TEMPERATURE DEPENDENT DIELECTRIC AND ELECTRICAL PROPERTIES OF NIOBIUM (V) OXIDE

N C Parakh* and J C Garg

Department of Physics, University of Rajasthan, Jaipur-302004, India

(Received 27 August 1984; after revision 12 March 1985)

The dielectric and electrical properties of Nb₂O₅ pellets (thickness 0.1679–0.5488cm) have been investigated at different temperatures. The relative permittivity first decreases up to 400 K, increases slowly up to T < 673 °K above which it increases sharply. I-V characteristics reveal that at low voltages, the conduction is ohmic, while at high voltages, the current has a quadratic dependence on voltage. The transition voltage (Vₜ), at which the conduction changes from ohmic to non-ohmic, decreases as temperature increases. The results are interpreted in terms of theory of space charge limited currents in defect insulators containing shallow traps. Electron trap levels exist at energy (0.715 ± 0.049) eV below the conduction band, with a density ~ 10¹⁷ m⁻³.

Key Words: Electrical Conductivity; Permittivity; Niobium V Oxide; Activation Energy

INTRODUCTION

Niobium pentaoxide (band gap ~ 3.9eV) belongs to the group of saturated transition metal oxides in which all d-electrons have been given off by the transition metal atoms to the oxygen atoms. Niobium pentaoxide finds many applications in industry, such as in corrosion resistant aluminium base material, ceramic capacitors, hardening constituents in cements and refractories, catalyst for chemical conversions and active devices such as MOST and FET etc. It has rhombic structure (L or θ Modification) at room temperature having unit cell dimensions a₀ = 6.168 Å; b₀ = 29.312 Å; c₀ = 3.936 Å; Z = 8 and density 4.965g/cc and many modifications at higher temperatures have been reported. As there were confusions in the literature regarding different modifications, Schafer et al.² reviewed and grouped them and suggested uniform names as TT (low low); T (low), M(medium), B (plates), H (high), N (needles) and P (prisms). Aravindakshan et al.³ have studied the various modifications of Nb₂O₅ while heating in vacuum and have shown that θ, φ and poorly crystalline forms exist at room temperature, 200 °C and 400 °C which further modify to the T and M forms at temperatures greater than 600 °C and 800 °C respectively.

Dielectric properties of Nb₂O₅ thin films have been extensively studied by Fuschillo et al.⁴ and Goswami and Goswami.⁵ Bovtun et al.⁶ has studied the

*On leave from Government College, Bhilwara 311 001.
dielectric constant and loss of single crystal and ceramic samples, as a function of temperature and frequency. Electrical properties have been studied by Balachandran and Error,7 Vezzoli,8 Marucca,9 Bogdan et al.10 Fuschillo et al.11 and Greener et al.12 Space charge limited currents have been observed in Nb2O5 thin films by Bogdan et al.10 and Lalevic and Slusark13 Fuschillo et al.11 observed evidences of hopping conduction at low fields and Poole Frankel effect at fields greater than 10^5V/cm. But no report of conduction at high fields in polycrystalline pressed samples is available. D’yakonov et al.14 and Hickmott15 have studied the optical properties of Nb2O5 thin films.

Results of our investigations on dielectric properties and electrical properties at low and high fields at different temperatures have been reported in this paper.

MATERIALS AND METHODS

Nb2O5 specimens in the pellet form have been prepared from pure grade powder at a pressure 5 x 10^7kg/m^2 by a method already described in an earlier paper16. Capacity of the pellets at different temperatures has been measured with the help of a LCR bridge (Systronics 921) capable of measuring 10^-12F to 10^-6F with an accuracy of 2 per cent. Resistance of the samples at different temperatures (upto 800K) has been measured with the help of a Million Meg ohm meter (BPL make) by placing the pellets in a Muffel furnace. To obtain I-V characteristics, voltages upto 250V across the pellet have been applied by using an electronically regulated power supply (0-300V) and higher voltages by another regulated power supply (Aplab 7341P). Current passing through the pellet has been measured by using an Electrometer Amplifier (BARC EA810A). I-V characteristics at elevated temperatures have been obtained by placing the sample in a temperature controlled oven.

RESULTS AND DISCUSSION

Fig. 1 shows variation of dielectric constant(εr) of the pellet (thickness 0.3761 x 10^-2m) with temperature, measured at 10KHz frequency. Our value of εr (41.56) at room temperature agrees well with the value (∼45) in thin Nb2O5 films4 at high frequency (∼ 5 x 10^6 Hz). Hence, our measured values may be taken as high frequency dielectric constants. It can be seen (Fig. 1) that εr decreases upto T ~ 400K, increases slowly upto T < 673K above which it increases steeply and this type of variation may be due to θ, ϕ and poorly crystalline (Amorphous) modifications at room temperature, 200 °C and 400 °C.3 Variation is not smooth as also observed in thin films by Goswami and Goswami.5

Fig. 2 shows I-V characteristics on log-log scale for samples having different thicknesses at 303K. Fig. 3 on the other hand, illustrates the I-V characteristics of one of the samples (thickness 0.3761 x 10^-2m) at different temperatures. All I-V characteristics (Figs. 2 and 3) starts with ohmic region (I α V) at low voltages and changes to square region (I α V^2) at higher voltages. The transition voltage V*T, at which conduction changes from ohmic to non-ohmic, decreases from 130V to 110V as temperature increases from 303K to 363K (Table I). The observed ohmic dependence
of current on voltage at low fields can be explained by the fact that in the studied samples bulk limited current exceeds the space charge limited current (SCLC). At high fields, the observed non-ohmic behaviour can be explained on the basis of Rose theory17 for defect insulators containing shallow traps, according to which current through the specimen is given by

\[I = \frac{9\mu \varepsilon_0 \varepsilon_r A \theta}{8 s^3} V^2, \quad \ldots(1) \]

where \(\mu\) is the mobility, \(\varepsilon_0\) the permittivity of free space, \(\varepsilon_r\) relative permittivity of the medium, \(A\) area of cross section of the pellet, \(s\) the thickness of the pellet, \(V\) the applied voltage and

\[\theta = \frac{N_e}{N_t} \exp \left(-\frac{E_l}{k_B T}\right) \quad \ldots(2) \]
in which \(N_e \) is the effective density of states in the conduction band, \(N_t \) is trap density of shallow traps at energy \(E_t \) below conduction band and it was assumed that free space charge density is negligible in comparison to the total trapped space charge density (\(\theta \ll 1 \)).

Voltage (\(V_r \)) at which conduction changes from ohmic to non-ohmic is given by\(^{18}\)
The straight lines obtained in I vs. V^2 curves on log-log scale in the square law region, for pellets of different thickness at 303K (Fig. 4) and for a pellet (thickness 0.37×10^{-2}m) at different temperatures (Fig. 5) shows the validity of equation 1.
The straight line in I/V^2 vs s^{-3} graph (Inset Fig. 4) further supports the validity of the model. The horizontal and verticle bars in the graph represent the errors in the measurement of s and I/V^2.

Using the experimentally determined value of relative permittivity ϵ_r (41.56) and assuming $\mu = 10^{-2} \text{m}^2/\text{Vsec}$; the value of θ have been calculated by using eq. (1) and the least square fit method. Table I includes the values of θ, transition voltage (V_T) obtained from Fig. 3 and n_0 calculated from eq. 3.

Plot of $\ln \theta$ vs. $10^3/T$ has been shown in the inset of Fig. 5, where horizontal bars represent the errors in the measurements of temperatures. Assuming that N_s and N_t are not strong functions of temperatures, the intercept of the straight line at $10^3/T$ being equal to zero yields a ratio $N_s/N_t = 1.267 \times 10^8$. Assuming $N_s \sim 10^{25} \text{m}^{-3}$, N_t is of the order of $7.893 \times 10^{16} \text{m}^{-3}$ and a trap level (eq. 2) at a depth of $(0.715 \pm 0.049) \text{eV}$ below conduction band is obtained.
ACKNOWLEDGEMENT

One of the authors (NCP) wishes to thank the University Grants Commission, New Delhi for providing teacher research fellowship during the work. Thanks are also due to Professor S. Lokanathan, Head of the Physics Department for providing laboratory facilities.

REFERENCES

3. C Aravindakshan J S Tiwari and B K Banerjee Technology 12 (1975) 112
15. T W Hickmott J appl Phys 37 (1966) 4588
17. A Rose Phys Rev 97 (1955) 1538
18. M A Lampert Phys Rev 103 (1956) 1648