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The third order linear system simulation by electronic analog computers is
generally done with two or more operational amplifiers by techniques that are
very well known. A method has been discussed which shows that third order
linear systems can be simulated with the aid of only one operational amplifier
and & few two-terminal impedances consisting of resistors and capacitors only.
Three possible circuits capable of simulating a particular case of the general
third order linear system have been presented and the resulting third and
fourth degree non-linear algebraic equations have been solved for determining
the validity conditions and the circuit component values. The method of
simulation is simple. If the validity conditions are satisfied then a physically
realizable network consisting of one operational amplifier, three capacitors,
and five resistors exists and the component value may easily be calculated
from the equations developed in the text.

INTRODUCTION

In analog computation need often arises for the simulation of third order
linear systems and this is generally done with the aid of two or more
operational amplifiers. The purpose of this paper is to indicate a method
whereby third order linear systems can be simulated with the aid of only one
operational amplifier and a few two-terminal impedances consisting of only
resistors and capacitors.

Special features of this technique of simulation are that only one
operational amplifier is required and this can be of significant advantage to
establishments with small or overloaded computing capacity. The other
features of this method are that the choice of standard value capacitors may
be possible and that, in gemeral, it requires a fewer number of resistors and
capacitors.

TEm®RD ORDER SYSTEM SIMULATION

A network for the simulation of third order linear systems is shown in
Fig. 1, and its transfer function as shown in Appendix I is
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Fig. 1. Block diagram of a network for simulating third
order systems.

(a) Block diagram of an operational amplifier and its
associated input-feedback networks.

W

(b) Equivalent circuit of Fig. 1 (a).

A third order linear system is characterized by a transfer function of
the form
_ b82+b:iS+bg
a383+a282+a16’+1 !
where a’s and b’s are real positive constants. .
An inspection of (1) will indicate that simulation of the system as charac-
terized by (2) is possible provided the admittances (¥’s) are properly chosen.
'~ The discussion in this paper will be confined to the type of systems for
which :
by =by =0 and by > 0,
that is to the simulation of systems characterized by the transfer function
agS3+a,82 4+, 841"
- Simulation of the system characterized by (2a) with the network of Fig. 1
would ‘require at least three capacitors and the three possible circuits,
employing three capacitors each, are shown in Figs. 2(a), (b) and (¢).”

F(8) = (2)

F(8) = (2a)
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ag = ?3804060& ay > (Uo‘f‘ 1).
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(c) bo = Gg, @y = [(Bag+3)RCe+(2a0+1)RC5],
ag = 3aoR2C3Cs+agRBCeCy+(2a9+1)R2C6Cy, a5 = aoR3CC¢C,.
(i) ayag > agag, (ii) A <O,
( +nf oo
)2 > YA4+YB for A’ >Oor >4 —A/ =P cos 1—'—-16) for A’ <0.
3 (5a,+3) +3 3 (5a +3) \ 3 3 3
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(@) Yq, Y, and Y4 capacitative
A network for simulating the system of (2a) with

8C,
Y,=8C,
Y = 8Cs
Yy=Y,= V5= >
1=ly=Its=5 .
1
and Y7 = Ys = t-x—I-—e (
is shown in Fig. 2(a).
Substituting (3) into (1) and simplifying
o2
By _ _ (I43a)
By al42a) ] . [
(1+3 T30 B0eCuCes? +[( T30 BCo(Cot 00|82+ | e ROx+
(1 +oc)ROG]S+1
Equations (2a) and (4) will be identical if
o2
Rkt
ay = (1+3a) Ti+(14a)Tg
__a(l4-2q)
az—mTa(T1+T2) ..
ag = (1+3¢) TTanl T2T31
where
Tl = Roz
Tg = .R04
Ty = RC,

(3)

(6)

(7

(8)

(9

Simulation of the system of (2a) with the network of Fig. 2(a) is possible
only if the values of «, T'y, T'; and T'3 obtained as the solution of (56) through
(8) are real and positive. It is, therefore, required to determine the values
of «, T';, T; and T3 in terms of the known real and positive constants by, a1,
a; and ag, and find the conditions, if any, under which «, 7'y, T's, T's are real

and positive.
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The solution of (5) gives

3bo+ A/ 903+ 45,

d———z——-— . .. . .. (10)

as the negative root is inadmissible.
Eliminating T'; and 7’3 from (6) through (8) gives a cubic

78 _ ay(14 3a)

1 @

a2(1+zx)(l+3a)2T az(1+o)(143a)? 0
1= =

2
it o2(142a) o3 o

(11)
which will have either one real and two complex roots or all the three real
roots, and these can be determined by methods that are very well known.
It is obvious that (11) can have no negative real roots and therefore its real
roots will be all positive. The corresponding values of T, and 7T'; also will
be real and positive, if, as shown in Appendix II,
ag(1l42e) '

al>m. .. .. .. .. (12)
Therefore, if the condition of expression (12) is satisfied, then it is possible to
simulate the systems of (2a) with the network of Fig. 2(a). The circuit
component values can be obtained by solving (11) for 7'; and substituting
this value of 7'y and that of « as obtained from (10) in (6) and (8) to determine
T3 and T respectively. Having thus determined 7'y, T, and 7's and choos-
ing a convenient value for any one of the three capacitors—(say C2)—it is
easy to calculate the values of R, €4 and (s with the aid of (9).

(b) Y4, Yg and Yy capacitative

A second possible choice, as shown in Fig. 2(b), is to make

Y, =8C,
Ye = SCB
Yg = 8Cg
] } N ¢ £
Y]_'—'-“-Yg"—" Y3= Y5=R-
1
1= ook
Substituting (13) into (1) and simplifying
(ﬁ)
By _ _ 3 .
B | % R3CC038%+ }{3a0R20,Co +(2a0+ 1) B*Co05] 82+ [ (5uo+3) RCe +

(ao+DROGIS+1 .. (14)
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Equations (14) and (2a) will be identical if

bo=%9 . (15)
6y = §[(Bag+3)Te+(ap+1)T's] .. ... (16)
r \
ag = 32 [8aoT1+(2a0+1)T5] .. .. .. .o (17
a3=%—°T1T2T3, O£ 1)
where
T] = R04
T, = RCq e .o (19)
T3 = ROS

Eliminating 7'; and 7T'; from (16) through (18) gives a cubic

s _ 3a, e 3as(5ag4-3) 9a3(5a0+3)

37 (@o+1) "3 (ag+1)(2a0+1) " * 7 (ao+1)(2a0+1)

which will have either one or all the three real and positive roots. It can be
shown by the process of reasoning similar to that explained in Appendix II,
that the corresponding values of 7'y and T'; will be also real and positive if

=0 .. (20)

a1>Z—2(ao+l). R -1 )

Therefore, if the condition of expression (21) is satisfied then it is possible
to simulate the system of (2¢) with the network of Fig. 2(b).

(¢) Yg, Yo and Y, capacitative
A third possible choice, as shown in Fig. 2(¢), is to make

Y2=SCQ
Y6=SCQ
Y7=SO7
1 . o .. (22
Y1=Y3=Y4=Y5=E ( )
1
Yo =30k

Substituting (22) into (1) and simplifying’

Eo . a0 .
El - aoR302030783 + [3aoR20203 +aoR20207 + (200 +1 )R20607]Sz+

[(5a0+3)BCe+(2a0+1)RC7IS+1 .. (23)
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Equations (23) and (2a¢) will be identical if

bo=ag .. ce e (24)

ay = (5a0+3)T2+(2a0+1) N .1

ag = 3aoT1Tg+aoT1T3+(2&0+1)T2T3 .o . (26)

ag = agTTeTy, .. . .. . .. .27
where

Tl = RCZ

TS = RC7

Eliminating T'; and T'3 from (25) through (27) and simplifying
(5a,+3)* T, —2a,(5a,+ 3)T's+[a +-a,(5a,+3) 17
—(ayas—aya3)T's+a1a3 = 0. .. . .. (29
Now, (29) has four variations of signs if
a1ag > agas . .. .. .. (30)
and according to Descartes’ rule of signs, the number of roots that will be
real and positive can be either four, two or zero. It is obvious, by inspection,
that (29) can have no negative real roots. Therefore, (29) will have two real
roots which will be positive if its discriminant is negative and the correspond-
ing values of T's and T';, as shown in Appendix IIT, will be real and positive
if

2 a 3/ 7 3T .
3(5a0+3)>\/A+\/B for A'>0

or
+\/—-cos§
1 _a < —p (ﬂ é) :
3(5%_'_3)> J cos 33 for A" <0

- [=P 749
J3 cos 3+3)

V21
2pV/ —p

The roots of (29) can be easily determined by techniques that are very
well known and discussed in textbooks on higher algebra. Having thus
determined 7', by solving (29) and knowing a, directly from (24) the corres-
ponding values of T's and T'; can be very conveniently determined from (25)
and (27).

where

cos ¢ =
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AprPENDIX I

ANALYSIS OF AN OPERATIONAL AMPLIFIER AND ITS ASSOCIATED NETWORKS

Block diagrammatic representation of an operational amplifier and its
associated input feedback networks is shown in Fig. 1(z) and its equivalent
circuit is shown in Fig. 1(). The nodal equations of the network, by inspec-
tion, may be written as

E1Y1=(Y1+Y2+Y3+Y8)E2_Y3E3_0.Eg—YBEO .. . (11)

0= —Y3E2+(Y3+Y4+Y5+Y7)E3—Y5Eg—Y7E0 ‘e (12)
0=O.EZ—Y5E3+(Y5+Y6)Eg—Y6EO .. . . (13)
0= —Ygliy— Y1Ey—(Yo— Yo Byt (Yot Yo+ Yo) By S (14

and the characteristic determinant is therefore

(Y1+Y2+Y3+Y§)i —Y3 - 3 0 ] —YS
_Y3 ’ (Y3+Y4+Y5+Y7); ‘—'Y5 s —Y7
A= (1.5)
0 ] -Y5 3 (Y5+Y8)J ""YB
—YB ’ —Y7 ’ _(Yﬁ—ya): (Y6+Y7+I’,8)
whence
(Y1+ Yo+ Y3+ Ys), —Y; , o BT
—Y, (Ys+ Y+ Ys+Yy), —Y5 , 0O .
E():'- =A
0 ; —Y; » (Ys+7Ys), 0
—Yg ; = » —(Ye—Ya), 0
(1.6)
assuming the gain of the amplifier to be very large, i.e. Y, — oc, then
(Y1+ Y2+ Y3+ Yo), —Yy » B1Yy
E0=—Ya ""Y3 ,(Y3+Y4+Y5+Y7), 0
0 , —Y , 0
(Y14 Y4+ Y3+ 7Ys), —¥, , —Ys
=~-Y, —Y3 (Y34 Y4+ Ys+Ye), — Y7 . (L7)
0 , —¥s , =Yg

Simplifying and rearranging equation (1.7) gives the transfer function
Y, Yg Yﬁ ' 1 8)
Vo(¥1+ Vot Yo) (Yot Vot Yt Vo) + Vs ¥ g( ¥4t Yot Xq)+
Y5Y7(yl+ Y2+ Y3+ Y8)+ YgYﬁYg

By _ _
B
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It should be borne in mind that equation (1.8) is obtained on the assump-
tions that the amplifier has infinite input impedance, very wide band-width,
very large gain and very low output impedance.

ArrENDIX II

ConpiTioNs FOR PosiTive Rearn Roors

Simulation of the third order system as characterized by (2a) by the
circuit of Fig. 2(a) is possible only if «, T;, T, and T3 obtained as the solution
of the equations

o2
o
al=(‘1—_i_“3‘c[)T1+(1+°‘)T3 .. .. .. (2.2
_ o1 420}
% = 5w Ty(T1+T5) .. .. ..o (23)
4y = o T.T,T 2.4)
3= 43 123

are real and positive ; where bo, a; a; and a3 are real and positive constants.
Eliminating 7', from equations (2.3) and (2.4)
_ a(1+43a) 1 _a3(1+3a)‘ 1 25
Ts—mj‘ Tl %*—*‘az 11% .. . . ()
and plotting (2.2) and (2.5) in the 7'y, T's plane will give respectively a straight
line and a curve of the form shown in Fig. 2.1. The intersection of the
straight line with the curve in the first quadrant will yield real and positive
values for T'; and T'5 and from (2.4) T, will also be real and positive.
Now, the curve of (2.5) and the straight line of (2.2) cross the T's = 0-
axig (i.e. T';-axis) at

- ag(14-20)
Tl - Qg . A
and
T’ = al(l +3a)
1 o
respectively. Therefore, if
a3(1+2a) 26
a1>a——————2(1+3a), . .o ‘e . ()

then the intersection of the straight line with the curve will give 7'y and T's
both positive and real.
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Now, on examining Fig. 2.1, it will be evident that the straight line and
the curve, under certain conditions, can intersect at three points giving three
sets of real and positive values of 7'; and 7’5 and the corresponding values of
T, will also be real and positive. Eliminating 75 from (2.2) and (2.5) gives

a cubic
3 ay(143a), 2 as(l+4e)(143ax)2 ag(l+a)(143x)2
Tl_ o 1 «2(1 420 Ty— pr =0 .. (2.7

whose all the three roots will be real and positive if its discriminant is negative.
The roots of the cubic of (2.7) can be easily determined by techniques
that are very well known and discussed at length in texts on higher algebra.

= Qa(1434) | ag(1+3d) 4
T Tafreax) T, o2 r?

’

a,:

T, +(/¢) T
(’*,3“) (] ( ) 3

Fre. 2.1. Determination of conditions for real positive roots.

AprrENDIX IIT

CoNDITIONS FOR PosITive REAL RooTs OF A QUARTIC

Simulation of the third order system of e(iua,tion 2(a) with the circuit of
Fig. 2(c) is possible only if @y, Ty, T2 and T3 obtained as the solution of

eguations
bo=ag .. .. . .. .. .. .. (3.1)
ay = (5ag+3)To+(2a0+1)T3 .. .. .. .. (3.2
ag = 3a;T1To+aoT 1 T3+ (2a¢+1)T:Ty .. .. (3.3
ag = aoThTTs .. .. " . .. .. "L (3.4)

are real and positive ; ao, @1, a3 and a3 being real and positive constants.
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Eliminating T'; from equations (3.3) and (3.4)
3a
ag = ﬁ+%3;+(2a0+1)T2T3 ee ... (85)

and from equations (3.2) and (3.5) after simplification and re-arrangement

3(13

T = Qg % —01T2+(5ao+3)T§ .. . .o (36)
3

T,
and ’ .
(5ao+3)*T3—2a,(5a9+3)Ta+[ai+ag(5ag+3) [T — (2105~ agas) Totayag = 0 (3.7)

The conditions for positive real 7'y, T, and T3 can be conveniently
obtained graphically by plotting the curve of (3.6) and the straight line of
(3.2) in the Ty, T plane. The shape of the curve will depend upon the
values of ag, a,, a, and a3 and will assume any one of the three forms sketched
in Fig. 3.1. It will assume the form of either Fig. 3.1(a) or 3.1(d) if the dis-
criminant A’ of the cubic obtained by equating (3.6) to zero is positive.
That is, if

A =4p54272>0 .. .. .. .. (38

.then the only real root which will be positive is

T, = \/A+\/B+ T +3) (3.9)
where
A= _+ ’\/qz I
__9_ [P
B 2 47727
aZ
— ag _ 1
P= T Gagt3) 3(5a9+3)°
Y dlaz _2 "’i
1= = Bag+3) " 3(5ag+3)° 27 (5ag+3)°
and is represented in the sketch as point M. And if
' A =4p84272 <0 .. .. .. .. (3.10)

then the cubic has three real roots all of which will be positive and the largest
of the three roots is represented as point N in Fig. 3.1(c). The largest of
the roots can be determined by solving the cubic.

Now, if the discriminant of (3.7) is less than zero then it has two real
roots, which means that the straight line of (3.2) and the curve of (3.6) inter-
sect at two real points.
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~ \
T 2 0.
3 1 | "T;[(Snb'b 3)1:- LA “z‘z; °’a]:2§;"

—/\\ :
M T,
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Fre. 3.1. Determination of two real and positive roots of a quartic.

Since it is obvious, by inspection, that (3.7) can have no negative real
roots, therefore the two real roots will be positive.

The corresponding values of 7'; will be real and positive if the distance
from the origin of the point of intersection of the straight line with the 7's-
axis is greater than that of point M for the case A’ > 0; that is
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.1
(Baq Gacky > VAV Bzt a+3) (3.11)
or for the case A’ < 0 L
-—p ¢ ay
(2\/ -8 3t S ae T+ 3)
TP o7 (312
(5a0+3 \/ '°°S(3 3)+3(5a0+3) (3.12)

—P é a,
_2\/ 3 °°S(3+3)+ 3(5a0+3)

V/'21q
2pV —p
If T, and T3 are real and positive then from (3.4) it is obvious that 7'y
is also real and positive.

where

cos ¢ =





