =
damping matrix.  Also, the stiffness matrix and the
force vector are

1[ ] [ ] [ ] [ ] [ ]m me e emK K K K K 

and 1{ ( )} { ( )} [ ][ ] { ( )}m me eF t F t K K Q t  (8)

For the static analysis, the inertia term containing
mass matrix is removed from Eq. (7). The mechanical
and electrical load vectors can be obtained from the
work done on the structure consistent with their
respective field functions.
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Numerical Examples

In this section, results are presented and discussed
first for the static bending and free vibration of
cantilevered sandwich plates of thickness h. Fig. 1
shows geometry of the reference plane of the plate
considered for the static bending. The plate tapers in
width from b = 100 to c = 50 over a length of a = 150,
all in millimeters.  The stacking layout is ZnO+/Si/
ZnO–. The three layers are of equal thicknessesand
a uniformly distributed load of one kPa is applied on
the top surface. Displacement and rotation are set to
zero at the left vertical edge for the plate, i.e., u = v =
w = 1 = 2 = 0 for the first order plate problem.
Only the conditions: u = v = w = 0 at the fixed edge
are applied in the case of the three dimensional model.
The top and bottom interfaces of piezoelectric layers
are grounded by making  = 0.

Numerical simulations are performed using both
two and three dimensional NURBS models.  Patches
and blocks for various aspect ratios and mesh
configurations are considered keeping order of the
NURBS functions at four. Control knots on the
boundaries are generated according to the shape of
the plate. The inside control points are linearly
interpolated.  A basic plate patch has control points
for the middle plane, whereas a mesh of 5 x 5 x 5
control points per module is considered in hexahedral
continua. Anine patch 3 x 3 plate model with six
piezoelectric sub layers has 1280 mechanical and 1792
electrical degrees of freedom. The same in one solid
module, for example, amounts to 375 corresponding
to (u1, u2, u3) and 125 to .  Hence, ina 3×3×3 solid
model there are 125 control points/module, 6591

mechanical and 2197 electrical to a total of 8788
degrees of freedom.

Values of the maximum free edgetransverse
displacements are presented in Table 1 for six a/h
ratios covering thin to very thick plates. Displacements
found from the solid formulation are higher than those
from the plate theory for the thick plates. Both plate
and full three dimensional modelsyieldclose results with
a difference of 0.21 percent for large a/h = 100.
However, the difference 4.41 percent in the case with
a/h = 10 grows to 8.08 percent with a/h = 5.
Distributions of the electric potential calculated along
the thickness from 2 and 3 dimensional cases are
plotted in Fig. 2 for the case with a/h = 5. It is inferred
that the solid model estimates higher electric potential
across the thickness up to a maximum of 10.3 percent.
There is no approximation involved in electrical
potential variation along the thickness in the solid
model.  The electromechanical coupling is seen to be
effectively sustained.

Fig. 1:  Reference plane for the plate

Table 1: Displacement in (m)

a/h Plate model Solid model Difference (%)

100 1135.0 1132.6 0.21

75 472.5 475.3 0.60

50 144.3 146.0 1.19

25 17.8 18.4 2.81

10 1.16 1.21 4.41

5 0.15 0.16 8.08

Fig. 2: Distribution of the electric potential across the
thickness
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Free vibration analysis is performed on a
rectangular sandwich plate with a = 150, b = c = 100
in millimetres and the  stacking  layout  of  ZnO+/Si/
ZnO–. Direct iteration method is used in the
homogeneous equation of motion to obtain the first
five natural frequencies in radian per second for a/h
= 100, 50 and 5 as shown in Table 2. Columns three
and four contain results from the plate and solid
NURBS models respectively. Fundamental
frequencies for the three a/h ratios for these cases
are found in extremely good agreement. It is not so
for higher modes of vibration. Difference in the
fundamental frequencies seems to be increasing with
the thickness. This can be due to over simplified
assumption made in the plate model. Still results from
the plate theory is significant in the sense that the
participation rate of the fundamental mode in transient
response conditions is generally very high. The present
study shows that the simple first order shear
deformable plate model can yield reasonably reliable
results in transient response analyses.  Finite element
analysis in ANSYS is also performed and the results
are presented in the fifth column in Table 2. The model
is created with solid 226 coupled field elements for
the piezoelectric layer and solid 185 for theSi core.
The assembled model has 129546 degrees of freedom,
which is approximately fifteen times the NURBS
based solid model. This clearly demonstrates a huge
advantage of the present method over the conventional
finite element method. Results from NURBS and
ANSYS models show resounding agreement. The

mode shapes, which are not included in this paper
because of the space limitation, are also seen to match
mode-by-mode.

A cantilevered homogeneous prismatic PZT4
piezoelectric bar is studied next as a benchmark
problem. The material properties for PZT4 are also
presented in the appendix.  The bar is 15 cm long and
5 x 5 cm2 in cross section. The clamped end conditions,
u = v = w = 0, are enforced and the top and bottom
surfaces are grounded by making electrical potential
= 0.  The bar modelis created with a grid of 5 x 5 x
5 solid modules, each having 125 control points. The
model consists of 6591 mechanical degrees of
freedom pertaining to (u, v, w) and 2197 electrical
degrees of freedom to a sum of 8788.  The same bar
is modelled in ANSYS environment using solid 226
coupled field elements with a total of 65066 degrees
of freedom. Values of the first eight natural
frequencies in Hz, calculated by the present solid
model and the ANSYS, are presented in Table 3. The
results show extremely close agreement.  The mode
shapes, though not included in this paper, were also
examined and found consistent in both analyses.

Closing Remarks

Efficient computational methods in two and three
dimensions are developed for piezoelectric laminates
with full electro-mechanical coupling. NURBS are
used in representing the geometric coordinates,
mechanical displacement components and electric
charge field. Static analysis is performed ona
cantilevered trapezoidal piezoelectric sandwich plate
using both: two dimensional first order shear
deformable plate andthree dimensional continuum

Table 2: Natural frequencies of rectangular sandwich
platein (rad/sec)

a/h Mode number Plate model Solid model ANSYS

100 1 389 385 385
2 1432 1222 1221
3 2371 2445 2443
4 4746 4214 4215
5 5999 5979 5977

50 1 803 798 799
2 2846 2433 2431
3 4730 4874 4874
4 8419 8377 8375
5 11935 11905 11913

5 1 7651 7558 7559
2 19921 19520 95321
3 23101 19905 19925
4 39533 40083 40104
5 59513 57559 57570

Table 3: Natural frequencies for PZT4 bar in (rad/sec)

Mode 3D solid 3D ANSYS Difference
number (%)

1 1125.6 1121.8 0.34

2 1141.5 1151.4 0.87

3 2980.1 2981.7 0.06

4 4947.5 4939.7 0.16

5 5124.1 5134.9 0.21

6 5684.2 5554.9 2.33

7 8936.1 8910.2 0.29

8 10681.6 10740.9 0.56
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theories. Studiesreveal discrepancies in results, when
the plate theory is used for considerably thick sandwich
composites. Free vibration analysis is performed on a
rectangular sandwich plate to validate the efficiency
of the present NURBS based methods. The
fundamental frequencies of the piezoelectric sandwich
platesfrom the plate and solid models are close. Hence,
the use of the present platemodel should be adequate
in sensing, actuating and power harvesting
applications. In such cases, generally the fundamental
mode of vibration is triggered to a significant extent.
The present three dimensional NURBS based and
finite element methods yield very close results as well.
However, there is a huge difference in the numbers
of the degrees of freedom in the two models. This
can be quite significant particularly in transient
response analyses.

Appendix: Material Properties

C1! Si ZnO PZT4 Unit

C12 166.0 209.700 139.00

C33 63.9 121.100 77.80 (Gpa)

C13 166.0 210.900 115.00

C44 63.9 105.100 74.30

e31 79.6 42.500 25.60

e33 0.0 –0.610 –5.20 (C/m2)

e15 0.0 1.140 15.10

C12 0.0 –0.590 12.70

11 0.1045 0.074 13.06 (nF/m)

33 0.1045 0.074 11.51

 2329.0 5606.000 7500.00 (kg/m3)
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