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For a given graph theoretic parameter f and positive integer p, the problem of
Nordhaus-Gaddum class is to determine upper and lower bounds (pre-
ferably sharp bounds) for

f(G) + f(Gand f(G) . f(G),

where G is a graph of order p; G, the complement of G.
Recently, Alavi and Mitchem (1971) showed that, if k(G) is the point connectivity
of a graph of order p, then

0.< k(G). K(G) < M(p).

lr [2:4&] if p# 3 mod 4
i

p2—2p—3
L 4
In section titled “Point Connectivity of a graph and its Complement™ , itis shown
that the bound M (p) is the best possible when p # 4. This answers, in affirma-
tive, a question of Chartrand and Mitchem (1971).
In the next section, it is proved that if ¢, (G) is the line core number of a graph
G of order P (2_3), then

if p= 3 mod 4

2 -3 .
lr p—iii__ if pis odd
0<e(@)+e G < 3
= = 2
| P +4p—8 e .
L B if p is even

and the bounds are the best possible. Similar best possible bounds are also
obtained for the point core number of a graph . In the last section, some
unsolved problems in the Nordhaus-Gaddum class are discussed.

INTRODUCTION

We consider only finite graphs without loops and multiple lines. For notation
and terminology we follow Harary (1969). A cut set of a connected graph G is
a set of points whose removal from G resuits in a disconnected or trivial graph. The
point connectivity of G, denoted by k(G) is the smallest number of points in a cut
set of G.
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Alavi and Mitchem (1971) proved, among other things, that for any graph G

of order p, -
g k(G) . k(G) < M(p)

where
| &‘41—)2« ifp 3£ mod 4 .
M(p) J— < - vee ()
| PP—=2p—3 . o __
S if p3=mod4

In section 1, it is shown that M(p) is the best possible bound when p % 4. This
solves a problem, in affirmative, of Chartrand and Mitchem (1971). For the
definitions of line core number, point core number of graph refer section titled,
“The line core number (point core number) of a graph and is complement” of this

paper.

POINT CONNECTIVITY OF A GRAPH AND ITS COMPLEMENT

In this section we prove

Theorem 1: For any graph G of order p (= 2), k(G). k(G) < M(p), where
M(p) is defined as in equation (*), and the bound is the best possible except when
p=4; and if p = 4, then k(G) . KG) < 1.

The proof of this theorem is constructive in nature and is divided into three
lemmas.

Lemma 1. Let p = 2n and G,(2n)=G, be the graph of order p defined as
follows : G; has points AUB where 4 ={1, 2, .., n} and B = {12, ..,n'}
G, restricted to 4 or to B is the complete graph and the only other lines of G, are
{G, ') ; 1<i<n}. Then (i) K(G,) = n and (i) k(G,) = n—1 provided n=2.
Thus k(G,). k(G,) = n(n—1) = M(p).

Proof : The case n =1 is trivial. So let n=3. To prove (i), let C be a
cut set of G,, then i’ belongs to C whenever i does not belong to C, so that | C | =n.
Hence k(G,)=n and the equality follows since G, is a regular graph of degree n.

To show that k(G,) = n—1, first observe that G, is a regular graph of degree
n—1. Secondly G, is (n—1)—connected since the removal of any n—2 or less
vertices leaves at least 3 vertices in one of A, B and at least two vertices in the other.

Lemma 2: Let p = 4n--1 (n=1) and G, be the graph of order p defined
as follows : G, has points AUBU {ue}, where 4 = {1,2, .., 2n}, B ={1", 2/,
.-» (2n)’} and o is apoint not in AUB. G, restricted to A is K,,—I, where
I is the 1-factor consisting of the lines {(1, 2,), (3, 4), .., (2n—1, 2n)}; G, restricted
to B is the complete graph and the only other lines of G, are {(u,, i), (7, i) :
1<i<2n}. Then (i) k(G,) = 2n and (ii) k(G,) = 2n.

Thus k(G,) . k(G3) = 4n* = M(p).

Proof : To prove (1), let, if possible, C be a cut set of Gy with k = | C | < 2n—1.
Then there is #;, 1 < iy < 2n, such that neither ip nor iy is in C, which means
that (i, #,") is a line of G, — C. If now u, is not in C, then since uo is joined to
every point of A—C it follows that G,—C is a connected graph. Thus u, € C.
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Now since k<(2n—1, we have | A—C | =2. If | A—C [ =2, then BNC = ¢ and
this coupled with the fact that every point of A—C is joined to a point of B implies
that G,—C is connected. Thus | A—C | = 3. Then, by definition of G,, the
subgraph of G, induced by 4—C is connected and since (i, iy') is a line of G;—C
it follows that G,—C is also connected. This coniradicts the fact that C is a cut set

of G,. Thus k(Gy) = 2n and the equality follows since G, is a regular graph of
degree 2n.

To show that k(G,) = 2, first note that if n=1, then 62 is the 5-cycle. So
assume that n=2, and let, if possible, C be a cut set of G, with k= | C | <2n—1.
If 4y is in C, then since G,(4n) of Lemma 1 is a spanning subgraph of G,—uo it
follows that G,—uo is (2n—1)-connected and hence G,—C is not disconnected.
Thus u, is not in C and we have | B—~C |=land | 4—C | =1. If | B—C | =1,
then k=2n—1 and ANC = ¢. Assume without loss of generality that 1'€ B—C.
Then (1', i), 2<i<<2n, are lines of G,—C and this coupled with the fact that
(2, 1), (4, 17) are lines of G,—C gives us that G,—C is a connected graph. This
shows that | B—C | ==2. In this case every point of 4—C is joined to at least one
point of B—C and u, is joined to all points of B—C. These imply that G,—C is
connected, a contradiction. Hence k(G,)=2n and the equality follows since G,
is a regular graph of degree 2n. This completes the proof of the lemma.

Lemma 3: Let p = 4n-+3 (n=1) and G; be the graph of order p defined as
follows : G, has vertices AUBU {u,} where 4 = {1, 2, .., 2n+1}; B = {I',2,
..» 2n+1"} and u, is a point not in AUB. G, restricted to A and also to B
is the complete graph and the only other lines of G, are

{, i), 1 <i<2n+ 1,

, ¢ + D). ieven and | < i< 2n+ 1
(4, 1)

(ug, 1), iodd and | < i < 2n 41
(U, '), ieven and | <7< 2n + 1.

[see Figure 1 for G,4(15)].

Then, (i) k(Gy) = 2n — 2 and (i) k(G3) = 2n. Thus k(Gy). k(G,) = (2n+2).
2n = M(p).

Proof : Clearly, G,(4n+2) of Lemma 1is a spanning subgraph of Gz—u,
and u, is joined to 21+ 2 points of Gy—1,. Thus by Lemma 1, k(Gs;) = 2n+1.
Further, G, is a regular graph of degree 2n+2. So to show that k(Gs) = 2n.—‘r2,
it is enough to prove that G, has no cut set C with | C | =2n+1. Let, if possible,
C be a cut set of G; with | C | =2n+1. Since k(Gy—up==2n+1, we have u, ¢ C.
Let now i,’, iy,. . ., is’ be the points of B N C. Since Gy — A is connected it fc?llows
that 8 = 1. Further, /; € C wheneverj @€{1, 2, ..., 8} for otherwise (i;, i) is a line of

Gy — C and also (ug, is) or (ug, if') is a line of G; — C for some j & {2 .. . ,6} s?
that Gs— C is a connected graph. Now since | C | =2n+1, we ha\{e C ={i, id,
wey dg'Yeq1s -+, ignsq)} Where = { iy, 7o, ..., lpn4} IS @ permutation of [1,2,...,

2n 4+ 1). Here we consider two cases.

Case (I): 1 € C. Then 1’ @ C and this together with the fact that (uql D i_s a line
of G, — Cimplies that {3, 5,7, ..., 2n + 1} is a subset of C which in turn implies that
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1 \2\3 Nt\ys RN? —> A
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LK 2' \3/4’ \5’/16' \la —>B

Fic. 1. The graph G, (15) , where A, B are complete

no point of {3', 5,..., (2n + 1)’} isin C. Now since {(i 4 1), i} is a line of G; when-
ever i is even, we get that [2, 4, ..., 2n] is also a subset of C. Thus C = A. But then
G, — C is connected, a contradiction.

Case (2): 1 g C. This case is similar to case (1) above,

Thus & (G3) = 21 + 2 and this completes the proof of (i).

To show that k(G:) = 2n, we proceed as follows :

Call points 2,4, ..., 2n; 3,5, ..., (2n + 1) of G, the type 2 points and the
rest, excluding u,, the fype | points. Clearly, type i point in A or B is unjoined to
exactly i points of the other set, i = 1, 2. Further, u, is joined to all type 2 points.
If n = 1, then G, is the 7-cycle and hence k(Gg)= 2. So assume that n = 2. Let, if
possible C be a cut set of G, with | C | <2n—1. Since the roles of A and B in G,
are symmetric we can assume that | 4—C | < | B—C | . We consider two cases and
in each case we first show that any two nonadjacent pointsin (4 B)—C are connect-
ed by a path and later conclude that G;—C is connected.

Case (3): | A—C|==3. Hence | B—C | =3.

Since | C | <2r—1 and n==2 it follows that | B—C | =4. Let now u,, u, be
distinct points of 4—C. If a point v, exists such that (u,, v;) and (u,, v,) are lines,
then u, and wu, are connected. If there is no such point v;, then B—C consists of
the four points joined to u; and u, in G, and since A—C contains a vertex other than
u, and u, it is easy to see that u, and u, are connected by a path of length 4. Let now
u; € A—Cand v;€ B—C. thensince | 4—C | =3, v, isjoined to at least one point
u, (say) of A—C. If u,7u,, then by the above argument wu,, u, are connected in
G3;—C. Hence u,, v, are also connected in G;—C. Since any two points ot A—C are
connected and any point ot B—C and any pointof 4—C are connected, it also
follows that any two points of B—C are connected.



GRAPH AND ITS COMPLEMENT 301

Case (4): | A—C| =2. Now since | C | <2n—1] and n=2 it follows that C
is a subset of 4, | B| =5 and u, & C.

Let uy, u, be the two distinct points of A—C, thensince | B | =5, there is a point
v, of B such that (u,, v,), (v,, u,) are lines. Hence 4y, U, are connected in G,—C.
Let v,&B. If v, is joined to u, or u,, then by the above argument u,, v, are connected.
Otherwise v, and one of ,, u,, are type 2 points and these type 2 points are connected
through u,. Hence u,, v, are connected in Gs—C. Asin the preceding case, any two
points of B—C are also connected.

Clearly, | A—C | cannot be less than 2. So, by cases (3), (4) and the fact that not
every point adjacent to uo in G, is in C we get that G;—C is connected. Thus
in G, there is no cut set with less than 2k elements or equivalently k(G;) = 2n
and the equality follows since G, is a regular graph of degree 2n. This completes the
proof.

Proof of Theorem I: That k(G). k(G) < M(p) for any graph G of order p was
proved in Alavi and Mitchem (1971). The bestness of the upper bound in the case
P 7 4 follows from Lemma 1, 2 and 3. If now p=4, then M(p) = 2. k(G) = 2 for
a graph G means that G has at least four lines and hence G has at most two lines. Thus
G is disconnected. Henceif p = 4, k(G). k(G) < 1 and the bestness o1 the upper bound
follows from the fact that the path of order 4 is a self complementary graph. This
completes the proof.

THE LINE CorE NUMBER (POINT CORE NUMBER) OF A GRAPH AND ITS COMPLEMENT

A point and a line are said to cover each other if they are incident. A set of points
which covers all the lines of a graph G is called a point cover of G, while a set of
lines which covers all the points is a line cover. The smallest number of points in any
point cover of G is called its point covering number and is denoted by ay(G) or a,,
Similarly, «,(G) or «, is the smallest number of lines in any line cover of G and is
called its line covering number.

The line core C,;*(G) of a graph G is the subgraph of G induced by the union of
all independent sets Y of lines (if any) such that | Y | =ay(G). This concept was intro-
duced by Dulmage and Mendelsohn who made it an integral part of their theory of
decomposition for bipartite graphs. The /line core number C,(G) of a graph G is the
number of lines in the subgraph C,*(G) and is 0 if C,*(G) does not exist. The point
core Co*(G) is the subgraph of G induced by the union of all independent sets S of
«, (G) points (if one exists). The point core number Co(G) of a graph G in the number
of lines in the subgraph Cy*(G) and is 0 if C,*(G) does not exist. For many theorems
on line core and point core refer Harary (1969), p. 101.

In this section we derive bounds for the sum and product of the line core number
(point core number) of a graph and its complement.

Theorem 2 : For any graph G of order p,

[ p4+2p =3 if pis odd

- l 4
0<CO)+C(6) < 2 . e
' ' ]Llj’jp*—g if p is even )

Further, the bounds are the best possible.
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Proof: Let G be a graph of order p. If both G and G have no line core, then the
bounds are trivial. So assume that C,(G)>0. It is already known (Harary 1969,
p. 101) that the components of the line core are bipartite subgraphs of G. Thus
the line core is a graph without triangles, so by Turan’s theorem (Harary 1969, p. 17),

2 —=
C(G) g[ L —]If now Cy(G) = 0, then the upper bound in (1) follows. So let

4
Cy(G) > 0. Without loss of generality assume that ae(G)=a, (G). Let A = [u,,
Uy, ..., tz] bea point cover of G, where k = a, (G). Clearly, V—4 is an independent

set in G. Hence V'—A is complete in G so that ay(G) = p—k—1. But ai(G) <uy(G)
=k, which implies that p < 2k+1. Since C(G)>0, there is a set of ol(G)=k
independent lines of G so that p==2k. Thus we have p=2k 4 | or 2k. We con-
sider these two cases separately.

Case (5): p = 2k + 1. Since V' — A is completein G and has k -+ 1 points, any
point cover B of G with exactly k points is a subset of ¥(G) — 4. Thus 4 is inde-
pendent in G and there is a point v in ¥(G) — A which is not joined to any point of
Ain G. So A is complete in G and (v, 1), | < i< k, arelines of G. Since V — 4
is independent in G and 4 has k points, no set of k independent lines of G contains
a line of the form (ui, us). Thus C, (G) < k + m(G, A4, B), where m(G, A, B) denotes
the number of lines in G with one end point in 4 and the other in B. Since 4 U [v]
is independent and B U [v] is complete in G, it follows, as above, that C,(G) < k+ m

2 —
(G, 4, B). Thus C(G) + C,(G) < 2k + k* = P__+_il’._§

bound in (1) in the case p is odd. Now Cy(G). Cy(G) is maximum whenever m(G, 4, B)

. This proves the upper

2
=m (G, A, B) = /; . Thus if %is even, then the maximum value of G(G). G(G)
2 \2 2 3 \2 .
< (k +—k:2~) = (p_—%—_ZSp_E) . If k 1s odd, then the maximum value C(G). Cy(G)
Pi+2p+1 (p’+2p—7
(). (o).

Case (6): p = 2k. Clearly C,(G) < m(G, 4, V — A). Let B be any point cover of
G with ay(G) elements. Then ao(G) = k or k — 1, if o(G) = k and B is a subset of
V(G)— A, then B = V(G)— A and Cy(G) < m(G, A, V — A) so that

2 2 .
CG)+ () < ko B o 228
If | B| =k and B is not a subset of V—4, then B contains exactly one element of

A, say u;. Let v; be the unique point of ¥—4 not in B. Then v, is not joined to any

point of A — (%) in G. Now the line core of G cannot contain any line in B — u,

and A — wu, is independent in G, so CyG) < 2k—2+m(G, A, V—A4). Thus
C(G) + C{C) < 2k—2+k?

p*+4p—8

.

If | B| =k—1, then B is a subset of ¥V — 4, find V — B is independent in G.
Hence C,(G) <k—1+m(G, 4, B), so that C,(G) + G(G) <k — 1+ k2 <
pPP+4p—8
——

—-pn L P
= p 2+4_

. This proves the upper bound in (1) whenever p is even.
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. 2 S :
The maximum value of Cy(G). C; (G) is < (%ﬁs)z if kK is even and <

3 2
At PR e s oda.
To show that the bounds are the best possible, we consider cases (5) and (6) sepa-
rately.

Case (5): p=12k + 1. Letd ={1,2,...,k}, B={1',2, ..., k’}. The points
of G are A U B U {uy}. G restricted to 4 is complete and G restricted to B is
independent. The only other lines of G are (i, i’), (4, i) forevery i, 1 < i < k. Then
C\(G) = 2k and C\(G) = k=

Case (6): p=2k. LetA={l,2, ..., k}y B={l',2', ..., k’}. The points of G
are A {J B. G restricted to 4 is complete and G restricted to B—-{1'} is independent.
The only other lines OEG are (i, 1), ! <i<kand(1',i), 2 <i<k. Then C(G) =
2k —2 4 k and C,(G) = k% —k.

The upper bounds for C(G). Cy(G) are also the best possible whenever p = 10.
We illustrate only the case p = 2k + 1 and k even. The other cases are similar. Let
H be a regular graph of degree k/2 and bipartite with {1, 2, ..., k}and {1, 2, ..., k}
as the bipartition, construct a new graph G of order 2k + | by adjoining all the
lines (i, j) to H, for | < i< j< k; and joining a new point u, by lines (u,, i)

k2 p’+2p—3 )

[ <i<k Then CG) = k + =-= Gy(6). Thus C;(G). C4(C)= ( :

The point core number of a graph and its complement: We will state (without proofs
the main results.

Lemma 4 : For any graph G of order p (= 6)

2
Ir i if p is even
Co(G) < o .
IL(L;}L if p is odd.
Theorem 3 : For any graph G of order p( = 6)
2
f %i , if p is even

|
CiG) + CE < A
’ IL_(B’;)’— if p i 0dd.

Further Kpig, 9,5 is the only graph attaining the upper bound if p is even.

SOME UNSOLVED PROBLEMS IN THE NORDHAUS-GADDUM CLASS

Problem 1: Let ay(G) denote the minimum number of points required to cover
all the points of G. This ag, is called the point-point covering mumber of G (also called
the external stabilitv number of G). The problem : (Vizing) is it true that for any
graph of order p, ay(G). ag (G) < p ?

Remarks: If G or G has diameter > 2, then the inequality holds. If p=9, then
the latin square graph of order 3, I, (3) show that the bound is the best possible. If
G, is regular of degree 1, then equality holds (p is even).
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Conjecture : L, (3), L, (3), Gy, G, are the only regular graphs for which equality
holds in the above inequality.

FiG. 2. The graph L.(3)

Problem 2: (Chartrand & Mitchem 1971) Find bounds for f(G) 4 f(G) when
f is the total chromatic number of a graph.

Problem 3: For which values of s, s satisfying s.s < M(p), is there a graph G of
order p such that

kG) = s, k(G) =,
where k(G) is the point connectivity of G and s < 57

Remarks: 1If pis even and (s, 5) 7 (1, n — 2) the answer to problem 3 is in affir-
mative. For p odd the answer is unknown.
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