CYCLOPHOSPHAZENES—INORGANIC HETERO CYCLIC COMPOUNDS WITH ORGANIC TYPE REACTIVITY

S S KRISHNAMURTHY

Department of Inorganic and Physical Chemistry, Indian Institute of Science,
Bangalore 560 012, India

(Received 7 March 1986)

The different types of reactions undergone by cyclophosphazenes and the complex nature of bonding present in these compounds set them apart from other phosphorus-nitrogen compounds or indeed from other inorganic heterocyclic systems. Recent findings on the aminolysis reaction of chlorocyclotetraphosphazenes to yield both (amino) cyclotetraphosphazenes and novel trans-annular bridged bicyclic phosphazenes, the reactions of chlorocyclotetraphosphazenes with difunctional reagents, nucleophilic substitution reactions of triphenylphosphazenyl derivatives, $N_2P_2X_2(NPPh_3)$ ($X = F, Cl$) and synthesis and thermal rearrangement of (alkoxy) (aryloxy) cyclotriphosphazenes are reviewed. A unified mechanistic framework has emerged for nucleophilic displacement reactions of halogenocyclophosphazenes from kinetic studies on selected systems and this aspect is highlighted. Structural features as revealed by X-ray diffraction and NMR spectroscopy and new approaches for phosphazene polymers are also briefly discussed.

Key Words: Cyclotri-, Cyclotetra- and Bicyclic Phosphazenes; Reaction Mechanisms; Phosphorus-Nitrogen Polymers

INTRODUCTION

Although the first inorganic heterocyclic compound, $N_2P_3Cl_6(I)$, was reported as far back as 1834 by Leibig and Wohler and its cyclic nature as well as that of its higher homologue (II) recognised by Stokes in 1895–6, systematic studies of the chemistry of such systems began to take deep roots only in the later half of this century. Seldom among inorganic heterocyclic systems, one encounters an homologous series of compounds as extensive as that found for cyclophosphazenes; compounds containing up to eight (NPX_2) units in the ring have been well

characterised. Cyclophosphazenes resemble organic systems very much in their reactivity, the ring skeleton persists through several reaction sequences. Some typical reactions of $\text{N}_3\text{P}_3\text{Cl}_6(\text{I})$ are illustrated in Fig. 1.

The interest in cyclophosphazenes had been primarily stimulated by the intriguing nature of bonding between phosphorus and nitrogen in these formally valence unsaturated systems which to this day continues to be a challenge to the theoreticians. In recent years, the prospect of technological applications of cyclophosphazenes in diverse fields as well as the successful synthesis and characterisation of many linear polyphosphazenes has provided a great impetus for the rapid development of the chemistry of the cyclic systems, which may be viewed as “models” for macromolecular synthesis.

We have carried out extensive investigations on cyclophosphazenes with particular emphasis on the eight-membered ring system represented by II, which in view of its greater skeletal flexibility, is a better “model” for the reactions of polymers than its more rigid six-membered homologue(I). Our studies span a wide range and encompass synthetic, spectroscopic, structural and mechanistic aspects. A novel P_4N_5 bicyclic system has been uncovered (in a serendipitous manner) and the mechanism of its formation by an intramolecular nucleophilic substitution reaction has been elucidated. New insights into the mechanisms of nucleophilic substitution reactions of halogenocyclophosphazenes have emerged as a result of synthetic and kinetic studies on carefully chosen systems and the results enable us to formulate a unified mechanistic framework to explain the “regio and stereo selectivity” observed for this class of reactions. The significant highlights of these investigations are presented in this review.

![Diagram of typical reaction of $\text{N}_3\text{P}_3\text{Cl}_6(\text{I})$]
AMINOLYSIS REACTIONS OF CHLOROCYCLOTETRAPHOSPHAZENES—FORMATION OF NOVEL BICYCLIC PHOSPHAZENES

The first bicyclic phosphazene, \(\text{N}_4\text{P}_4(\text{NMe}_2)_5 \) (NHEt) (NET) (VI, \(R = R' \text{ Et} \)) was isolated in our laboratory by Sau from the reaction of 2-\textit{trans}-6-\text{N}_4\text{P}_4\text{Cl}_6(\text{NHEt})_2 (III) with an excess of dimethylamine in chloroform.\(^{17-18}\) The choice of solvent was unintentional. Subsequently, when the reaction was carried out in diethyl ether, only the fully aminolysed cyclotetraphosphazene (IV) was obtained. Further studies have revealed that the aminolysis reactions of \(\text{N}_4\text{P}_4\text{Cl}_6(\text{II}) \) or its primary amino derivatives can proceed in three ways: (i) "normal" stepwise replacement of chlorine atoms to give chloro(amino) and octakis(amino) cyclotetraphosphazenes, (ii) intramolecular nucleophilic attack leading to the formation of novel bicyclic phosphazenes and (iii) intermolecular condensation resulting in crosslinked products. The competition among these three processes depends on the substituent present on the phosphazene ring, the nucleophile and (to a very significant extent) the nature of the reaction medium. Chloroform or dichloromethane promotes the formation of bicyclic derivative; in diethyl ether or CCl\(_4\) the yield of bicyclic phosphazene (if at all formed) is very low (< 5 per cent). Methyl cyanide shows an intermediate behaviour.\(^{19}\)

Symmetrically substituted bicyclic phosphazenes of type, \(\text{N}_4\text{P}_4(\text{NHR}) (\text{NR}) \) (V) are formed when \(\text{N}_4\text{P}_4\text{Cl}_6(\text{II}) \) reacts with an excess of a primary amine in chloroform.\(^{18-20-21}\) Asymmetrically substituted bicyclic phosphazenes of type, \(\text{N}_4\text{P}_4(\text{NMe}_2)_5 \) (NHR') (NR) (VI) can be prepared from the reaction of 2,6-\text{N}_4\text{P}_4\text{Cl}_6
(NHR) (NHR') with an excess of dimethylamine in chloroform.18-19,22 The relative yield of the bicyclic phosphazene increases in the order \(R = R' = \text{CH}_2\text{Bu}^t < \text{Bu}^e < \text{Me} < \text{CH}_3\text{Ph} < \text{Et} < \text{Pr}^t \). Bicyclic phosphazenes are not formed when the primary amino substituent is \(\alpha \)-branched (e.g. \(R = R' = \text{Pr}^t, \text{Bu}^t, \text{Ph} \)).

We have recently shown that the formation of bicyclic phosphazene from \(\text{N}_4\text{P}_4\text{Cl}_8 \) occurs only after the tetrakis stage of chlorine replacement. The tetrakis (amino) derivative, \(\text{N}_4\text{P}_4\text{Cl}_4(\text{NHEt})_2(\text{NHEt})_2(\text{NMe}_2)_2 \) (VII) has been isolated and its versatility for the preparation of bicyclic phosphazenes containing different amino substituents (VIII) have been established.23 The reaction \(2,4,6,8-\text{N}_4\text{P}_4\text{Cl}_4(\text{NHEt})_4(\text{IX}) \) with dimethyamine affords the bicyclic phosphazene, \(\text{N}_4\text{P}_4(\text{NHEt})_3(\text{NMe}_2)_3(\text{NET})_2 \) (X). The reactions of 2-trans-6-\(\text{N}_4\text{P}_4\text{Cl}_6(\text{NMePh})_2 \), 2-trans-4-\(\text{N}_4\text{P}_4\text{Cl}_6(\text{NMePh})_2 \), 2,6-\(\text{N}_4\text{P}_4\text{Cl}_6(\text{NHBu}^t)_2 \), 2,4-\(\text{N}_4\text{P}_4\text{Cl}_6(\text{NHBu}^t)_2 \), 2,6-\(\text{N}_4\text{P}_4\text{Cl}_6[N(\text{CH}_2\text{Ph})_2]_2 \) with ethyamine in chloroform in the presence of triethylamine have also been studied and the results bring out the subtle aspects of the mechanism of formation of bicyclic phosphazene.22 Formation of trans-annular bridge occurs only when the cyclophosphazene substrate bears primary amino substituents (NHR) at the antipodal phosphorus atoms and at least one of the \(R \) groups is capable of being accommodated at the bridgehead nitrogen. The bridging of adjacent phosphorus atoms by an NR group does not take place under any circumstances. A base assisted proton abstraction step generates a three-coordinated \(\text{P}^v \) intermediate (XI) (for evidence of such a species in cyclophosphazenes, see Section G).
Intramolecular addition of an \(\text{NHR} \) group from the antipodal phosphorus to the exocyclic phosphorus-nitrogen double bond would afford the bicyclic phosphazene(\(\text{XIII} \)).

\[
\begin{align*}
\text{Cl} & \quad \text{NHR'} & \quad \text{NHR'} \\
\text{RHN} & \quad \text{P} & \quad \text{P} \\
\text{N} & \quad \text{P} & \quad \text{Cl} \\
\text{RHN} & \quad \text{P} & \quad \text{P} \\
\text{N} & \quad \text{P} & \quad \text{N} \\
\end{align*}
\]

\[
\text{Base (B)} \quad \text{RN} = \text{PN} \quad \text{P} = \text{NR'} \\
\text{B} \cdot \text{HCl} \quad \text{XI}
\]

\[
\begin{align*}
\text{R}_2 \text{NH} & \quad \text{R}_2 \text{N} - \text{P} - \text{N} - \text{P} - \text{N} - \text{P} - \text{N} \quad \text{R}_2 \text{N} - \text{P} - \text{N} - \text{P} - \text{N} - \text{P} - \text{N} \quad \text{XII} \\
\end{align*}
\]

Bicyclic phosphazenes can be readily distinguished from the corresponding fully aminolyzed cyclotetraphosphazenes by IR and \(^{31} \text{P} \) NMR spectroscopy. The \(^{31} \text{P} \) chemical shifts of the former (15–258) lie \(\sim 10 \) ppm downfield as compared to the chemical shifts of the later (4–128). The \(^{31} \text{P} \) NMR technique is thus very useful for determining the relative yields of the two types of products particularly in those instances where the bicyclic phosphazenes cannot be separated from the reaction mixture.\(^{18–24} \) A typical spectrum is shown in Fig. 2.

It is essential to record the proton NMR spectra of bicyclic phosphazenes at high fields (> 5 Tesla) in order to make a complete analysis of the spectrum and assign the various resonances.\(^{19–21} \) The spectrum of the bicyclic compound, \(\text{N}_4 \text{P}_4 \text{(NMe}_2)_5 \text{ (NHet) (NET)} \) at 270MHz is shown in Fig 3 along with the assignments. The data confirm the bicyclic structure. The protons of the groups attached to the junction phosphorus atoms [P(2),P(6)], are considerably deshielded and this deshielding extends even to the \(\gamma \)-protons.\(^{19–21} \) The two \(\text{NMe}_2 \) substituents at P(4) or P(8) are nonequivalent. An analysis of the shifts observed on the addition of \(\text{Eu(fod)}_3 \) indicates that the protons of the \(\text{NMe}_2 \) group pointing to the bridgehead nitrogen atom resonates at a higher field.\(^{18} \)

X-ray crystallographic studies of the bicyclic phosphazenes, \(\text{N}_4 \text{P}_4 \text{(NMe}_2)_5 \text{ (NHet) (NET)} \),\(^{25} \) \(\text{N}_4 \text{P}_4 \text{(NHMe)}_6 \text{ (NMe)} \)\(^{26} \) and \(\text{N}_4 \text{P}_4 \text{(NMe}_2)_5 \text{ (NHMe) (NMe)} \)\(^{27} \)
Fig 2 The $^{31}\text{P} \left({}^1\text{H}\right)$ NMR spectrum (36.4MHz, CD$_2$Cl$_2$) of the product of the reaction of 2,6-$\text{N}_4\text{P}_4\text{Cl}_6$ (NHet) (NHBut) with an excess of dimethylamine in chloroform after treatment with triethylamine. The low-field region (21-148) is due to the bicyclic derivative, $\text{N}_4\text{P}_4(\text{NMe}_2)_6$ (NHBut) (NHet) and the high-field region (9-18) is due to $\text{N}_4\text{P}_4(\text{NMe}_2)_6$ (NHBut) (NHet). For parameters computed from the two halves of the spectrum, (see Ref. 21.)
Fig 3 The 270 MHz 1H NMR spectrum of VI ($R = R' = Et$) in CDCl$_3$.
reveal several interesting features. The structural parameters for \(V(R = \text{Me}) \) is shown in Fig. 4. The fragments on either side of the bridge are approximately planar and the two planes are inclined at an angle of 122°. The molecular shape may be regarded as that of a basket. The peripheral P–N bonds retain their phosphazene character. The P–N lengths at the bridgehead are longer (mean 1.716Å) and close to the length normally associated with a P–N single bond. The sum of the interbond angles at the bridgehead nitrogen atom is 336° which suggests that this nitrogen has a pronounced pyramidal character. Thus in bicyclic phosphazenes, the trans-annular bridging unit possesses essentially a phosphazene character.

A unique bicyclic compound, \(
\text{N}_4\text{P}_4\left[\text{N(\text{CH}_2\text{PH})_2}\right]_6 \) (NCH2Ph) (XIV) has been isolated in low yield from the reaction of \(\text{N}_4\text{P}_4\text{Cl}_8 \) (II) with an excess of dibenzylamine in boiling methyl cyanide.\(^{28}\) This compound is characterised by high resolution mass spectrometry and IR and NMR spectroscopy. The formation of this unusual bicyclic compound must involve a dealkylation step prior to or concomitant with intramolecular nucleophilic attack.
The replacement of chlorine atoms from \(\text{N}_4\text{P}_4\text{Cl}_6 \) (II) by amino substituents proceed mainly by the nongeminal pathway.24,28,29-31 Substantial quantities of both 2,6 and 2,4-disubstituted products are formed with sluggishly reacting amino such as N-methylaniline,30 dibenzylamine28 t-butylamine29b, neo-pentylamine,22 benzylamine24 or aniline24; more reactive amines (e.g. dimethylaniline,31 ethylamine29d) afford 2,6-substituted products almost exclusively. Only in two instances geminal substitution is observed. The reaction of \(\text{N}_4\text{P}_4\text{Cl}_6\text{H}_8\text{II} \) with aqueous ammonia in diethyl ether in the presence of anhydrous sodium sulphate gives 2,2-\(\text{N}_4\text{P}_4\text{Cl}_6\text{(NH}_2)_2 \) (15 per cent)32; the reaction of II with aziridine in \(n \)-hexane affords 2,2-\(\text{N}_4\text{P}_4\text{Cl}_6\text{(NC}_2\text{H}_4)_2 \) (11 per cent).33 Chloro(primary amino) cyclotetraphosphazenes containing both PCl(NH'R) and P(NH'R)\textsubscript{2} groups have not been identified. Attempts to prepare such derivatives lead to only resinous cross-linked materials.29

The \(^{31}\text{P}\{^1\text{H}\} \) NMR spectra of 2,6- and 2,4-substituted \(\text{bis} \) (amino) cyclotetraphosphazenes are of the \(\text{A}_2\text{B}_2 \) and \(\text{AA'}\text{BB'} \) types respectively.24 The spectra of the geminal derivatives, 2,2-\(\text{N}_4\text{P}_4\text{Cl}_6\text{R}_2 \) (\(\text{R} = \text{NH}_2, \text{NC}_2\text{H}_4 \)) show asymmetric \(\text{A}_2\text{BX} \) patterns.32,33

The structures of the two isomeric \(\text{bis} \)-(N-methylanilino) derivatives, \(\text{N}_4\text{P}_4\text{Cl}_6 \) (NMePh\textsubscript{2}) m.p 145 and 105 °C have been determined by single crystal X-ray diffraction. The highmelting isomer has a 2-\textit{trans}-6 disposition of the amino substituents. The molecule is centrosymmetric and the P–N ring adopts the chair conformation.34 The low-melting isomer has the 2-\textit{trans}-4 structure; the P–N ring in this case assumes the boat conformation.35

REACTION OF CHLOROCYCLOPHOSPHAZENES WITH DIFUNCTIONAL REAGENTS

There are five possible pathways for the reaction of a halogenocyclophosphazene with an organic difunctional reagent as illustrated in Fig. 5 for \(\text{N}_3\text{P}_3\text{Cl}_6\text{I} \). All these pathways have been realised. We have demonstrated that the reactions of aliphatic diamines, \(\text{NH}_2(\text{CH}_2)_n\text{NH}_2(n = 2-4) \) with \(\text{N}_3\text{P}_3\text{Cl}_6\text{I} \) give initially the mono(spiro) derivatives, \(\text{N}_3\text{P}_3\text{Cl}_4 \) [HN(\(\text{CH}_2)_n\text{NH} \) \((n = 2-4) \)].36,37 An X-ray diffraction study of \(\text{N}_3\text{P}_3\text{(NMe}_2)_4 \) (NHCH\(_2\text{CH}_2\text{NH}) \) confirmed its spirocyclic structure and hence that of its chloro precursor.38 Further reaction of the mono (spiro) (ethane-1,2-diamino) tetrachloro derivative with 1,2-diamino ethane gives only a resinous material owing to a facile intermolecular condensation.37 In contrast, both \(\text{bis} \) - and \(\text{tris} \)-spiro(propane-1,3-diamino) derivatives have been isolated from the reaction of \(\text{N}_3\text{P}_3\text{Cl}_6\text{I} \) with an excess of 1,3-diaminopropane.36,39 Complete substitution of the chlorine atoms of I has also been achieved with \(\text{NN}' \)-dimethylthelyenediamine,40 N-methyl ethanolamine41 and numerous aliphatic diols.42

Labarre \textit{et al.} have studied the reactions of I with \(\text{H}_2\text{N}(\text{CH}_2)_n\text{NH}_2 \) \((n = 3-5) \) in a mixed solvent medium. Only spirocyclic derivatives are formed when \(n = 3 \).39 When \(n = 4 \), spirocyclic derivative43 is the major product along with a ring-coupled derivative (XV, \(n = 4 \)) as a minor product.44 The intermolecular condensation product (XV) is formed exclusively when \(n = 5 \).45
reaction of I with spermine is interesting in that it yields compound XVI which combines the features of spirocyclic and ring-coupled derivatives.45-46 The importance of compounds of type XV and XVI lies in the fact that they are ‘model’ compounds for the synthesis of cyclolinear polymers.

The open chain pathway has been observed in a few systems36 and a recent example is the propanolamino derivative XVII46 reported by Harris and Williams who have also synthesised the first ansa compound (XVIII) starting from XVII.46 Shaw \textit{et al.} have isolated the spiro-ansa compound (XIX) which is isomeric to the \textit{bis}-spiro derivative (XX).47

Two complementary methods have been explored for the synthesis of spirocyclic fluorocyclotriphosphazenes. The first method involves the reaction of \(N_3P_3F_6\) with \(H_2N(CH_2)_n NH_2\) (\(n = 2, 3\)) or \(HN(Me) (CH_2)_2 N(Me) H\) to obtain the monospiro derivatives.48-49 The second method is more general and consists in the fluorination of mono(spiro) and di(spiro) chloro derivatives by using potassium fluoride in methyl cyanide.48 The spirocyclic structures of the fluoro derivatives (and hence their chloro precursors) are readily established from the31P NMR data.
Reactions of $N_3P_3Cl_6(\text{I})$ with o-phenylenediamine give spirocyclic derivatives whilst the m- and p-phenylenediamines give ring-coupled products.1 Catechol,
3-methoxy catechol, 3-methoxy thiocatechol, 1,1′-dihydroxy 2,2′-binaphthyl and 2,2′-dihydroxy 1,1′-binaphthyl also give spirocyclic products. Some of these spirocyclic phosphazenes (e.g. XXI) form inclusion clathrates with a variety of guest molecules and this phenomenon can be used to advantage in polymerizing guest olefinic monomer molecules to obtain stereoregular polymers.

Degradation of the P-N ring occurs in the reaction of N₃P₃Cl₆(I) with o-aminophenol; the product is the phosphorane(XXII). The reaction of catechol yields an hexacoordinated phosphorus derivative, [P(O₂C₆H₄)₃]⁻ (HNEt₃)⁺ in addition to spirocyclophosphazene.

Structural aspects of spirocyclic derivatives have received considerable attention in recent years and can be correlated with their chemical shifts. The δ values of Pₘᵢₙᵢₐₙ incorporated in a 5-membered ring occur at a much lower field than those observed for Pₘᵢₙᵢₐₙ in compounds containing 6-or 7-membered rings. The 5-membered ring is subject to steric strain and as a consequence there is a decrease of π-electron release to the phosphorus atom from the exocyclic substituents.

The reactions of N₄P₄Cl₈(π) with 1,2-diaminoethane or ethylene glycol yields a very unstable mono(spiro) cyclotetraphosphazene and a cross-linked resin. Treat-
ment of the former with dimethylamine gives the oxocyclo-tetrathosphazatriene, \(N_4HP(O)(NMe_2)_7 \). Reactions of \(N_4P_4Cl_8 \) with 1,3-diamino propane, 1,3-propane-diol or \(N \)-methylthanolamine afford mono(spiro) cyclotetraphazenones which are conveniently characterised by \(^1H \) and \(^{31}P \) NMR spectra of their methoxy or dimethylamino derivatives, e.g. \(N_4P_4(NMe_2)_6 \) [NH(CH\(_2\)_3NH] and \(N_4P_4(OMe)_6 \) [O(CH\(_2\)_3O].\(^{56} \) The NN'-dimethylthylediamino derivatives, \(N_4P_4X_6 \) [N(Me)(CH\(_2\))\(_2\)N(Me)] (\(X = F,Cl \)) are also known.\(^{49} \)

TRIPHENYLPHOSPHAZENYL) CYCLOTRIPHOSPHAZENES

Early reports of the reactions of pentachloro(triphenylphosphazeny1) cyclotriphosphazene(XXIII), \(X = Cl \) with two equivalents of dimethylamine or piperidine in ether clearly showed that only the geminal product, \(N_3P_3Cl_4R(NPPh_3) \) (\(R = NMe_2, \)

\[\text{XXIII} \]

\[\text{NC}_3\text{H}_{10} \] was formed. This results was in contrast to the behaviour of these amines towards the mono(amino) derivative, \(N_3P_3Cl_5R \), in which case the non-geminal derivative was formed almost exclusively.\(^3 \) The reactions of XXIII (\(X = Cl \)) with various amines have been investigated with a view to gaining a better insight into the substituent effect exerted by the -NPPh\(_3\) group. The reactions of XXIII (\(X = F \) or \(Cl \)) with methoxide reveal significant differences in the halogen replacement pattern and serve to highlight the effect of leaving group on the displacement reactions at tetrahedral phosphorus centre.\(^{57} \) Allcock et al. have made a similar comparative study of the reactions of \(N_3P_2X_6 \) (\(X = F,Cl \)) with metallocenyl anions.\(^{58} \)

Two new methods have been developed for the synthesis of the chloro derivative XXIII (\(X = Cl \)) based on the Appel and Staudinger reactions :

\[\text{NH}_3 \]

\[\text{N}_3\text{P}_3\text{Cl}_5 \overset{\text{Et}_3\text{O}}{\rightarrow} 2,2'-\text{N}_3\text{P}_4(\text{NH}_2)_2 \text{Cl}_4 \]

\[\text{N}_3\text{P}_3\text{Cl}_5(\text{N}_3) \overset{\text{Ph}_3\text{P}}{\rightarrow} \text{N}_3\text{P}_3\text{Cl}_5(\text{NPPh}_3) \]

(XXIII, \(X = \text{Cl} \))

The fluoro derivative (XXIII, \(X = F \)) is conveniently prepared by the fluorination of the chloro precursor (XXIII, \(X = Cl \)) with potassium fluoride in methyl cyanide.\(^{59} \)
The results obtained in the reactions of the chloro derivative (XXIII, \(X = \text{Cl} \)) with primary and secondary amines\(^{60}\) may be summarised as follows. At the mono stage, secondary amines yield the geminal isomer of \(\text{N}_3\text{P}_3(\text{NPPh}_3)\ (R)\text{Cl}_4 \) (XXIV, \(R = \text{NMe}_2, \text{NEt}_2, \text{NC}_5\text{H}_{10} \)) when diethyl ether or benzene is used as the solvent; reactions in methyl cyanide yield both geminal (XXIV) and nongeminal (XXV, XXVI) derivatives with the latter predominating. At the \(\text{bis} \) and subsequent stages of chlorine replacement a derivative of \(\text{N}_3\text{P}_3(\text{NPPh}_3) \text{R}_n\text{Cl}_{5-n} \ (n \leq 2, R = \text{NMe}_2, \text{NEt}_2, \text{NC}_5\text{H}_{10}) \) containing a \(\text{P}(\text{NPPh}_3) \text{Cl} \) group is not formed. The reaction of XXIII (\(X = \text{Cl} \)) with methylamine affords nongeminal isomers of \(\text{N}_3\text{P}_3 \ (\text{NPPh}_3) \ (\text{NHMe}) \text{Cl}_4 \) exclusively in methyl cyanide and predominantly in ether. The results can be explained in terms of a change-over from a \(S_{\text{n2}}(\text{P}) \) to a \(S_{\text{n1}}(\text{P}) \) mechanism. Such a change-over is occasioned by the powerful electron releasing nature of the \(-\text{NPPh}_3 \) substituent as well as its steric bulk which would tend to retard an associative pathway. The formation of nongeminal products in a polar solvent such as methyl cyanide can be readily explained by postulating a one-step concerted \(S_{\text{n2}}(\text{P}) \) mechanism (See Section G).

The reaction of XXIII (\(X = \text{Cl} \)) with aziridine (\(\text{HNC}_2\text{H}_4 \)) yields the partially and fully substituted derivatives \(\text{N}_3\text{P}_3(\text{NPPh}_3) \text{Cl}_{6-n} \ (\text{NC}_2\text{H}_4)_n \) whereas the fluoro derivative (XXIII, \(X = \text{F} \)) is unreactive even under drastic experimental conditions.\(^{61-62}\) At the \(\text{bis} \) stage of chlorine replacement, aziridine prefers to attack \(\text{P}(\text{NC}_2\text{H}_4) \text{Cl} \) centre rather than \(\text{PCl}_2 \) or \(\text{P}(\text{NPPh}_3) \text{Cl} \) centres to give XXVII. This result is in contrast to the behaviour of other secondary amines mentioned above. Presumably an \(S_{\text{n2}}(\text{P}) \) mechanism operates at this stage because of the weaker basic character of aziridine compared to dimethylamine and also because the participation of the lone pair of electrons on the aziridino nitrogen atom in
\(\pi \)-bonding with the ring phosphorus atom is considerably less. The latter assumption is supported by the exocyclic P-N bond lengths (1.674 Å) and the appreciable pyramidal character of the aziridino nitrogen atom (sum of interbond angles 300°) in \(\text{N}_3\text{P}_3(\text{NC}_2\text{H}_4)_6 \).63 At the tris stage of chlorine replacement, the geminal product (XXVIII) is formed exclusively as a result of a change-over from an associative to a dissociative S\textsubscript{1} (P) mechanism.

The aziridino derivatives are of interest from the point of view of the reported anti-tumour activity of cyclophosphazenes and cyclothiaphosphazenes bearing aziridino groups.11 The presence of an electron releasing group enhances the anti-tumour activity. A preliminary comparative study of the inhibition of the activity of the enzyme, Reverse Transcriptase (present in the virus Avian myeloblastosis which can cause leukaemia in chicks), by \(\text{N}_3\text{P}_3(\text{NC}_2\text{H}_4)_6 \) and \(\text{N}_3\text{P}_3(\text{NPPH})_3(\text{NC}_2\text{H}_4)_3 \) (XXIX) shows that the latter is \(\sim 2.5 \) times more effective. The main disadvantage of the triphenyl phosphazeny1 compound is its low solubility in DMSO or water.62

The successive replacement of chlorine atoms from \(\text{N}_3\text{P}_3\text{Cl}_5(\text{NPPH})_3 \) by methoxide yields the geometrical isomers in unequal proportions (at the mono stage the cis isomer predominates) whereas the substitution of fluorine from \(\text{N}_3\text{P}_3\text{F}_5(\text{NPPH})_3 \) under the same conditions gives the geometrical isomers in approximately equal proportions. The chlorine atom at the P(NPPH)\textsubscript{3} Cl centre is replaced readily and at the tris stage, the geminal derivative, \(\text{N}_3\text{P}_3(\text{NPPH})_3(\text{OME})_3\text{Cl}_2 \) is formed almost exclusively. The fluorine at the P(NPPH)\textsubscript{3} F site is not replaced till the last stage. The two monohalogenotetra (methoxy) derivatives, \(\text{N}_3\text{P}_3(\text{OME})_4(\text{NPPH})_3 \) \(\chi(\chi = \text{F, Cl}) \) possess different structures; the chloro compound (XXX) contains a P(OME) Cl group but the fluoro derivative (XXXI) contains a PF(NPPH)\textsubscript{3} and two P(OME)\textsubscript{2} groups. The above differences can be explained in terms of a change-over from an associative to a dissociative mechanism for the methoxylation of \(\text{N}_3\text{P}_3\text{Cl}_5(\text{NPPH})_3 \) and an associative mechanism persisting throughout for the fluoro system. The stereochemical course is difficult to explain. It is postulated that the attack of MeO- on the fluoro compound (XXIII, \(\chi = \text{F} \)) occurs in the plane of the phosphazene ring.5764

The \(^3\text{P} \{1\text{H} \} \) NMR spectra of triphenylphosphazeny1 substituted cyclophosphazene provide excellent examples of different types of four-spin system and yield valuable structural information.60,62,64,65 The conformations adopted by the NPPH\textsubscript{3} group with respect to the cyclophosphazene ring appears to be related to the sign and magnitude of four-bond P...P coupling constant.66,67 The crystal structures of several (phosphazeny1) cyclotriphosphazenes have been determined mainly by Manohar et al.67–71 and the data are summarised in Table I. Particularly noteworthy is the observation that in the structure of the pentaziridino derivative (Fig. 6), the N(4)–P(1)–N(9)–P(4) is 15° and the exocyclic P\textsubscript{4}–N(9)–P(1) angle (145.3°) is the largest observed for (triphenylphosphazeny1) cyclotriphosphazenes. This unique conformation of the NPPH\textsubscript{3} group causes the protons of the geminal aziridino group to come into the shielding zone of one of the phenyl
Table I

<table>
<thead>
<tr>
<th>Compound</th>
<th>Mean P-N distance (^a)</th>
<th>Mean P-N distance (^b)</th>
<th>Exocyclic P-N distance (^c)</th>
<th>Ring PNP angle (^d)</th>
<th>Exocyclic PNP angle (^e)</th>
<th>Y-P-N-P torsion angle (^f)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Na}_3\text{P}_5\text{Cl}_4(\text{NPPh}_3))</td>
<td>1.616</td>
<td>1.595</td>
<td>1.597 114.2 118.2</td>
<td>134.8</td>
<td>83</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>2,2-(\text{Na}_3\text{P}_5\text{Cl}_4\text{Ph}(\text{NPPh}_3))</td>
<td>1.625</td>
<td>1.584</td>
<td>1.576 111.7 118.4</td>
<td>131.6</td>
<td>-178</td>
<td>g</td>
<td></td>
</tr>
<tr>
<td>2,2-(\text{Na}_3\text{P}_5\text{Cl}_4(\text{NET}_2)(\text{NPPh}_3))</td>
<td>1.633</td>
<td>1.583</td>
<td>1.563 109.9 117.5</td>
<td>137.6</td>
<td>154</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>2-trans-4-(\text{Na}_3\text{P}_5\text{Cl}_4(\text{NET}_2)(\text{NPPh}_3))</td>
<td>1.61</td>
<td>1.560</td>
<td>1.56 114.5 118.6</td>
<td>140.6</td>
<td>65</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>(\text{Na}_3\text{P}_5(\text{NC}_2\text{H}_4)_3(\text{NPPh}_3))</td>
<td>1.609</td>
<td>1.584</td>
<td>1.557 114.0 122.7</td>
<td>145.3</td>
<td>15</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>2,2-(\text{Na}_3\text{P}_5\text{Cl}_4(\text{NPPh}_3)_2)</td>
<td>1.642</td>
<td>1.562</td>
<td>1.558 109.2 117.5</td>
<td>134.3</td>
<td>6.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{Na}_4\text{P}_5\text{Cl}_4(\text{NPPh}_3))</td>
<td>1.590</td>
<td>1.555</td>
<td>1.588 115.4 133.5</td>
<td>133.0</td>
<td>-58</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>(\text{Na}_3\text{P}_5\text{Cl}_5[N\text{P}(\tau-\text{C}_6\text{H}_4\text{Fe}\tau-\text{C}_6\text{H}_4)_2])</td>
<td>1.606</td>
<td>1.566</td>
<td>1.566 114.2 117.7</td>
<td>142.7</td>
<td>62</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) P(1) is the phosphorus carrying the NPX\(_2\) group
\(^b\) Mean of other ring P-N distances
\(^c\) The first value is for X=P=N
\(^d\) The first value is for P(1)
\(^e\) The first value is for nitrogen opposite P(1)
\(^f\)

\(^h\) H R Allcock K-D Levin G H Riding and R R Whittle Organometallics 3, (1984), 663.

Rings and thereby renders these protons the most shielded ones. Generally, for the fully substituted triphenylphosphazeny1 derivatives, \(\text{Na}_3\text{P}_5(\text{NPPh}_3)\) \(R_3(R=\text{OMe}, \text{OCH}_2\text{CF}_3, \text{NMe})\), the shielding sequence of the three different types of protons is \(\text{cis} > \text{gem} > \text{trans}\).

Alkoxy/Aryloxy Cyclophosphazenes

(Alkoxy) and (aryloxy) cyclophosphazenes have acquired great practical value owing to their hydrolytic and thermal stability. Various aspects of their chemistry and applications have been surveyed.\(^{13-10}\) The use of an aryloxy substituent as a blocking group to reduce the functionality of cyclophosphazene precursors may offer significant advantages in the synthesis of polymers. We have carried out a
systematic study of the reactions of $N_3P_3Cl_6$ with sodium phenoxide and p-cresoxide72 and the reaction of $N_3P_3F_6$ with sodium phenoxide.73 The halogen replacement is predominantly nongeminal but the stereochemical course followed in the chloro and fluoro systems are different (F. 7). A "through space" interaction involving the oxygen-2p and phosphorus-3d orbitals is invoked to explain the slightly greater yield of the cis isomer of $N_3P_3Cl_4(OAr)_2$ compared to that of its trans counterpart.72 The reaction of $N_3P_3F_6$ can be conveniently monitored by GLC.73

The reaction of $N_4P_4Cl_8$(II) with phenoxide (or PhOH + Et$_3$N)74 or trifluoroethoxide75 are much more complex than the analogous reactions of $N_3P_3Cl_6$(I). More than twenty chloro(trifluoroethoxy) cyclotetraphosphazenes have been identified by GC-MS analysis of the reaction mixtures obtained by varying the stochiometry of the reactants. The chlorine replacement pattern with phenoxide is largely nongeminal; at the bis stage the 2,4-substituted derivative is favoured over the 2,6-substituted product. At the hexakis stage, there is a distinct preference for the 2-trans-6 isomer. With trifluoroethoxide, substantial amounts of products containing P(OCH$_2$CF$_3$)$_2$ group(s) are formed at the tris and subsequent stages of chlorine replacement. The behaviour of the trifluoroethoxide is intermediate between that of phenoxide74 and fluoride ions.3 An important observation in this study is the steady increase in volatility and the drastic decrease in GLC retention times with increasing degree of substitution by trifluoroethoxy groups. Thus GLC
Fig 7 The halogen replacement pattern in the reactions of $N_3P_5X_6(X = F, Cl)$ with phenoxide. The technique may prove useful for analysis of chlorocyclophosphazene mixtures after converting them into their trifluoroethoxy derivatives.

"Hydroxy" Cyclophosphazenes-Their Prototropic Behaviour and Reactions

Several "hydroxy" cyclophosphazenes, $N_3P_3R_5(OH)$ ($R = OMe, OPh, Ph$), $N_3P_3Ph_2(OR)_3$ (OH) ($R = Me, Et, Pr^*$) and $N_3P_3(NHBu)^2_2(OR)_3$ (OH) ($R = Me, Et$) have been prepared and their tautomeric behaviour elucidated by dynamic ^{31}P NMR spectroscopy. All these derivatives exist as oxophosphazadiene tautomers in which the hydrogen atom is attached to a ring nitrogen atom adjacent to the phosphoryl group. The crystal structure of the diphenyl derivative, $N_3P_3PH_2(OMe)_3$(OH) shows that the molecule exists as a hydrogenbonded dimer of the oxophosphazadiene tautomeric form (XXXII) in which the proton is attached to the nitrogen atom adjacent to PPh$_2$ group. However, in solution, there is a rapid exchange between the two tautomers (XXXII, XXXIII) at ambient temperature with the former in greater abundance.

Recently, the mono "hydroxy" derivatives, $N_3P_3(NPPh_3)$ (R) (OMe)$_3$(OH) ($R = OMe$ or NMe$_2$) have been isolated. High field 1H and ^{31}P NMR data reveal that they exist as a pair of cis and trans (with respect to phosphoryl and
NPPh$_3$ group) oxophosphazadienes (XXXIV, XXXV). Protonation occurs at the nitrogen adjacent to P(NPPh$_3$) (R) site and there is no exchange of the hydrogen among the skeletal nitrogen atoms.78

“Hydroxy” cyclophosphazenes can be readily prepared by the reactions of (alkoxy) cyclophosphazenes with iodotrimethyl silane.79

Although “hydroxy” phosphazenes exist as their oxophosphazadiene tautomers, they react with acid chlorides to yield phosphazene carboxylate derivatives (e.g. XXXVI).80 They also react with chlorocyclophosphazenes in the presence of a base to yield P-O-P bridged compounds (XXXVII).81

THERMAL REARRANGEMENT OF (ALKOXY) CYCLOPHOSPHAZENES

The (methoxy) cyclophosphazenes, [NP(OMe)$_2$]$_n$ ($n = 3–6$) rearrange on heating to give the oxocyclophosphazenes, [N(Me) P(O) (OMe)]$_n$. Isomeric products are formed when $n = 4–6$. The ethoxy and n-propoxy derivatives do not undergo the above rearrangement thermally; resinous materials are obtained.
which are presumably P-O-P cross-linked polymers. The geminal derivatives, \(\text{N}_{3}\text{P}_{3}\text{R}_{2}(\text{OMe})_{4} \) (\(\text{R} = \text{Ph}, \text{NHBu}^{+} \)) on heating at 150–200 °C yield both fully and partially rearranged products \textit{viz.} di (oxo) phosphaza-1-enes and oxophosphazadienes.\(^{82}\)

In order to further elucidate the effect of other substituents on the above rearrangement reaction and also to unravel the mechanistic aspects, the thermal rearrangement of (alkoxy) (\(p \)-cresoxy) cyclotriphosphazenes, \(\text{N}_{3}\text{P}_{3}(\text{OMe})_{6-n-}(\text{OC}_{6}\text{H}_{4}\text{Me}-p)_{n} \) (\(n = 1–5 \)) and \(\text{N}_{3}\text{P}_{3}(\text{OR})_{3}(\text{OC}_{6}\text{H}_{4}\text{Me}-p)_{3} \) (\(\text{R} = \text{Et}, \text{CH}_{2}\text{Ph} \)) have been investigated recently.\(^{79}\) A single rearranged product is obtained in all cases except in the case of mono(\(p \)-cresoxy) penta(methoxy) derivative, which yields two isomers. An increase in the number of arylxy groups causes an increase in the rearrangement temperature (160–225 °C). The reactions are conveniently monitored high-field \(^{1}\text{H} \) and \(^{13}\text{C} \) NMR spectroscopy.\(^{79-82}\)

The rearrangement of \(\text{cis} \) or \(\text{trans-N}_{3}\text{P}_{3}(\text{OC}_{6}\text{H}_{4}\text{Me}-p)_{3} \) (OMe)\(_{3}\) proceeds stereospecifically and for the first time a pair of isomeric oxocyclotriphosphazenes has been isolated. An X-ray crystallographic investigation of the \(\text{trans} \) isomer shows that the P-N ring exists in a twist-boat conformation (XXXVIII).\(^{83}\) A chair conformation is proposed for the \(\text{cis} \) isomer (XXXIX) on the basis of NMR data.\(^{79}\)

![XXXVIII](image)

![XXXIX](image)

Mechanism of Nucleophilic Substitution Reactions of Halogenocyclophazenes: Kinetic Studies

Although there have been a large number of synthetic studies of the nucleophilic substitution reactions of halogenocyclophazenes, kinetic studies to elucidate the mechanisms of these reactions have been carried out only in recent years. These studies relate to aminolysis and alkoxylation reactions of halogenocyclophazenes, the hydrolysis of chloro, alkoxy, aryloxy or amino cyclophosphazenes and metathetical exchange reactions.\(^{113-84-90}\) The results obtained in our laboratory on carefully chosen systems have enabled us to gain a better insight into the mechanisms of these reactions.

The rates of stepwise replacement of chlorine atoms from \(\text{N}_{3}\text{P}_{3}\text{Cl}_{6} \) by \(\text{NMe}_{2} \) group in methyl cyanide have been determined. The activation parameters (Table II) indicate that whereas a \(\text{S}_{2}2(P) \) mechanism involving a five-coordinated phosphorus intermediate operates for the first chlorine substitution (Fig. 8a), the
TABLE II

Kinetic data for the reactions of halogenocyclophosphazenes with various amines\(^a\)

<table>
<thead>
<tr>
<th>Cyclophosphazene</th>
<th>Amine</th>
<th>Solvent</th>
<th>Second order rate constant(^b)</th>
<th>(\Delta H) kJ mol(^{-1})</th>
<th>(\Delta S) J ml(^{-1}) K(^{-1})</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{N}_2\text{P}_3\text{Cl}_6)</td>
<td>HNMe(_2)</td>
<td>MeCN</td>
<td>105.7</td>
<td>20.7</td>
<td>-128.0</td>
<td>88</td>
</tr>
<tr>
<td>(\text{N}_2\text{P}_4\text{Cl}_4(\text{NMe}_2))</td>
<td>HNMe(_2)</td>
<td>MeCN</td>
<td>32.4</td>
<td>10.6</td>
<td>-189.7</td>
<td>88</td>
</tr>
<tr>
<td>2-trans-4-(\text{N}_2\text{P}_3\text{Cl}_4(\text{NMe}_2))(_2)</td>
<td>HNMe(_2)</td>
<td>MeCN</td>
<td>2.21</td>
<td>14.0</td>
<td>-196.4</td>
<td>88</td>
</tr>
<tr>
<td>(\text{N}_2\text{P}_3\text{F}_6)</td>
<td>HNMe(_2)</td>
<td>MeCN</td>
<td>8.27</td>
<td>53.1</td>
<td>-128.7</td>
<td>88</td>
</tr>
<tr>
<td>(\text{N}_2\text{P}_4\text{Cl}_6)</td>
<td>Bu(_4)NH(_2)</td>
<td>MeCN</td>
<td>9.7 \times 10(^{-3})</td>
<td>20.3</td>
<td>-205.7</td>
<td>87</td>
</tr>
<tr>
<td>(\text{N}_2\text{P}_5\text{Cl}_8)</td>
<td>Bu(_4)NH(_2)</td>
<td>thf</td>
<td>1.9 \times 10(^{-3})</td>
<td>47.6</td>
<td>-125.9</td>
<td>87</td>
</tr>
<tr>
<td>(\text{N}_2\text{P}_6\text{Cl}_8)</td>
<td>Bu(_4)NH(_2)</td>
<td>MeCN</td>
<td>2.28</td>
<td>8.2</td>
<td>-201.6</td>
<td>87</td>
</tr>
<tr>
<td>(\text{N}_2\text{P}_3\text{Cl}_6)</td>
<td>PhNH(_2)</td>
<td>MeCN</td>
<td>2.09 \times 10(^{-3})</td>
<td>29.1</td>
<td>-203.9</td>
<td>91</td>
</tr>
<tr>
<td>(\text{N}_2\text{P}_4\text{Cl}_6)</td>
<td>ArNH(_4)(_d)</td>
<td>MeCN</td>
<td>2.67 \times 10(^{-3})</td>
<td>25.2</td>
<td>-189.5</td>
<td>91</td>
</tr>
<tr>
<td>(\text{N}_2\text{P}_5\text{Cl}_8)</td>
<td>ArNH(_4)(_d)</td>
<td>thf</td>
<td>1.92 \times 10(^{-3})</td>
<td>21.9</td>
<td>-261.7</td>
<td>91</td>
</tr>
<tr>
<td>(\text{N}_2\text{P}_6\text{Cl}_8(\text{NHAr}))(_d)</td>
<td>ArNH(_4)(_d)</td>
<td>MeCN</td>
<td>5.05 \times 10(^{-4})</td>
<td>33.6</td>
<td>-196.3</td>
<td>91</td>
</tr>
<tr>
<td>(\text{N}_2\text{P}_7\text{Cl}_8(\text{NHAr}))(_d)</td>
<td>ArNH(_4)(_d)</td>
<td>thf</td>
<td>1.19 \times 10(^{-4})</td>
<td>29.1</td>
<td>-278.2</td>
<td>91</td>
</tr>
<tr>
<td>(\text{gem-N}_2\text{P}_3\text{Ph}_2\text{Cl}_4)</td>
<td>H(_2)NMe</td>
<td>MeCN</td>
<td>0.50</td>
<td>28.1</td>
<td>-154.4</td>
<td>22</td>
</tr>
<tr>
<td>(\text{gem-N}_2\text{P}_4\text{Ph}_3\text{Cl}_4)</td>
<td>H(_2)NMe</td>
<td>thf</td>
<td>0.154</td>
<td>19.9</td>
<td>-191.9</td>
<td>22</td>
</tr>
<tr>
<td>(\text{gem-N}_2\text{P}_5\text{Ph}_4\text{Cl}_4)</td>
<td>HNMe(_2)</td>
<td>MeCN</td>
<td>1.24</td>
<td>10.2</td>
<td>-207.6</td>
<td>22</td>
</tr>
<tr>
<td>(\text{gem-N}_2\text{P}_6\text{Ph}_5\text{Cl}_4)</td>
<td>HNMe(_2)</td>
<td>thf</td>
<td>8.28 \times 10(^{-3})</td>
<td>18.7</td>
<td>-201.4</td>
<td>22</td>
</tr>
</tbody>
</table>

\(^a\) Error involved in the parameters 5 per cent
\(^b\) at 20 °C unless specified otherwise
\(^c\) at 25 °C
\(^d\) Ar = C\(_8\)H\(_4\)(OMe)\(_p\)
\(^e\) at 30°C

data for the second and third chlorine substitution are better accommodated by a one-step concerted mechanism (Fig. 8b). A sharp change-over from an \(S_n2(P)\) to a \(S_n1(P)\) mechanism (Fig. 8c) occurs at the tetrakis stage of chlorine replacement. With increasing degree of substitution, the attainment of a transition state with a five-coordinated phosphorus becomes difficult; at the same time the mesomeric electron release by the three amino substituents into the phosphazene ring facilitates the heterolysis of the P-Cl bond. The \(S_n1(P)\) mechanism has also been established for the replacement of the lone chlorine atom from \(\text{N}_3\text{P}_3(\text{OPh})_5\) Cl by NMe\(_2\) or NMe group.\(^{88}\)

The reactions of \(\text{N}_3\text{P}_3\text{Cl}_6(\text{I})\) and \(\text{N}_4\text{P}_4\text{Cl}_8(\text{II})\) with \(t\)-butylamine in methyl cyanide follow a bimolecular mechanism via penta-coordinated phosphorus intermediate.\(^{87}\) The reactivity of the eight-membered ring is \(\sim 200\) times greater than the six-membered ring; this enhanced reactivity stems from the greater skeletal flexibility of the former.

Kinetic studies of the reactions of the geminal diphenyl derivative, \(\text{N}_2\text{P}_3\text{Ph}_2\text{Cl}_4\) with dimethylamine and primary alkyl amines have been carried out in both methyl cyanide and tetrahydrofuran (thf).\(^{22}\) Whilst methylamine reacts faster than dimethylamine in thf, the reverse trend is observed in methyl cyanide. The rate
data as well as the activation parameters suggest that in a polar solvent such as methyl cyanide the concerted mechanism prevails; in thf, which is less polar, the reaction proceeds essentially via neutral penta-coordinated intermediate.

The rates of the reactions of \(\text{N}_2\text{P}_3\text{Cl}_6(\text{I}) \) with aromatic primary amines (aniline, \(p \)-toluidine and \(p \)-anisidine) have been determined. The data indicate that the first and second stages of chlorine replacement proceed by a bimolecular mechanism in both thf and methyl cyanide. In both the solvents, the nongeminal bis(amin) derivative (1:2 mixture of cis and trans isomers) is formed almost exclusively. However, in the presence of an excess of tri-\(n \)-butylamine, the replacement of the second chlorine atom occurs by an \(\text{E}_1\text{CB} \) mechanism which involves the intermediacy of a three-coordinated \(\Phi^2 \) species (XXXX) (Fig. 9). The sole product is the geminal bis(amin) derivative (XXXXI). The reaction obeys a pseudo first order rate law with respect to \(\text{N}_2\text{P}_3\text{Cl}_6(\text{NHAr}) \); the pseudo first-order rate constant (\(k' \)) varies linearly with the initial concentration of tri-\(n \)-butylamine. The intermediacy of the phosphoramidate type 3-coordinated \(\Phi^2 \) species (XXXX) has been conclusively established by trapping it with methanol (XXXXIII) and by the isolation of the unusual product, \(\text{gem-[N}_3\text{P}_3\text{Cl}_6(\text{NHC}_6\text{H}_4\text{R-p}) \text{O}^-} \ (\text{NHEt})_2^+ \) (XXXXII)\(^9\) as shown in Fig. 9. The \(^{31}\text{P} \{^1\text{H}\} \) NMR spectrum of XXXXII (\(R = \text{Me} \)) is shown in Fig. 10.

All the possible pathways for nucleophilic displacement at a tetrahedral phosphorus centre have now been realised in cyclophosphazene systems. The mechanistic studies enable us to understand the combined role of the substituent present on the phosphazene ring, the reacting nucleophile, the leaving group and
Fig 9 The generation and trapping of a phosphoramidate species, $N_2P_3Cl_4NR(XXXX)$.

the reaction medium on the nature of the products formed in the substitution reactions of cyclophosphazenes.

Phosphazene Polymers

Poly (organophosphazenes) possess a number of unusual properties which make them superior to other hetero atom polymer systems. Basic research in this field has developed rapidly in recent years and phosphazene based polymers are now poised on the threshold of being considered for a variety of technological applications.\(^{12-14}\)

We have investigated several approaches for the synthesis of phosphazene polymers. These include the conventional methods of ring-opening thermal polymerization of $N_2P_3Cl_4$\(^6\) (using several new initiators such as salt hydrates and substituted cyclophosphazenes) and condensation polymerization involving the reactions of chlorocyclo-phosphazenes with aromatic diamines and diols.\(^{19}\) Two new methods have been developed based on the strategy of “side-group modification” reactions. One method exploits the facile cleavage of PO-alkyl bonds by iodosilanes which leads to the incorporation of phosphazene rings into siloxane chains (Fig 11). However, the resulting polymers are prone to hydrolytic decomposition.\(^{79}\) The second approach utilizes the reactions of (aryloxy) phosphazenes with polyhaloalkanes under Friedel Crafts conditions to obtain cross-linked phosphazene polymers that possess high thermal stability. This method (Fig. 12) holds considerable promise for synthesising phosphazene polymers with varied properties.\(^{92}\)

Concluding Remarks

It has been generally believed that the halogen replacement pattern in the substitution reactions of cyclo-phosphazenes is dependent only on the nature of the
Figure 10 The 31P (1H) NMR spectrum (32 MHz, CDCl$_6$) of the triethylammonium salt (XXXXII, $R = $ Me).
Fig 11 Reaction of alkoxy phosphazenes with iodosilanes to yield polymers incorporating phosphazene rings into siloxane chains.

Fig 12 Friedel Crafts condensation of aryloxy groups in \(\text{N}_3\text{P}_3(\text{O} \text{Ph})_9 \) with \(\text{Cl(CH}_2\text{)}_3\text{Cl} \) (For simplicity only one aryloxy group is included in the cross-linking process; cross-linking can also occur through the ortho positions).

attacking nucleophile and not on the substituent already present on the phosphazenes ring. Our studies reviewed in this paper have exposed the limited validity of the above simplistic hypothesis. The type of mechanism and hence the nature of products formed are determined by the combined effect of the substituent(s) attached
to the P–N ring, the incoming nucleophile, the leaving group and the reaction medium. The results have important ramifications in the context of a great deal of current interest evinced in the stereochemistry of nucleophilic displacement at a tetrahedral phosphorus and its analogy to silicon systems. 93

Several subtle aspects of the mechanism of formation of trans-annular bridged bicyclic phosphazenes derived from chloro (primary amino) cyclotetraphosphazenes have been unravelled and a directed synthetic strategy has been developed for bicyclic phosphazenes containing different amino substituents.

Cyclophosphazenes, with varying ring size and shape, offer some of the best examples of multi-spin systems. Their NMR spectra, besides being of interest to NMR specialists, would be very useful for instructional purposes. This aspect has not received adequate attention so far. A comprehensive understanding of the phosphorus–31 chemical shifts and P...P coupling constants is also lacking although some general trends have been noted. 94

The range and versatility of the reactions undergone by cyclophosphazenes ensures that a considerable amount of new and fascinating chemistry will be developed, particularly in the areas of organometallic chemistry of cyclophosphazenes 67,58,95 and phosphazene polymer chemistry. 12-14

ACKNOWLEDGEMENT

It is a pleasure to acknowledge the contributions of my numerous coworkers whose names appear in the References Section.

REFERENCES

20. S S Krishnamurthy K Ramachandran and M Woods *J chem Res* (S) (1979) 92 ; (M) 1258–1265
27. T S Cameron *Personal Communication*
35. Y S Babu and H Manohar *Cryst Struct Commun* 6 (1977) 803
43. G Guercj J F Labarre R Roques F Sournies *J mol Struct* 96 (1982) 113
49. T Chivers and R Hedgeland *Canad J Chem* 50 (1972) 1017
60. S S Krishnamurthy P Ramabrahmam A R Vasudeva Murthy R A Shaw and M Woods *Z anorg allg Chem* 522 (1985) 226
68. Y S Babu H Manohar and T S Cameron *Acta Crystallogr Sect B* 35 (1979) 1410
71. V Chandrasekhar P Ramabrahmam S S Krishnamurthy M D Poojari and H Manohar *Unpublished results*
81. K V Katti S S Krishnamurthy and M Woods *Phosphorus Sulfur (in Press)*
83. S Karthikeyan K Vyas S S Krishnamurthy and T S Cameron *Unpublished results*