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ABSTRACT

In this note, & condition is deduced under which a polynomial pa(x) having the Rodrigues
formula pa(z) = 1 i)” {w(:c) x| X (x)]"} satisfies the second order differential equation
kgw(x) \dz

A(z)y"+ B(z)y’+C(z)y = 0.

When X(x) is a quadratic expression in z, all the classical polynomials are included in pu(x).

1. Tricomi* has defined the orthogonai polynomials p,(x), which satisfy a
differential equation of the form

A@)Y'+B@)y +ry=90 .. .. .. .. 1

where A(z), B(x) are independent of n, and A, is independent of z, having the
Rodrigues formula

2\
p,(x)=l;:£(?)(&-z) [w@){X@)}"] .. .. @

where K, is a constant and X is a polynomial in x of degree k whose coefficients are
independent of n.

In the present note we have derived a condition under which the polynomials
having the Rodrigues formula (2) should satisfy a differential equation (1), where
now A, is also a function of z; unlike in the work of Tricomi, A(z), B(x) may
contain =x.

We have discussed in full the case when X is quadratic, which includes the
Bessel polynomial in addition to the polynomials of Legendre, Gegenbauer, Tcheby-
cheff, Jacobi, Hermite and Laguerre ; and at the end we mention the case when X
is a cubic polynomial,

2. We shall prove the following theorems :

Theorem (a).t The condition that the polynomials defined by

. 2\
p,(n, x) = E;}—('z") (Z’li) (W(x)X') . .. e (3)

* I am grateful to Prof. Erdélyi for bringing Tricomi’s (1955) work to my notice.

1t I am indebted to Dr. M. Venkataraman of the University of Madras and Prof. C. T.
Rajagopal of the Ramanuvjan Institute of Mathematics, Madras, for restating the original
lemma in this convenient form, when the author was at Madras.

VOL. 24, A, No. 5.



310 A. K. RAJAGOPAL: A NOTB ON THE UNIFICATION

[(m, n) are positive integers] may have a second order differential equation is
_ PO Y
X4 (nXO4 — X =0 .. . R (Y]
w

The numerals appearing here (and henceforward) as superseripts denote the orders
of differentiation ; X is a polynomial of degree k in z (k¢ < m) and

10gw=—det . .o N .o (5)

where A(?) is a polynomial of degree (k—1).
Proor. Lety=w.X";
. @
then Xy = (nX(l)+ — X) Y.
Differentiating this (m+1) times and equating the coefficients of y™*-1 . .. 1o

zero, in order to get a second order differential equation in y™ = (d%:) [w(z)X"],

we get the set of conditions :

 w® (r-1)
(m42—r) X" —y (nX(')+ = X) =0 )
forr=3,4,...... , (m+1),
Changing r into r—1 we obtain
) (£) (n—2)
(m+3—7r) X0~V —(r—1) (nX<‘>+ —a:; X) =0 .. .. (6)
Differentiating (6') and subtracting from (6) we get
w® Y
XM+ (nX(‘>+ = X) =1 .. .. - (D

This procedure can be repeated for every adjacent pair of (6), and (7) holds for -
r=4,5,...... , (m+1).
From (7) we have for r = (m+1)

i (m)
Xt 4 (nX(l').i. a.iQX) = ().

w

w

@ (m)
Putting this in X+ e (m41) (nX 42 X) = ()
obtained from (6) with r = (m+1), we find

G\ )
X+ =0, and (X -"—:o—') =0

[0
implying thereby that X can at most be a polynomial of degree m ; and X % =

—h, a polynomial of degree one less than that of g.
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__ [
Hence log w = — J (D) dt.

If X is of degree k, then r = k41 in (7), and proceeding as above, we can
show that & is of degree (k~1).
Hence the theorem.
Cor. 1: If X is of degree k, p,(n, x) is of degree (nk—m).
Cor. 2: The differential equation which (3) satisfies under these conditions is
Xy 4 [(m—n+1) X(‘)—h] v@ 4 [(m+1) (Jm—n) X4 nh
—(m—n)(log @) WX]v=0 .. (8)

From now on, we consider the case m = n.
Theorem (b). The least degree of X which makes { p,(2)} an orthogonal set is 2.

Proor. Let X be of degree k and let all the derivatives up to and including
{n—1)th of (wX™) vanish at (a, B). Consider the scalar product

B
L Py P > = J‘ w(x)pn(x)pn(x) dx

(=™ g a\"
=TJ “’X"(d;) [2.(2)] d=

o
=0ifm>n.(k=1),
for by Cor. 1, Theorem (a), p,(x) is of degree n. (k—1).
Similarly < p,, pa =0 if n>m.(k—1).

Therefore the simplest case in which the sequence {p,(x)} forms an orthogonal
set is when k = 2, -

3. The classification of the classical orthogonal polynomials

From theorem (b) we see that the simplest of all forms of X is a quadratic, and
therefore let

X = ax24-bx+c
= | pte
log w = J a2 tbtte””
¥ pthg ¥ pta
et la\ T) oo
Hence p,(x)=—1—eJ. bt (a‘l—x) [e f wrrhr (ax24+-bx+-o)" o 9

This, from Theorem (a), Cor. 2, satisfies the differential equation
(az®+bz+-c)y)+[(2a—p)r+b—gly¥) +n[p—(n+1)aly = 0 - (10)

By Theorem (), Cor. 1, p,(2) is of exact degree n and by Theorem (b) { p,(x)} forms an
orthogonal set,
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It is curious to note that Gauss was the first to study a differential equation of
the form (10) and its connections with the hypergeometric equation ; the polynomial
solution of (10), namely (9), may justly be christened ‘ Gauss Polynomial’.

We give below the connection of (9) with all the classical orthogonal polyno-
mials ; the notations employed here are as in Erdelyi (1953). This suggests p,(z) to
be termed ¢ Hold-all Polynomial’.

Polynomial a b ¢ P q K pu(z)

Jacobi 1 —1 0 —A—p A n!p, AW (22—1)
Legendre 1 0 -1 0 0 2"n ! p.(x)
Hermite 0 0 —1 -2 0 H,(x)

Agsociated Laguerre 0 1 0 1 —a n ! L,*x)
Associated Bessel 1 0 0 2—=2A —L pY{z, A, p).

(Krall and Frink (1949))

In this manner one arrives at an extension of Jacobi’s polynomial. We may
note that the above list exhausts all the orthogonal polynomials which can be
obtained by taking k =2, i.e., X, a quadratic.

4, Discussion of the case when X = ax8+bx2+4cx+d

We give below two non-orthogonal polynomials, which may be of interest,
derived by taking a cubic polynomial for X.
If we take X = ax3+ba2+4cx+d,

z

_ pt24-gttr
then log w = J AP L oitd dt .. .. .. (A1
The condition (6), with » = 3, shows that
p=Cn+la .. .. .. .. .. 12

The polynomials thus defined are of degree '217,, and satisfy the differential
equation
(az8-+ b2+ oz d)y )+ [—2(n—1)aat+ (2b—g)o+ e — 1)y
t+rl(r—laz+g—@n+1)bly =0 .. (13)

(@) Let us choose g =0=b=¢=d,a=1, r= —2 so that we have

A.(x) = e; -1 (;—a;) (e_ 7 z"-l) .e . .. (14)
satisfying the differential equation
230 —2 [(n+1)22—1] v 4n(n—1)zv = 0 - -« (15}
(b) Letga=—b=r=1;¢c=d=¢q=0. Then

8,(2) = e” 22" (x—1) (.;5) (e_; (a:-—l)"") .. .. (16)
satisfying the differential equation
22(x—1)y¥ ~[2(n—1)x242n+ 1]y +2n(n—1)y =0 .. o (17)
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