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We shall review some of the author's recent results concerning geometric and topol ogical features of the boolean model on
a stationary point processes. While study of geometric features of the Poisson boolean model span avery rich literature,
the literature for topological features of the Poisson boolean model is very nascent and that for a general stationary point
process is very little. In particular, the focus will be on asymptotics of geometric or topological statistics of the boolean
model on a stationary point process. We shall mainly give details about topological phase transitions and central limit

theorem for geometric and topological statistics.
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I ntroduction

Consider alocally finite collection of random points P
= {X},, (called as point processes from now
onwards) on a euclidean space R% d > 2. We shall
assume that P is stationary (i.e.,, P + X has same
distribution as’P) and Pissimple(i.e., X, = )ﬂ fori=
i). For example, consider thefollowing three examples

of stationary point point processesrestrictedto afinite
window inFig. 1. Such point processesarisein diverse
applications. For example, point processes might
denote node locations in a network (Baccelli and
Blaszczyszyn, 2009; Baccdlli and Blaszczyszyn, 2010;
Haenggi, 2012; Yukich, 2006), configuration of sites
indisordered or amorphous materials (Hiraokaet al.,
2016; Agarwaaand Shenoy, 2017), datapointsin data
analysis(Carlsson, 2014, Bobrowski and Kahle, 2014,
Adler, 2015; Penrose and Yukich, 2013) and soon. A
common theme in many of these applications is to
build suitable geometric or topologica structuresto
either understand such structures or use them as a
tool to understand the point process itself. We shall
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consider avery simple object constructed from point
processes called as boolean model. The boolean

model is obtained by taking unions of ballsof radiusr
centred at the pointsof P. Moreformally, itisdefined
as C(P; r) := Uy, B(X) where B (x) denotes the
1
euclidean ball of radiusr centred at x € R9. Whileit
istruethat the af ore-cited articles sometimes consider
more complicated structures on P or point processes
on more general spaces, we shall see that there are
still many interesting unanswered questions about the

boolean model on the euclidean spaceitself. For many
questions, it is more meaningful to consider the

asymptoticsof C(P; r) asn — oo where P, =P N

1/d 1/d
n

n
W withW = {-TT} being awindow of volume

n. For example, V,(C(P; 1)) = oo (V, denotes the

volume) for many ‘nice’ P whereasasking the growth
of C(P,,; r) still makes sense. Inthis short survey, we
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shall endeavour to describe some recent studies of
such asymptotics by the author aswell assomerelated
work. The results presented here are more for
Illustrative purposes and hence the reader isreferred
tothe papers (Blaszczyszyn and Yogeshwaran, 2015,
Yogeshwaran and Adler, 2015, Yogeshwaran €t al.,
2017, Blaszczyszyn et al ., 2016] for complete details
and the most general results. After introducing the
necessary notions and notations in sections 1.1 and
1.2, weshall present asample of our resultsin Section
2asfollows:

e  Thresholdsfor topological phasetransitionson
stationary point processes (Section 2.1) : Aswe
vary r, the topology of C(P; r) undergoes two
phasetransitions- fromtrivial to non-trivia and
then back to trivial. Though qualitatively the
phasetransitionsremain the samefor many point
processes, there do exist quantitative
di”erencesin terms of how the points are spatially
distributed in apoint process. To summarisethe
di”erences in words, the more regular the spatial
distributionsof the point processesare, themore
narrower is the window between the two
thresholds. SeeFigs. 1 and 2 for anillustration.

e Limit theory for geometric statistics of
‘asymptotically independent’ point processes
(Section 2.2) : Now, weturn our attention to the
thermodynamic regimefor point processesi.e.,
r € (0; 0o). For many geometric statistics (i.e.,
those obtained as a sumof ‘local information’
around the points) and point processes satisfying
aweak notionof “asymptotic independence’, we
will state central limit theorems assuming
variance lower bounds. We will mention
examples of point processes satifying our
conditions.

e  Limittheory for topological statistics of Poisson
point process (Section 2.3) : We shall consider
topological invariants of the boolean model but
over Poisson point processes. Due to the long-
range dependence of topological invariants, we
are more restrictive on our choice of point
processes. Again, we shall stateour central limit
theorem and mention some related results.

Finally, we shall conclude with some omitted,
on-going and future directions. Wewould also liketo

Fig. 1: Hypergeometric perturbed lattice, Poisson point
process and Negative binomial perturbed lattice
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warn thereader that some of the material hasalready
been covered in the survey (Bobrowski and Kahle,
2014) on random geometric complexes.

Geometric and Topological Satistics

Having described the boolean model, let us now spill
some details on what we mean by geometric or
topological statistics. By geometric, we refer to
functional s of the boolean model that can be obtained
by collecting “local information” about the boolean

model around each point X € .. To be more precise,
geometric statistics (denoted as G have the form)

Gn = GE(R):= ZQ(X, n)! (11)
where ¢ : RYx ' — R (N denotes the space of all

point processesi.e., locally-finite counting measures)
Is a measurable function satisfying the following

conditions: (1) £(x; P) =0if x € P, (2) (istrandlation

invarianti.e., £(x; P+ x) = &(O; P) for al x € RAwith
O denoting the origin and (3) there existsr > 0 such
that £(O; P) = £(O; (PN B(r)) U A) for any locally
finite A C By(r)®. We call r as the radius of
stabilization and such G’s are called as local
geometric statistics. We also alow r to be arandom
variablewith a(stretched) exponentially decaying tail
and we refer to such G_’s as quasi-local statistics.
Examplesof local statisticsin the context of boolean
model include V,(C(P; 1)); ] =0, ..., dwhereV, isthe
jthiintrinsic volume with V, being the volume or
L ebesgue measure, \/J._l being the surface measure
and V, is the famed Euler-Poincaré characteristic.
These are very important statistics which have
applicationsin stereology and image analysis (G’’ring
et al., 2013; Klette and Rosenfeld, 2004; Kong and
Rosenfeld, 1989; Svane, 2017) and have been of
Interest in stochastic and integral geometry (Schneider
and Weil, 2008) sincetheearliest days of the subject.
Examples of quasi-local statistics include nearest-
neighbour distances (i.e., &, (x; P) = distance from
X to its nearest-neighbour in P) and we denote the
corresponding geometric statisticsas L. Thisarises
in computational geometry and combinatorial
optimization (Yukich, 2006) and isalso of interest due
toitsrelation with connectivity of the bool ean model
(see Penrose, 1997).

Fig. 2: Barcode representation of Per, of Hypergeometric
perturbed lattice, Poisson point process and Negative
binomial perturbed lattice



D Yogeshwaran

We use the term ‘topological statistics’ loosely
to denote a collection of statistics that capture the
topol ogy of the boolean model or the underlying point
process and what makes them interesting as well as
dificult is that they cannot be expressed like in
geometric statisticsin (1.1). In this article, the main
example of topological statistics are Betti numbers
BLC(P, 1), k=0, .., d -1 and persistent Betti
numbers 3,(C(P; 1, 9)); k=0, .., d - 1. Though a
precise definition is beyond the scope of the article,
wetry to give aheuristic description now and refer to
(Carlsson, 2014; Edelsbrunner and Harer, 2010;
Munkres, 1996) for details. 3,(C(P,; s)) denotesthe
number of connected components in C(P,; s),
B(C(P.; r)) denotethe number of (k + 1)-dimensional
‘holes’ or equivalently the number of independent k-
dimensional non-trivial cycles. The persistent Betti
numbers are rather meant to count the *holes’ or non-
trivial cyclesthat persist fromr tos.

More generally, as we track the evolution of
C(Pn; r) asr variesfrom 0 to co, we can associate a
birth-time and death-time to every non-trivia cycle
or hole. Since C(P,; r) areincreasinginr, every non-
trivial cycle or hole appearsfor thefirst timefor some
r called the birth-time of the cycle and vanishes (i.e.,
the cycle becomestrivia or theholeisfilled) for some
s(> r) called the death-time of the cycle. The
collection of all birth and death times corresponding
tothekth Betti number isthekth persistent diagrams:
Per, :={(b; d)}. Given Per,, we can infer both the

|
Betti and persistent Betti numbersasfollows:

Bu(C(Z,.r,9) = ZJIQ <r<ss<d],

B (C(7.1) =B (C( ,.r.1)).

Further, instead of representing Per, as points

in R?, we can also represent Per, as barcodes by
representing each (b;; d,) as a bar from b, to d.. We
give the barcodes of Per, for a related model (the
Vietoris-Ripscomplex) in Fig. 2 corresponding to the
three point processesin Fig. 1. For an illustration of
Per of the boolean model of Poisson point process
and two other point processes (Ginibre and Poisson
cluster), werefer thereader to (Duy et al., 2016, Fig.
1). One notable feature of this diagrams is that the
support of the barcode is narrower if the spatial
distribution of pointsismoreregular i.e., the support

of the barcodes is shorter for hypergeometric
perturbed lattice compared to that of the Poisson point
process which is shorter compared to that of the
negative Binomial perturbed | attice.

Persistent diagrams are the key tool in the new
and thiriving of topological dataanaly- sisor applied
topology (Carlsson, 2014; Bobrowski and Kahle, 2014;
Adler, 2015; Ghrist, 2014). In this subject, point
processrepresent data pointsand persistent diagrams
capture the topology of the points as well as the
underlying space on which the points are distributed.
In many applications, it is reasonabl e to assume that
oneisunaware of the space on which the data points
aredistributed and oneisinterested in gleaning some
informati on about the space viathe points. Of course,
our space is euclidean, the simplest possi- ble
underlying space and hastrivial topological features.
However, as we shall see, a complete mathematical
understanding of point process on even this simple
space eludes us. There is some progress about
understanding the topology on more general spaces
in (Bobrowski and Mukherjee, 2015; Bobrowski and
Weinberger, 2017) but describing these results is
beyond the scope of thisarticle.

Point Processes

We shall now introduce some naotions and examples
related to stationary point processes and refer the
reader to (Ben-Hough et al., 2009; Blaszczyszyn et
al., 2016; Yogeshwaran and Adler, 2015; Blaszczyszyn
and Yogeshwaran, 2015; Schneider and Weil, 2008;
Last and Penrose, 2017) for details.

By stationarity we have that E(P(B)) = AV,(B)
for any Borel set B. Asastanding assumption, we set

X € (0; o0). Note that a point process can be viewed
asarandomset { X} or asarandom counting measure
P = 56,(-). We set a®(.) to be the kth order
factorial moment measure on (R%)* and assume that
it has aRadon-Nikodyn density p(.) with respect to
the Lebesgue measure, also called k-point
correlation functions. If o is locally finite, there
existsafamily of probability distributions called the
up to an a®-null set of (RYK and satisfy the
disintegration formula (also known as the refined
Campbell theorem)
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quantificationseither involve the stronger property of
negative association or are very much dependent on
the behaviour of the k-correlation functions near the
diagonal andthevoid probabilitiesfor largeballs. Thus,
acomplete statement is beyond the scope of this paper
but as a sample, we shall mention the result in the
special case of the Ginibre point process.

Proposition 2.2. (Yogeshwaran and Adler,
2015, Theorems 4.4 and 4.6). Let P be the Ginibre

point process P, on R If r  isasequence of radii
such that either r*9%4 = o(n!) = w((log n)¥4), we
have that asn — oo,

P(B(C(P,r))=0)— 1, k=1,..,d-1
and rn(k+1)(k+4) :m(n‘l) and r,= O(]_)’ then asn — oo,
PB(C(P,r)) =0 —1,k=1,..,d-1.

Further if r? = ((logn)”*) thenP(3(C(P,, 1))
=0) —1lasn— oc.

Asacomparison, for the Poisson point process
on R?, the above proposition holds with (k + 4) (k +
1) replaced by 2(k + 1) and /4 by 1/2. Thus, this
substantiates our heuristic argument that “more
regularly the pointsaredistributed spatially, the support
of the persistence barcodes are narrower”. The key
to the proofs of the above result is first using the
refined Campbell theorem (1.2) to computefirst and
second moments for suitable geometric statisticsand
using them as an approximation for topological
statistics.

Geometry of the Boolean Model

Thermodynamic regime. Having broadly etched the
thresholdsfor topological phasetransitions, wewish
to focus on distributional results within the different
radii regimes. In this survey, we shall focus on
thermodynamic regime (i.e., r € (0, c0)) asit hasa
rich set of results. We call this the thermodynamic
regime as the asymptotic density of ballsintersecting
awindow W, (i.e, n"i{i : B(X) N W_ = 0})
converges to a constant. Recall the definition of
geometric statistics (1.1) and score functions defined
therein. Let us consider the following simple score
function € k > 0 of the boolean model : Setting Xy=
X, we define

& (% P) = Z INB (X)) = 1.

Denotethe corresponding geometric statistic as
Essentidly G, := G*(P,). Essential G, countsthe
number of k-wiseintersectionsin the boolean model
C(P,, r). In combinatorial topology, G, represents
the number of k-simplicesin the Cech complex onP_
formed by balls of radius r (see Edelsbrunner and
Harer, 2010) for aprecise definition). The advantage
of teh Cech complex isits combinatorial nature and
at the same time, it is homotopy equivalent to the
boolean model because of the nervetheorem (Bj”’rner,
1995, Theorem 10.7). Simplicesarethe building block
of any complex and hence one of the first quantities
of interest in a random complex. Thus, we can add
G, aso to the list of geometric statistics we have
aready encountered. Weshall now illustrate our results
for such geometric statistics by stating afew special
cases here. Firstly, for a score function &, define

o%(&) = E€X(O, P)pM(0)

+ [, (My(0.9-m,(©0))dx  (2.2)

&%y PpP(xy,.... X)) for p =1, xl,...,xp € RY with
E and p®(x x,) being the Palm expectation

X1 seeerX 10
and correlation functions respectively as defined in

Section 1.2.

where we define m(p)(x ,...,xp) =K

Theorem 2.3. Letke€ Nand P =P or Pis
adeterminantal point processwith kernel K(x, y) such

that |K(x, ¥)| < ¢(]x — y]) where ¢ is exponentially

decaying (i.e., liminf, t? loge(t) < 0 for some b
> 0). Then, we have that

k=0 Z(E.,k)-

limn™ VarG,

N—o0

Additiondly, if VarG,, =Q(n") for somev < (0O,
00), thenasn —

[ Bu(C(E.1)). 2

where Z denotes convergencein distribution and N
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denotes standard normal random variable.

Theorem 2.4. Let P be a stationary

determinantal point processon R9 asin Theorem 2.3.
We have that for al j = 0,...,d,

limn™VarV,(C(R,.1) =0 *(&,);

limn™VarL, =6?Ew),

N—oo

where §j; j =0,...,d arethe scorefunctions generating
the corresponding intrinsic volumes \/J sasin (1.1).

Moreover, if VarV,(C(R,r)) = Q(n") for somev e
(0, 00), thenasn — oo

V,(C(B,, 1)~ BV, (C(E,, 1))
VarV, (C(7,.1)

Similarly, if VarL, = Q(n") for some v € (O,
o0), thenasn — oo

L-EL,

JVarL,

Remark 2.5. (Remarks on Theorems 2.3 and 2.4).

(1) Firstly, we again re-emphasize that the above
theorems are illustrative and results as above
hold true for more general point processes
satisfying thefollowing condition:

For all x;,...x,  withs:=min g, . I -
X,j| we have that

|p(P+Q)(xl,...,xp+q) - pP(x X))
p(q)(xl,_,_,xp+q)| <ChqUCheS) (2.3

for afast decreasing ¢ and for al k> 1, C. <
00, ¢, > 0. Theorem 2.3 holds for this class of
point processes provided they satisfy some
moment conditions. Apart from the two
examples mentioned above, many «-
permanental point processes also satisfy (2.3).

(2) For applying Theorem 2.4 to general point
processes, apart from satisfying (2.3) and some
moment conditions, it isnecessary for i nfI< c.>0
andC, = O(k*K) for somea < 1. Such examples
asexpected arerarer. Apart from determinantal

©)

(4)

©)

(6)

()

point processes mentioned in the aboetheorems,
certain Gibbs point processes, finite-range
dependent point processes and some Cox point
processes are the well-known examples. We
refer the reader to (Blaszczyszyn et al., 2016,
Section 1.4) for the general and precise
statements and (Blaszczyszyn et al., 2016,
Section 2) for more examples and applications
cesses mentioned in the aboe theorems, certain
Gibbs point processes, finite-range dependent
point processes and some Cox point processes
are the well-known examples. We refer the
reader to (Blaszczyszyn et al., 2016, Section
1.4) for the general and precise statements and
(Blaszczyszyn et al., 2016) for more examples
and applications.

Wereferto (Blaszczyszyn et al., 2016) for weak
laws and for more detail ed variance behaviour.
For example, it is shown that if variance is not
of volume order, it is at most of surface order.
However, it is a challenge to prove suitable
variance bounds except in specific cases.

We refer to remarks in (Blaszczyszyn et al.,
2016) for moredetailson the previousliterature
and comparisons. However, we mention that
similar resultsfor Poisson point process and for
certain Gibbs point processes was proven in
(Baryshnikov and Yukich, 2005 and Schreiber
and Yukich, 2008) respectively. Refer to (Yukich,
2013) for a detailed survey of these resuilts.

Infull generality, the abovetheoremsare stated
for linear functionals of the random measure

HE = ZXER& (X,’Pn)Sn,wx )-.

In arecent pre-print (Ram Reddy et al., 2017),
these results have been extended to random
fieldsonfinitely generated Cayley graphs.

The key tool to the proofsisto derive a series
expansion for the mixed moments m(p)(-) using
the factorial moment expansion for functionals
of point processes (see Blaszczyszyn and
Schmidt, 1997). Using the above men- tioned
expansion, we show clustering as in (2.3) for
mixed moments and from there, prove the
central limit theoremviathe classical cumulant
method.
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Topology of the Poisson Boolean Model :
Thermodynamic Regime

Inthis section, we shall state the strong law for certain
topological statistics of the boolean model - the Betti
numbers and the persistent Betti number on ergodic
point processes and the central limit theorem under
the further assumption that P is a stationary Poisson
point process. For a boolean model, the non-trivial
Betti numbers are B, 0< i<d-1.

Theorem 2.6. Let P be an ergodic point process

such that E(P(B)™ < oo for al m e N and for al

bounded Borel subsetsB. Let 0 <r < s< oo. Then,
for 0 < k < d - 1, there exist constants

B, (r,s) €[0,) such that

By (C(P,.1,8) = B (r,9).

Theorem 2.7. Let P be the stationary Poisson
processandand 0 <r < s<oo. Then, fork € {1, ...,
d — 1}, there exists a constant o.Z(r,s) €[0,«) such
that, asn — oo,

n“VarB,(C(R,r,s) — a/(r,s),

nt'

and
n?(B, (C(R,1,5) - EB, (C(R,1,9))) = N(0,a.{(r,s)).

Remark 2.8. (Remarks on Theorems 2.6 and 2.7).

(1) For the case k = 0, the above results are well-
known from (Penrose, 2003). The aboveresults
for the case r = swas proven in (Yogeshwaran
et al., 2017, Theorems 3.5 and 4.7) and later
extended to thecaser < sby (Duy et al., 2016;
Theorems 1.11 and 1.12).

(2) Itisnot necessary that B,”(r,s) >0 but it holds

for many well-known point processes (see
Yogeshwaran and Adler, 2015; Theorem 3.3 and
Duy et al., 2016; Theorem 1.9). In fact, the
strong law has been shown to hold for
inhomogeneous Poisson point processes aswell
in(Duy, 2017).

(3) Asfor variance asymptotics, whileit is shown
in(Yogeshwaran et al., 2017; Theorem 4.7) that

a/(r,r) >0 no such assertion can be made about

aZ(r,s) for r < s. Further, variance lower

bounds for inhomogeneous Poisson point
processes for 3,, 3, , have been shown in
(Yogeshwaran et al., 2017; Lemma 4.3) and
we wish to mention that using the construction
from (Bobrowski et al., 2016), it might be
possible to show lower bounds for other Betti
numbers.

(4) Theproof of the strong law rests on exploiting
near-additivity of (persistent) Betti numbers
aong with ergodicity of the point process. The
central limit theorem proceedsvia a general
martingale-di”erence based central limit theorem
for Poisson functional derived in (Penrose and
Yukich, 2001, Theorem 2.1). The key step in
theproof isto verify stahilization of thefirst-order
difference operator or the add-one cost of
B(C(P,,r,s). Forthecaser =s, thisisdonevia
the Mayer-Vietoris exact sequence but for the
caser < s, thisisdoneviaamoredirect analysis
of the add-one cost.

Omitted, On-going and Future Directions

Asisto be expected in such a short survey, we have
omitted numerous related results of which we shall
refer to the latest here. The three notable omissions
are the work on discreterandom complexes (see the
survey Kahle, 2014), thresholds for vanishing of
homology inrandom geometric complexes (see
(Bobrowski and Weinberger, 2017, Bobrowski and
Oliveira, 2017) for the most recent results) and e”ect
of thetail of the density of theinhomogeneous Pois-
son point process on thetopol ogy (see Owada, 2016).
We refer the reader to the surveys (Kahle, 2014,
Bobrowski and Kahle, 2014) for moreon both discrete
and geometric random complexes.

In an on-going project, we are extending the
[imit theoremsfor Betti numbersand persistent Betti
numbers to lifetime sum of barcodes i.e.,

J: B.(C(P,,1)). inthecaseof k=0, thiscorresponds

to the length of the minimal spanning tree on the
complete graph on Pn with edge-weights being the
euclidean distances. In aseminal work, (Kesten and
Lee, 1996) proved the CLT for length of minimal
spanning tree using martingal e-difference argument
and this served asthe motivation for the general CLT
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of (Penrose and Yukich, 2001, Theorem 2.1) that we
referenced earlier. Given thisconnection, it isnatural
to wonder whether for higher k, there is a
correspondance to higher-dimensional versions of
trees. Such a correspondance is estabilished to
‘minimal spanning acycles’ in (Hiraoka and Shirai,
2015 and Skraba et al., 2017) via different methods.
Hence, thisongoing work shall providelimit theorems
for statistics of euclidean minimal spanning acycles.

For areader interested in expl oring more about
thissubject, we mention afew open problems. A basic
question would beto derive strong laws and variance
lower bounds for persistent Betti numbers of the
boolean model on an inhomogeneous Poisson point
process. A more non-trivial question would be to
estabilish CLT as well as rates of convergence for
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