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The differential equation governing the strength of an acceleration wave in
magneto-elasticity is found, which shows that the strength does not remain
constant at the front and that the wave has a distinct possibility of ter-
minating into a shock,

1. INTRODUCTION

Anisotropic wave propagation has been studied much during recent years
(Bazer and Fleishman 1960; Lighthill 1960; Ludwig 1961; Duff 1963). These
studies, however, have been limited to linearized problems. In a number of
papers recently communicated by us (Nariboli 1966 ; Nariboli and Ranga Rao;
Nariboli and Juneja communicated) we developed a technique based on the
theory of singular surfaces (Thomas 1957) and on the ray theory (Courant and
Hilbert 1962). This enables us to discuss anisotropic wave propagation in a
straightforward manner. After the present paper was completed we came
across the work by E. Varley (1965) in which essentially the same ideas have
been exploited. We present here an application of the method for discussing
the acceleration wave fronts in non-linear elasticity in the presence of a mag-
netic field.

In section 2 we present basic ideas of the ray theory relevant to our
problem. In the next section we obtain the wave speeds and the modes of
propagation. We also give there certain additional results for later use. In
the fourth section we derive the ordinary differential equation governing the
strength of the wave. We give its complete integral and establish the
relationship of our results with the results already known.

2. THE THEORY OF SINGULAR SURFACES AND THE RAY THEORY

Let @; be an orthogonal Cartesian system of reference and ¢ be the time.
Consider a surface Z(f) described by x; or by a Gaussian system of surface
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coordinates u*(w = 1, 2) as represented by

I (zy, @g, @3, 8) = 0, o = xy(u®, 8). .. .. ..o {2y
Latin suffixes after a comma will denote partial differentiation with respect
to z; and Greek suffixes after a comma will denote covariant differentiation with
respect to u*. Let (g 5) and (baﬁ) be the first and the second fundamental

forms of Z(t) and @, the velocity of 2(t) normal to itself. Let (x;, f) and
(x¢--Adz;, £+ A4t) be two consecutive points in space-time. Then we can write
the increment in a function F(x;, t) quite generally

AF..QEAHF Az .. . L (22
If the points lie on a normal trajectory and on the successive positions of
Z(t) then we take dw; = 8x; = Gnidt and get

A
where n; is a unit normal to Z(¢).
If the points are again on successive positions of Z(f) but in some other
direction (identified with ray-direction, later defined) the velocity along which
is ¥y, we then have dz; = da; = V4t and so we get

dF aF
=g TRV e
Since the normal component of V; is G’ni, we have
dF &F
d_t=—6i_+F’J(V]—an) .o . .. .. (25)
— SF 4
—_ —S—t +V F, o

where
Vo= Viz; o, V3 =g Vg

This important relation connects the time derivative along the rays
with that along the normal trajectories. By Hadamard’s lemma, a jump in
the tangential derivative of a quantity is equal to the tangential derivative of
the jump. Hence the above relation continues to hold when F happens to
be a jump in any quantity.

Since f(x;, ) = 0 continues to remain a wave front, its 8 tlme derivative
must vanish. So we have

2
a—‘:'+f’iGni=0. O X

Assuming that the partial derivative of f with respect to time does not
identically vanish, which must be true for a propagating surface Z(t), we can
write f(xq, t) = 0 as W(x;)—t = 0. Let now

p=fi=W, p,=pm. .. .. .27
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From (2.6) and (2.7) we now obtain
H=Gp—1=0. .. .. .. .. (28

Such a first order differential equation is solved by Charpit’s method
(more commonly called the ray method) (Courant and Hilbert 1962) by solving
the equations

dz;, 0H
@~ ap, oo @9
ap; o0H
Pk % .. . .. .. (2.10)

The system (2.9) and (2.10) constitutes a set of ordinary differential equations for
x5, pi regarded as independent. Their solution subject to the initial conditions
will yield the solution of the eqn.(2.8). Wetake the variablein (2.9) and (2.10),
which may be any parameter, as time. The curves described by (2.9) are
called rays. Assuming that @ depends on n; only and that it is independent of

%1, we see that p; (and hence n; also) is constant along the rays. We further
obtain now the ray velocity as

. dx,-
Vi=
oG
= Gni+(8g-n¢nj) 5773‘ , .o . .o (211(1)
oG
Vu——il?i’a-azt'. . . s . . .(211b)

We remark that since n; is orthogonal to (x4 «) the 8-time derivative and
differentiation with respect to «* commute. Using this we get

%:Gﬂi, .. .. .. .o ..(2.12&)
b

%:L —2bag e e .. (212D)
Sg“B
= 2608, .. .. .. .. {2.12¢)

Finally, we note two more formulae, one of Weingarten’s and the other given
by Thomas (1957).

bt = ..gBYn,, oy .. .. .. (2.13q)
n
-§5= ~g*PC a0z g .. .. .. .. (213D)

Using these we get

g
5’%: PG o +@I0E .. .. .. (214)
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We also have, from (2.11b),
oG

= — 2 p By,
Ga=-—grblfy o L @19)
- - Vﬁde.
Using (2.5) and the above results we obtain
db.P
o = (GBS0~ gV 5 b 2) + (V. B, —gPYVibady). .. (2.16)
The Mainardi-Coddazi formulae given as
bag, y = bay, (2.17)

enable us to prove that the latter group in (2.16) vanishes. After a straight-
forward evaluation we get
d(log b

T = (b —V* 4. ce .o (2.18)

Here b is the determinant of (baﬂ) and gives the Gaussian curvature of Z(z).

3. Mopes AND WAVE-SPEEDS

We consider the acceleration waves in a most general non-linear elastic
medium in the presence of a magnetic field. Let p be the density, u; the dis-
placement vector, e;; and f;; the strain and the stress tensors, H; the magnetic
field vector and p, the magnetic permeability. We take the conductivity to
be infinite and, without going into thermodynamical considerations, assume
that the following system forms a complete system:

or

'a—t-f—P’ 1"Ui+P’Ui:i=:O, .. .. .. .. .. (31)

oH;

#-}-Uzﬂi’j—vai,j’FH@vj’j =0, . . . (3.2)
dvi

fﬂ = tij’j+HD(HjHi’j_Hij, 1), . .. .. (33)

where v; is the velocity vector given by v; = (au,;/at)—{—vju,;,' ;

The first is the continuity equation, the second is the equation of magnetic
induction and the last one is the equation of motion. We assume the me-
dium to be isotropic with the constitutive law

iy = adyj+bey+ceery, - . .. .. .. (3.4a)
with
2ey = Ui gty g Uk . .. .. .. (3.4b)
We assume that a, b, ¢ are arbitrary functions of the invariants (I), (IT), (IIT)
of €ij only.
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We now take it that across a moving singular surface 2(t), p, u ; (Hy) are
continuous and (u¢ jk), (p, i), (H¢' P discontinuous. We use’ squaré brackets
to denote discontinuities. Also we always take it that the jump is the
difference between a quantity that is just behind and one that is just ahead.
Let us denote

[P, e = 0, [ glome = mg, [He Jy =& - .. (3.)
We assume that the medium ahead is at rest and unstrained with constant
values of p ==p, and H; = Hy = ljH,, which defines {;, We note that the
presence of the magnetic field contributes to the stress and hence the above
assumptions are consistent and analogous to those in hydrodynamics. Using
the compatibility conditions we now get

L+Pomy =0, .. .. .. .. (36

& =Holyn~bng)s - - o .. (30

PoliZy, = “177Nnt+%,30(');+?7N”¢)+#0H§{ZN(ZN’L-—ZWN)—lj”i(lN"lj—lmN), (3.8)
where (3.7) is used in (3.8) for (£;) and

w=(%). s=ws

and the suffix N denotes the normal component.
Using (3.8) we get

G2, = age, N € X 13
with
a <= (a5 —0p) ”i”k+0§3¢k+b§{nonk+l§5¢k—lzv(lgnk+lkm) } .. (3.90)
where
f’oa§ = o1+Bo, P00§ = $Bo, #oﬂg = Pobg- . -+ (3.90)

From (3.9a)'We note that 7; is an eigen-vector of the symmetric matrix aq
with eigen-value G2. If L is a normalized eigen-vector of asx, we must have

7, = L. e L. (810)

Since 7; is a jump, ¥ may be called the strength of the discontinuity.
For each root G2 of the cubic o
[@Bg—ag]=0 .. .. .. .. (31D)

which must hold since 7; 5% 0, for Z(¢) to be singular, we obtain one mode of
propagation with corresponding eigen-vector L;. To obtain the modes we
choose s as (0, 0, 1) without any loss of generality. Let 0 be the angle that
n; makes with the xg-axis. Further let us denote

A=P24Q? P= (ag—cﬁ)(l—2n§)+b§,

Q= 2n3J1—n§ .aﬁ—cg), cot X = l/—%;—i) . .. (3.12)
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We can now write the three modes as
1)

M:262 = a§+b§+c§+'\/z, L; = (sin X cos ¢, sin X sin ¢, cos X), (3.13a)
@) o o o — : .
M: 262 = “o+bo+co"'\/A’ L; = (cos X cos ¢, cos X sin ¢, —sin ), (3.13D)
@ 2, 72 2 .
M:G2=cy+bn;, L= (—sing, cos ¢, 0). .. .. .. .. (3.13¢)

Here ¢ is the angular coordinate in the cylindrical system (\/z2 .2, 6, 4). We ‘
also take # and s as unit tangents to § and ¢ curves on Z(t), which are

identified with %1, 42 respectively. Clearly ﬂ is 8. The mode remains a
shear mode giving rotation about xj-axis. As by— 0, the first two speeds
reduce to dilatational and shear-wave speeds and the eigen-vectors to n;
and # respectively. However, the modes have no such interpretation for
by # 0. Each of the first two modes is accompanied by both dilatation and
rotation. However, the modes are orthogonal and hence they can be studied
independently of each other (Courant and Hilbert 1962).

Whatever the mode, some common properties continue to hold. We
note them here for later reference. Since L; is a unit vector we can write
from (3.9a)

QG2 = atkLiLk. .. .. . .. (314)
Differentiating this with respect to uf and assuming that bﬁ is not identically
zero, we get

GV = (ag—)LnLg+b; (Inlg+ InLg—bLi(lvLg+Lnlg)}. .. (3.15)
Differentiate this with respect to * and then multiply by ¢®. We get

VoG o +GV* o = A4-B-—C, .. .. .. (3.16a)
Where

A = (ag—c(z)) (LaLi, an,; + gaﬁLNLi’ axi’ /9) + bg {L:ZLi’ ani +ga'8LN.L¢, ax,, ﬁ

~ULy (LA 4+ Lyl UL Ly, o1 g™ +1°Ly  my)}, .. (3.16b)
B =b,"] (ay— ) LY+ B+ L —2ULivLn)} = (G*—cDb,”, .. (3.160)
C = o™ { (ajep) LuLg+by(lalg+ Lo Lg) — b3l Ly Lgle + 1L ) | .. (3.16d)
Using (2.18) we can write (3.16a) as
@’ log b @4 +B-C—-Vea. .. .. @)

4. GROWTH OF THE WAVE

In order to obtain the growth equation we need third order compatibility
conditions. These can be obtained on lines as those used by others (Thomas
19567) and are just noted.

3B
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Let
[2)=0, [Z,]=0, [Z, ylnn; = ks, [Z, el mgmgme = k3. .. (4.1)
Then we have

(2, ] = kgnammu+g™PFhs (% gnmp+a; grins+az_gnyny)

—kab®B(mmy op gty 25 gt mani ooy g), .. (42)
037 sk
[ax,-ax,at] = (‘G’“3+§t—2) ning—Gg*Phy o (ney g+njay g)
+kz( (neng) +b ﬁl} o, ﬁ) o (48)
3z sk, |, 8¢ S
_ of _ ')
[9wiat ] (G k=262t —ky St)ni-l—(G 97k, i p— 20k, )

. (44
Differentiating now (3.2) and (3.3) with respect to x, and multiplying
by ny, we get

) oG
PD;G‘% —26 - 8? —ni 5+ G n\m}
= (a1 +3Bo)nymit+3Bon; +Ho(Honé; —Hobn)+f1+f2, .. .. (4.5a)
£ —Honny, +Homy =g +g%, .. .. .. (46a)

where
S fi= PO{(“g‘cg)gaﬁ(% o®p, g+ Np o pTy, ﬁ)"‘(“z—cg)baﬁﬂp’%,a
—c ba'ln}'i'l‘o(Hufi a—g ﬂHojfj i 'g) .. .. {4.50)

2

f=r (— 0772nc+ +/9 { 1177§,n¢+%az(n§,—1)2)m+ﬂmv(m+n~m)

+ivo (277N77i+"72+ ni,n;) 75) —Mol2my, .. (4.5¢)
gf’ = ng;’ a—guﬁﬂoﬂh" oy, B . .. .o .o . .o (4:6b)
g? = 21]N(H0j1]‘—H0¢7IN), .. .. « . .. .. . (4.66)
»a da ob
= 51‘2)0 aII) Bu= ) Y0 =0
[ o dmems =y, [H; ;Jngme = . .. @

If we omit the magnetic field terms, this agrees with our earlier results (Juneja
and Nariboli, ¢n press). . Here the superscripts L, @ are used to denote linear
and quadratic terms. Using now (4.6) in (4.5) we obtain

& .
polGn] —auny) = 206G Si+HE+AS, ... (48a)
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where

5G
B =f* +#0H0Ngf-M9H0mg]’.‘+m-8-t-, .. .. (4.8b)

}LQ = f?nQGzﬂNﬂi +y0H0Ng?——y0Ho,-n¢gf. . .. (486)

Now, since Ly is an eigen-vector of the symmetric matrix asx with principal
values (2, multiplication of (4.8a) by L; reduces the left members to zero.
So the product of the right-hand members with L; equated to zero is the

growth equation. By somewhat lengthy but straightforward manipulations
we obtain

B L = pop(A+B—C—G2)) 426V . .. .. (49)

So the linear terms reduce to
POG(Z %‘f-{- WV, —-Gb“))

—poa( ¢d’1°gb), L 410
where (2.18) has been used.
Thus the growth equation becomes

‘fu"’ ‘“°gb¢ +Dy2 = L (el

where
WLy =pGDy2. .. .. .. .. (411b)

We note that all functions of n; are to be treated as constant in this time-
differentiation along the ray. The eqn. (4.11a) can be integrated to give

3 1

é—é—_%pf# .. .. .. (412)
with

,¢=¢0,5=50fort=0.

The power of this result is self-evident. To bring out the features more
clearly, we take the initial manifold to be a surface of revolution given by

= (g(6) cos 4, 9(0) sin ¢, f(6)), .. .. .. (413a)

f=—gta.n0, ce e oo L. (43D)
where dots denote differentiation with respect to 6.

The latter condition ensures that the mormal to Z(t) makes an angle 0
with the z3-axis. We also have now

Vi=Gn+G4, .. .. . .. (4.14)
Ty = il??-*" V”l;. .- ‘e . . (4.15)
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We thus obtain the curvatures K, and K, of 8 and ¢ curves as

1 1

Kl =, .K») = < .
g sec 0+(G+G)t g cosec 64+(G+@ cot §)¢

9 (4.16)
As is known (Lighthill 1960; Ludwig 1961), the curvatures of the reciprocal
wave speed locus R, play an important role. This is the surface of revolu-
tion obtained by revolving the curve (G~1, §). The curvatures of this surface
are

LGB \
K= (G+G)V§’ ES = (G4@ cot 0)%. .. .. (417)

The result (4.12) now reduces to

VE K, A EyKe _ b
¥ ¥, {(G+G)G cot 64+Q)}}

2 ; t+4g cosec f
xlog{J(G+G)t+g sec 04J(G cob §+G)E+g } w1s)

Jd sec 3+\/g cosec 0

Setting D = 0 gives the linearized problem. From (4.16)-(4.17) we then
obtain: at points of Z() corresponding to those of &, where the curvatares of
the latter are non-zero, the strength varies as ¢™1; at points of 2(f) corre-
sponding to those of R, where one curvature vanishes, the asymptotic strength
is as t7%, i.e. cylindrical. Finally, at points of Z(t) corresponding to those
where both the curvatures of R, vanish, the propagation is planar, i.e. the
strength is constant. These asymptotic features correspond to the results
obtained earlier (Lighthill 1960; Ludwig 1961; Duff 1963).

However, for the non-linear problem such an asymptotic description
may not always be true. There may exist a finite time when the strength
becomes infinite.

We thus obtain a distinet possibility of the indefinite growth of the wave-
strength for each mode. Depending on the velocities, the front X(f) can
also develop caustics when one of the curvatures becomes infinite. For a
vanishing magnetic field the result clearly reduces to our earlier result (Juneja
and Nariboli in press).

CoNCLUSION

The differential equation governing the strength of an acceleration wave
is an ordinary differential equation along the rays. Even though the initial
strength may be the same, subsequently the strength on the front varies.
There exists a distinct possibility of the wave terminating into a shock
depending on the elasticities and the magnetic field.
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REFERENCES

Bazer, J., and Fleishman, O. (1960). Propagation of weak hydromagnetic discontinuities.
Research Report No. M.H. 10, N.Y.V.

Courant, R., and Hilbert, D. (1962). Methods of Mathematical Physics, Vol. II. Interscience
Publishers, New York, 577-630.

Duff, G. F. D, (1963). On wave fronts and boundary waves, M.R.C. Technical Report, 434.
Madigon, Wisconsin,

Juneja, B. L., and Nariboli, G. A. (in press), Growth of acceleration waves in an unstrained
non-linear isotropic elastic medium. Int, J, monlinear Mech.

Lighthill, M. J. (1960). Studies on magneto-hydrodynamic waves and other anigotropic wave
motions, Phil. Trans. B. Soc., A 252, 397-430.

Ludwig, D. (1961). The singularities of the Riemann function. A.E.C. Research and Develop-
ment Report (1961). N.Y.0.-9351. .

Nariboli, G. A. (1966)., Wave propagation in completely anisotropic media. J. math. Adnalysis
Applic., 16, 108-122,

Nariboli. G. A., and Juneja, B. L. (communicated). Wave propagation in an initially stressed
hypo-elastic media,

Nariboli, G, A., and Ranga Rao, M. P. (communicated). Anisotropic wave propagation in mag-
neto-gas-dynamics,

Thomas, T, Y. (1957). Extended compasibility conditions for the study of surfaces of dis-
continuity in continunm mechanics. J. Math, Mech,, 6, 311-322,

Varley, E. (1965). Acceleration fronts in visco-elastic materials, Archs. rativn. Mech. Analysis,
19, 215-225,



