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We shall review some of the author's recent results concerning geometric and topological features of the boolean model on
a stationary point processes. While study of geometric features of the Poisson boolean model span a very rich literature,
the literature for topological features of the Poisson boolean model is very nascent and that for a general stationary point
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theorem for geometric and topological statistics.
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Introduction

Consider a locally finite collection of random points
= {Xi}i>1 (called as point processes from now
onwards) on a euclidean space d; d > 2. We shall
assume that  is stationary (i.e.,  + x has same
distribution as) and is simple (i.e., Xi Xj for i
j). For example, consider the following three examples

of stationary point point processes restricted to a finite
window in Fig. 1. Such point processes arise in diverse
applications. For example, point processes might
denote node locations in a network (Baccelli and
Blaszczyszyn, 2009; Baccelli and Blaszczyszyn, 2010;
Haenggi, 2012; Yukich, 2006), configuration of sites
in disordered or amorphous materials (Hiraoka et al.,
2016; Agarwala and Shenoy, 2017), data points in data
analysis (Carlsson, 2014, Bobrowski and Kahle, 2014,
Adler, 2015; Penrose and Yukich, 2013) and so on. A
common theme in many of these applications is to
build suitable geometric or topological structures to
either understand such structures or use them as a
tool to understand the point process itself. We shall

consider a very simple object constructed from point
processes called as boolean model. The boolean

model is obtained by taking unions of balls of radius r

centred at the points of. More formally, it is defined

as C(; r) := Xi
Br(Xi) where Br(x) denotes the

euclidean ball of radius r centred at x  d. While it

is true that the afore-cited articles sometimes consider
more complicated structures on or point processes
on more general spaces, we shall see that there are
still many interesting unanswered questions about the
boolean model on the euclidean space itself. For many
questions, it is more meaningful to consider the

asymptotics of C(n; r) as n where n =  

Wn with Wn =
1/1/

,
2 2

ddn n

 
 
 

 being a window of volume

n. For example, Vd(C(; r)) =  (Vd denotes the

volume) for many ‘nice’ whereas asking the growth

of C(n; r) still makes sense. In this short survey, we
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shall endeavour to describe some recent studies of
such asymptotics by the author as well as some related
work. The results presented here are more for
illustrative purposes and hence the reader is referred
to the papers (Blaszczyszyn and Yogeshwaran, 2015,
Yogeshwaran and Adler, 2015, Yogeshwaran et al.,
2017, Blaszczyszyn et al., 2016] for complete details
and the most general results. After introducing the
necessary notions and notations in sections 1.1 and
1.2, we shall present a sample of our results in Section
2 as follows :

 Thresholds for topological phase transitions on
stationary point processes (Section 2.1) : As we
vary r, the topology of C(; r) undergoes two
phase transitions - from trivial to non-trivial and
then back to trivial. Though qualitatively the
phase transitions remain the same for many point
processes, there do exist quantitative
di”erencesin terms of how the points are spatially
distributed in a point process. To summarisethe
di”erences in words, the more regular the spatial
distributions of the point processes are, the more
narrower is the window between the two
thresholds. See Figs. 1 and 2 for an illustration.

 Limit theory for geometric statistics of
‘asymptotically independent’ point processes
(Section 2.2) : Now, we turn our attention to the
thermodynamic regime for point processes i.e.,

r  (0;). For many geometric statistics (i.e.,

those obtained as a sumof ‘local information’
around the points) and point processes satisfying
a weak notionof ‘asymptotic independence’, we
will state central limit theorems assuming
variance lower bounds. We will mention
examples of point processes satifying our
conditions.

 Limit theory for topological statistics of Poisson
point process (Section 2.3) : We shall consider
topological invariants of the boolean model but
over Poisson point processes. Due to the long-
range dependence of topological invariants, we
are more restrictive on our choice of point
processes. Again, we shall state our central limit
theorem and mention some related results.

Finally, we shall conclude with some omitted,
on-going and future directions. We would also like to

Fig. 1: Hypergeometric perturbed lattice, Poisson point
process and Negative binomial perturbed lattice
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warn the reader that some of the material has already
been covered in the survey (Bobrowski and Kahle,
2014) on random geometric complexes.

Geometric and Topological Statistics

Having described the boolean model, let us now spill
some details on what we mean by geometric or
topological statistics. By geometric, we refer to
functionals of the boolean model that can be obtained
by collecting “local information” about the boolean

model around each point Xn. To be more precise,

geometric statistics (denoted as G have the form)

: ( ) : ( , ),
n

n n n
X

G G X 


   (1.1)

where  : d x    ( denotes the space of all
point processes i.e., locally-finite counting measures)
is a measurable function satisfying the following

conditions : (1) (x;) = 0 if x, (2)  is translation

invariant i.e., (x; + x) = (O;) for all xd with

O denoting the origin and (3) there exists r > 0 such

that (O; ) = (O; (  BO(r)) ) for any locally

finite   BO(r)c. We call r as the radius of
stabilization and such Gn’s are called as local
geometric statistics. We also allow r to be a random
variable with a (stretched) exponentially decaying tail
and we refer to such Gn’s as quasi-local statistics.
Examples of local statistics in the context of boolean
model include Vj(C(; r)); j = 0, ..., d where Vj is the
jth intrinsic volume with Vd being the volume or
Lebesgue measure, Vj–1 being the surface measure
and V0 is the famed Euler-Poincaré characteristic.
These are very important statistics which have
applications in stereology and image analysis (G”ring
et al., 2013; Klette and Rosenfeld, 2004; Kong and
Rosenfeld, 1989; Svane, 2017) and have been of
interest in stochastic and integral geometry (Schneider
and Weil, 2008) since the earliest days of the subject.
Examples of quasi-local statistics include nearest-
neighbour distances (i.e., NN (x; ) = distance from
x to its nearest-neighbour in ) and we denote the
corresponding geometric statistics as Ln. This arises
in computational geometry and combinatorial
optimization (Yukich, 2006) and is also of interest due
to its relation with connectivity of the boolean model
(see Penrose, 1997).

Fig. 2: Barcode representation of Per1 of Hypergeometric
perturbed lattice, Poisson point process and Negative
binomial perturbed lattice
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We use the term ‘topological statistics’ loosely
to denote a collection of statistics that capture the
topology of the boolean model or the underlying point
process and what makes them interesting as well as
dificult is that they cannot be expressed like in
geometric statistics in (1.1). In this article, the main
example of topological statistics are Betti numbers
k(C(n; r)); k = 0, ..., d – 1 and persistent Betti
numbers k(C(n; r, s)); k = 0, ..., d – 1. Though a
precise definition is beyond the scope of the article,
we try to give a heuristic description now and refer to
(Carlsson, 2014; Edelsbrunner and Harer, 2010;
Munkres, 1996) for details. 0(C(n; s)) denotes the
number of connected components in C(n; s),
k(C(n; r)) denote the number of (k + 1)-dimensional
‘holes’ or equivalently the number of independent k-
dimensional non-trivial cycles. The persistent Betti
numbers are rather meant to count the ‘holes’ or non-
trivial cycles that persist from r to s.

More generally, as we track the evolution of
C(n; r) as r varies from 0 to, we can associate a
birth-time and death-time to every non-trivial cycle
or hole. Since C(n; r) are increasing in r, every non-
trivial cycle or hole appears for the first time for some
r called the birth-time of the cycle and vanishes (i.e.,
the cycle becomes trivial or the hole is filled) for some
s(> r) called the death-time of the cycle. The
collection of all birth and death times corresponding
to the kth Betti number is the kth persistent diagrams:
Perk := {(bi; di)}. Given Perk, we can infer both the
Betti and persistent Betti numbers as follows :

( ( , , )) 1[ ],k n i i
i

C r s b r s d    

( ( , )) ( ( , , )).k n k nC r C r r 

Further, instead of representing Perk as points

in 2, we can also represent Perk as barcodes by
representing each (bi; di) as a bar from bi to di. We
give the barcodes of Per1 for a related model (the
Vietoris-Rips complex) in Fig. 2 corresponding to the
three point processes in Fig. 1. For an illustration of
Per1 of the boolean model of Poisson point process
and two other point processes (Ginibre and Poisson
cluster), we refer the reader to (Duy et al., 2016, Fig.
1). One notable feature of this diagrams is that the
support of the barcode is narrower if the spatial
distribution of points is more regular i.e., the support

of the barcodes is shorter for hypergeometric
perturbed lattice compared to that of the Poisson point
process which is shorter compared to that of the
negative Binomial perturbed lattice.

Persistent diagrams are the key tool in the new
and thiriving of topological data analy- sis or applied
topology (Carlsson, 2014; Bobrowski and Kahle, 2014;
Adler, 2015; Ghrist, 2014). In this subject, point
process represent data points and persistent diagrams
capture the topology of the points as well as the
underlying space on which the points are distributed.
In many applications, it is reasonable to assume that
one is unaware of the space on which the data points
are distributed and one is interested in gleaning some
information about the space via the points. Of course,
our space is euclidean, the simplest possi- ble
underlying space and has trivial topological features.
However, as we shall see, a complete mathematical
understanding of point process on even this simple
space eludes us. There is some progress about
understanding the topology on more general spaces
in (Bobrowski and Mukherjee, 2015; Bobrowski and
Weinberger, 2017) but describing these results is
beyond the scope of this article.

Point Processes

We shall now introduce some notions and examples
related to stationary point processes and refer the
reader to (Ben-Hough et al., 2009; Blaszczyszyn et
al., 2016; Yogeshwaran and Adler, 2015; Blaszczyszyn
and Yogeshwaran, 2015; Schneider and Weil, 2008;
Last and Penrose, 2017) for details.

By stationarity we have that ((B)) = Vd(B)
for any Borel set B. As a standing assumption, we set

  (0;). Note that a point process can be viewed

as a random set {Xi} or as a random counting measure
 = ixi

(.). We set (k)(.) to be the kth order

factorial moment measure on (d)k and assume that
it has a Radon-Nikodyn density (k)(.) with respect to
the Lebesgue measure, also called k-point
correlation functions. If (k) is locally finite, there
exists a family of probability distributions called the
Palm measures Px1,...,xk

 on ( ;), defined and unique

up to an (k)-null set of (d)k and satisfy the
disintegration formula (also known as the refined
Campbell theorem)
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quantifications either involve the stronger property of
negative association or are very much dependent on
the behaviour of the k-correlation functions near the
diagonal and the void probabilities for large balls. Thus,
a complete statement is beyond the scope of this paper
but as a sample, we shall mention the result in the
special case of the Ginibre point process.

Proposition 2.2. (Yogeshwaran and Adler,
2015, Theorems 4.4 and 4.6). Let  be the Ginibre

point process Gin on 2. If rn is a sequence of radii

such that either ( 1)( 4) 1( )k k
nr o n    = ((log n)1/4), we

have that as n,

(k(C(n, rn)) = 0) 1, k = 1, ..., d – 1

and ( 1)( 4) 1( )k k
nr n    and rn = O(1), then as n,

(k(C(n, rn))  0) 1, k = 1, ..., d – 1.

Further if 1/4((log ) )d
nr n  then (k(C(n, rn))

= 0) 1 as n.

As a comparison, for the Poisson point process

on 2, the above proposition holds with (k + 4) (k +
1) replaced by 2(k + 1) and 1/4 by 1/2. Thus, this
substantiates our heuristic argument that “more
regularly the points are distributed spatially, the support
of the persistence barcodes are narrower”. The key
to the proofs of the above result is first using the
refined Campbell theorem (1.2) to compute first and
second moments for suitable geometric statistics and
using them as an approximation for topological
statistics.

Geometry of the Boolean Model

Thermodynamic regime. Having broadly etched the
thresholds for topological phase transitions, we wish
to focus on distributional results within the different
radii regimes. In this survey, we shall focus on
thermodynamic regime (i.e., r  (0,)) as it has a
rich set of results. We call this the thermodynamic
regime as the asymptotic density of balls intersecting
a window Wn (i.e., n–1{i : Br(Xi)  Wn  )
converges to a constant. Recall the definition of
geometric statistics (1.1) and score functions defined
therein. Let us consider the following simple score
function k, k > 0 of the boolean model : Setting X0 =
x, we define

1

0
{ ,..., }

1
( , ) : 1[ ( ) ].

!
k

k
k i r i

x x

x B X
k







  




Denote the corresponding geometric statistic as
Essentially Gn,k := Gk(n). Essential Gn,k counts the
number of k-wise intersections in the boolean model
C(n, r). In combinatorial topology, Gn,k represents
the number of k-simplices in the Cech complex onn
formed by balls of radius r (see Edelsbrunner and
Harer, 2010) for a precise definition). The advantage
of teh Cech complex is its combinatorial nature and
at the same time, it is homotopy equivalent to the
boolean model because of the nerve theorem (Bj”rner,
1995, Theorem 10.7). Simplices are the building block
of any complex and hence one of the first quantities
of interest in a random complex. Thus, we can add
Gn,k also to the list of geometric statistics we have
already encountered. We shall now illustrate our results
for such geometric statistics by stating a few special
cases here. Firstly, for a score function , define

2() := 0
2(O, )(1)(O)

+ 2
(2) (1)( ( , ) ( ) ) .

d
m O x m O dx (2.2)

where we define m(p)(x1,...,xp) := x1,...,xp
((x1, )...

(xp, ))(p)(x1,...,xp) for p > 1, x1,...,xp d with

x1,...,xp
and (p)(x1,...,xp) being the Palm expectation

and correlation functions respectively as defined in
Section 1.2.

Theorem 2.3. Let k  and  = GEF or  is

a determinantal point process with kernel K(x, y) such

that |K(x, y)| < (|x – y|) where  is exponentially

decaying (i.e., lim inft tb log(t) < 0 for some b

> 0). Then, we have that

1 2
,lim ( ).n k k

n
n arG  




Additionally, if , ( ) n karG n  for some (0,

), then as n

0
( ( , )).k nC r



 (2)

where   denotes convergence in distribution and N
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denotes standard normal random variable.

Theorem 2.4. Let   be a stationary

determinantal point process ond as in Theorem 2.3.
We have that for all j = 0,...,d,

1 2
1lim ( ( , )) ( ); j n

n
n arV C r  




1 2lim ( ), n NN
n

n arL  




where j; j = 0,...,d are the score functions generating
the corresponding intrinsic volumes Vj’s as in (1.1).

Moreover, if ( ( , )) j narV C r  = ( )n  for some  
(0,), then as n

( ( , )) ( ( , ))
.

( ( , ))

  


j n j n

j n

V C r V C r
N

arV C r





Similarly, if  narL  = ( )n  for some  (0,

), then as n

.



n n

n

L L
N

arL



Remark 2.5. (Remarks on Theorems 2.3 and 2.4).

(1) Firstly, we again re-emphasize that the above
theorems are illustrative and results as above
hold true for more general point processes
satisfying the following condition :

For all x1,...,xp+q with s := min1<i,< p,1< j<q |xi –
xp+j| we have that

|(p+q)(x1,...,xp+q) – 
(p)(x1,...,xp)

(q)(x1,...,xp+q)| < Cp+q (cp+qs) (2.3)

for a fast decreasing  and for all k > 1, Ck <
, ck > 0. Theorem 2.3 holds for this class of
point processes provided they satisfy some
moment conditions. Apart from the two
examples mentioned above, many -
permanental point processes also satisfy (2.3).

(2) For applying Theorem 2.4 to general point
processes, apart from satisfying (2.3) and some
moment conditions, it is necessary for infk ck > 0
and Ck = O(kk) for some a < 1. Such examples
as expected are rarer. Apart from determinantal

point processes mentioned in the aboe theorems,
certain Gibbs point processes, finite-range
dependent point processes and some Cox point
processes are the well-known examples. We
refer the reader to (Blaszczyszyn et al., 2016,
Section 1.4) for the general and precise
statements and (Blaszczyszyn et al., 2016,
Section 2) for more examples and applications
cesses mentioned in the aboe theorems, certain
Gibbs point processes, finite-range dependent
point processes and some Cox point processes
are the well-known examples. We refer the
reader to (Blaszczyszyn et al., 2016, Section
1.4) for the general and precise statements and
(Blaszczyszyn et al., 2016) for more examples
and applications.

(3) We refer to (Blaszczyszyn et al., 2016) for weak
laws and for more detailed variance behaviour.
For example, it is shown that if variance is not
of volume order, it is at most of surface order.
However, it is a challenge to prove suitable
variance bounds except in specific cases.

(4) We refer to remarks in (Blaszczyszyn et al.,
2016) for more details on the previous literature
and comparisons. However, we mention that
similar results for Poisson point process and for
certain Gibbs point processes was proven in
(Baryshnikov and Yukich, 2005 and Schreiber
and Yukich, 2008) respectively. Refer to (Yukich,
2013) for a detailed survey of these results.

(5) In full generality, the above theorems are stated
for linear functionals of the random measure

1/: ( , ) ( ).dx
n

n n nX
x   

  
 .

(6) In a recent pre-print (Ram Reddy et al., 2017),
these results have been extended to random
fields on finitely generated Cayley graphs.

(7) The key tool to the proofs is to derive a series
expansion for the mixed moments m(p)(.) using
the factorial moment expansion for functionals
of point processes (see Blaszczyszyn and
Schmidt, 1997). Using the above men- tioned
expansion, we show clustering as in (2.3) for
mixed moments and from there, prove the
central limit theorem via the classical cumulant
method.
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Topology of the Poisson Boolean Model :
Thermodynamic Regime

In this section, we shall state the strong law for certain
topological statistics of the boolean model - the Betti
numbers and the persistent Betti number on ergodic
point processes and the central limit theorem under
the further assumption that  is a stationary Poisson
point process. For a boolean model, the non-trivial
Betti numbers are i, 0 < i < d – 1.

Theorem 2.6. Let be an ergodic point process

such that ((B)m) <  for all m   and for all

bounded Borel subsets B. Let 0 < r < s <. Then,
for 0 < k < d – 1, there exist constants

( , ) [0, )k r s     such that

1 ( ( , , ) ( , ).k n kn C r s r s  

Theorem 2.7. Let  be the stationary Poisson

process and and 0 < r < s <. Then, for k  {1, ...,

d – 1}, there exists a constant 2 ( , ) [0, )k r s    such

that, as n,

1 2( ( , , ) ( , ),k n kn ar C r s r s  

and

1/2 2( ( ( , , ) ( ( , , ))) (0, ( , )).k n k n kn C r s C r s N r s     

Remark 2.8. (Remarks on Theorems 2.6 and 2.7).

(1) For the case k = 0, the above results are well-
known from (Penrose, 2003). The above results
for the case r = s was proven in (Yogeshwaran
et al., 2017, Theorems 3.5 and 4.7) and later
extended to the case r < s by (Duy et al., 2016;
Theorems 1.11 and 1.12).

(2) It is not necessary that ( , )k r s   > 0 but it holds

for many well-known point processes (see
Yogeshwaran and Adler, 2015; Theorem 3.3 and
Duy et al., 2016; Theorem 1.9). In fact, the
strong law has been shown to hold for
inhomogeneous Poisson point processes as well
in (Duy, 2017).

(3) As for variance asymptotics, while it is shown
in (Yogeshwaran et al., 2017; Theorem 4.7) that

2 ( , ) 0k r r   no such assertion can be made about

2 ( , )k r s  for r < s. Further,, variance lower

bounds for inhomogeneous Poisson point
processes for 0, d–1 have been shown in
(Yogeshwaran et al., 2017; Lemma 4.3) and
we wish to mention that using the construction
from (Bobrowski et al., 2016), it might be
possible to show lower bounds for other Betti
numbers.

(4) The proof of the strong law rests on exploiting
near-additivity of (persistent) Betti numbers
along with ergodicity of the point process. The
central limit theorem proceedsvia a general
martingale-di”erence based central limit theorem
for Poisson functional derived in (Penrose and
Yukich, 2001, Theorem 2.1). The key step in
the proof isto verify stabilization of the first-order
difference operator or the add-one cost of
k(C(n, r, s). For the case r = s, this is done via
the Mayer-Vietoris exact sequence but for the
case r < s, this is done via a more direct analysis
of the add-one cost.

Omitted, On-going and Future Directions

As is to be expected in such a short survey, we have
omitted numerous related results of which we shall
refer to the latest here. The three notable omissions
are the work on discreterandom complexes (see the
survey Kahle, 2014), thresholds for vanishing of
homology inrandom geometric complexes (see
(Bobrowski and Weinberger, 2017, Bobrowski and
Oliveira, 2017) for the most recent results) and e”ect
of the tail of the density of the inhomogeneous Pois-
son point process on the topology (see Owada, 2016).
We refer the reader to the surveys (Kahle, 2014,
Bobrowski and Kahle, 2014) for more on both discrete
and geometric random complexes.

In an on-going project, we are extending the
limit theorems for Betti numbers and persistent Betti
numbers to lifetime sum of barcodes i.e.,

0
( ( , ) ).k nC r



   in the case of k = 0, this corresponds

to the length of the minimal spanning tree on the
complete graph on Pn with edge-weights being the
euclidean distances. In a seminal work, (Kesten and
Lee, 1996) proved the CLT for length of minimal
spanning tree using martingale-difference argument
and this served as the motivation for the general CLT
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of (Penrose and Yukich, 2001, Theorem 2.1) that we
referenced earlier. Given this connection, it is natural
to wonder whether for higher k, there is a
correspondance to higher-dimensional versions of
trees. Such a correspondance is estabilished to
‘minimal spanning acycles’ in (Hiraoka and Shirai,
2015 and Skraba et al., 2017) via different methods.
Hence, this ongoing work shall provide limit theorems
for statistics of euclidean minimal spanning acycles.

For a reader interested in exploring more about
this subject, we mention a few open problems. A basic
question would be to derive strong laws and variance
lower bounds for persistent Betti numbers of the
boolean model on an inhomogeneous Poisson point
process. A more non-trivial question would be to
estabilish CLT as well as rates of convergence for

topological statistics of the boolean model on an
inhomogeneous Poisson point process. A starting point
for such studies might be the recent work on CLT
rates for minimal spanning tree in (Chatterjee and
Sen, 2017) and a more general result for CLT rates
of Poisson functionals via the Malliavin-Stein method
in (Last et al., 2016, Peccati and Reitzner, 2016). Now,
if we move onto stationary point processes, there are
no CLTs for topological statistics and rates of CLT
are unavailable even for geometric statistics. Possible
approaches to such a question of rates might be via
deriving more careful bounds on cumulants and then
using (Grote and Thale, 2016, Lemma 4.2) or (Heinrich
and Schmidt, 1985, Theorem 1). Such methods might
also be useful in proving other limit theorems such as
moderate deviations.
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