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The problem of Rayleigh wave scattering due to rigid plane vertical barriers
in the surface of a deep ocean has been discussed. Deep ocean is a liquid half
space (z2(, — o <x<) and equally spaced plane vertical  barriers of
small depth H{(x=ma, m=0, 1, 2, ..., n) are erected artificially in the surface
of the deep ocean. The elastic medium is homogeneous, isotropic and slightly
dissipative. The Wiener-Hopf technique is the method of solution. Evaluation
of the integrals along appropriate contours in the complex plane yields the
reflected, transmitted and the scattered waves. The scattered waves are origin-
ating at the tips (ma, H) of the plane barriers and at their images (ma, —H) in
the free surface. The numerical computations for the amplitude of the scat-
tered waves have been made versus the wave number. The amplitude falls off
rapidly as the wave number increases very slowly.
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Introduction

Seismic waves appear on the surface of the carth during an earthquake and let
loose their energies around the inhomogeneities and irregularities on the sur-
face of the earth. Rayleigh wave is mainly responsible for the destruction of
buildings and loss of human lives. Scattering of Rayleigh waves due to surface
defects results in large amplification of waves during earthquakes. The prob-
lem of scattering of Rayleigh waves at the edges of rigid plane barriers requires
investigation.

The effect of vertical plane barriers fixed in an infinitely deep sea, on nor-
mally incident surface waves was first studied by Ursell' for the two-dimen-
sional case. Faulkner’ extended his solution to the three-dimensional case to
study the diffraction of obliquely incident surface waves by a vertical barrier
of finite depth. Deshwal and Mann? studied the problem of scattering of Ray-
leigh waves due to a rigid plane barrier in a liquid half-space. The scattered
waves are found to be cylindrical waves originating at the edge of the barrier
and at its image in the free surface. Mann and Deshwal* also discussed the
scattering behaviour of Rayleigh waves due to rigid plane barrier in the surface
of a shallow ocean. Deshwal and Mann*¢ further studied the problem of Ray-
leigh wave scattering at a corner of a quarter space and at a coastal region.

We propose to discuss here the problem of scattering of Rayleigh waves
due to the presence of a finite number of vertical plane barriers in the surface
of a deep ocean. The barriers are equally spaced (x=ma, m=0, 1, 2, .., n) and
of equal length H. They are assumed to be rigid permitting no displacement
across them. The paper has application to scattering of seismic waves due to
(i) artificially created plane barriers in the surface of a deep ocean or (1i) docks
or (iii) patches of pack-ice.
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Formulation of the Problem

The origin of co-ordinates is taken in the free surface of deep ocean with
x-axis lying in the free surface and z-axis pointing vertically downward. The
oceanic water is assumed to be a homogeneous, isotropic and slightly dissipa-
tive liquid half space. The (n+ 1) rigid vertical plane barriers of small depth H
are held parallel to z-axis at equal distances a in the free surface. The two-di-
mensional wave equation is

o°F,9F_1(3F, %
55,951 (07,4

where c is the velocity of wave propagation and ¢ >0 is a damping constant. A
time harmonic two-dimensional Rayleigh wave

¢](X,Z)=A(, eimﬂrws Yo= i(aﬁ—kz)m , o (2)

q, being the wave number for Rayleigh waves, is incident on the barriers (Fig.
1).If the potential for a time-harmonic wave be

glx, z, )=g(x, z)e ™, .. (3)
then (1) reduces to
Zx¢ Zl¢+k $=0k= '(w2+i£w)/c=k,+.ik3 ... (4)

The imaginary part of k is small and positive. Let the total potential be

gix,2)=g(x,2)+ g (x,2). ... (5)

Boundary Conditions
Various relations to be satisfied on the boundaries are
(i) ¢(x,z)isboundedasz— ... (6)

(00) @ 2a_ 3a

Fig 1 Vertical plane barriers in the surface of a liquid half space
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(il) @(x,2z)=0,z=0forallx, (7
(i) =—ﬁ-=0 x=ma,0<z<H ... (8)
m=0,1,2,..,n

u is the displacement component at any point (x, z). It is assumed that for giv-
en z, ¢ (x, z) has the behaviour of exp( —~d|x|) as |x]—= %, d> 0. If we define the
Fourier transforms

0 ©

‘IT(a» Z)z j ¢ (X, Z) e dx+ f ¢ (X, Z) e dx,

—® ]

¢_<a) Z>=$—(a’ Z>+a—+(a? Z); (9)
then ¢.(a, z) and ¢_(a, z) are analytic in the regions I'> ~d and I'<d
(a=0+il") respectively of the complex a-plane, ¢ being the real-part of the
complex .number a. Hence ¢ (a, z) along with its derivatives is analytic in the
strip —d <I" <d of the complex a-plane.
Solution of the Problem

Taking Fourier transformation of (4), we get

¢ #la.z)=0,y=1 ja' ~k’ (10)

i . ,y=1ty .

We choose that sign before the. radical in (10) which makes the real part of
y 20 for all a. The solution of the differential equation (10} is

¢la,z)=Aa)e” +Blak " | (1)

Since ¢ (a,z)is bounded as z — , therefore, A{a)=0and (11) leads to

Fla)- -2 L (12)

where ¢(a), #(a) denote ¢(a, H) and ¢{a, H) respectively. Similar notations
are used for ¢.(a, H) and ¢_(a, H) and for their derivatives. Decomposmon
of (12) by Wiener-Hopf technique and application of Liouville’s theorem gives

¢T+<a>=g<a>$;<k>~ﬂ*y(—“’, 13
F.(a)= ~g<a>7¢7’+<k)—¢'";‘” 4
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Similarly,
7.~ a)= —gla) 7. ()~ *(;") - (16)
ai<—a>=g<a>¢?@<k>—¢"<y_“) L(17)

The Fourier transform of (4) when x varies from — © to 0 and use of (8) leads
to a differential equation whose complete solution is

_ _ L, ZiaAe
Fla. 2+ 3. (-a 2)=Alak”+ Afak "‘+—lg'2’—[i%—z—,()<z€H. 8

The Fourier transform of (7) between — < and 0 gives

¢ (a,0)+d.(—a, 0)= jl‘i":’ a# ta,. ... (19)
0

From (18)and (19), we get

¢ (a,2)+¢ (—a, z)=2A/a)sinh az+zl—30%’—(;— ... (20)

Elimination of A,(a) between (20) and its derivative with respect to z when
z=Hleads to

_ —_ tanhyH | — — 2ia
Flo)+g(—aj=""2= [¢:<a>+¢:<—a> —“*—}
14 a —ay,
—————zm”A'e )H. . (21)
a’—al
Intergrating (4) from x=0 to x=a, x=a to x=12a, ..., x={n—1)a to x=na, af-
ter multiplying it by e'** and adding, we get
d’ 0| e, |99
'7_ - + -
(dz_ y ) ¢(a Z> (ax)x‘=nue (ax)x=l)

Hia(dhon €™ —iald) -y, ... (22)

0<z<H and g,a, z) j¢ (x, z) '™ dx.

The right hand side of (22) is obtained by using the boundary conditions (7-8)
and the result that ¢, =0 on (o0, H)and (ma, H). Adding (22) to the new resuit
obtained by changing a to — a in it, we get the differential equation whose so-
lution is

dla,z)e "+ g(—a,z)e™?=C,(a)e”+Cya)e
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2 e i .
lAO_ . [ascos(naa)—ia sin(naa)— a,e ™). ... (23)
0
Likewise, (7)is integrated on z =0 to get

21A

dla, 0)e ™ +d(—a,0)e™ = —2—_(’1—‘2‘[0 cos(naa)—iasin(naa)— aze ™|
0
. (24)
Using (24) and (23), we obtain
e —ina a e ina a . 2 evynz
7.(a,2)e ™+ B~ a,2)e™ = C, (akinhyz — 2aE—
a —ap
X [aycos(na a)—iasin(na a)— ase "] ... {25)

Elimination of C,(a ) between (25) and its derivatives when z=H, yields to

inaa tanh H - —maa - naaq
a)em™ =L (Fha)e ™+ §~a)e

@(a) e~xnaa+ @( .

Y
21A)Y()e yoH
T g (ecos(naa)-iasin(naa) - age ™)
{
2 =~ yoH ' . )
L?" (auCOS(naa )—ia sin(naa)}— a,e lnaa“)
a — aO

. (26)

In the same way, the Fourier transform of (4) as x varies from na to © gives
us

- - e | inaa tanh H ) —inaa - inaa
Foda)e ™ +§ (La)e =——y—y~[¢+a<a>e +F(—a)e
iy 2Gg AT
= 2iAgagye e MM~ (,A(,’ 3 ... (27)

a —da

where

o«

$.a,z)=] ¢(x,z)e" dx.

na

Adding (26) and (27), it is obtained that

¢—+(a) e-inaa+ $+( _ a) einaa tam;}’H [a' ( ) Cwmaa $l+( - a) einaa
Z—IA‘)—&YL— (@gcos(naa ) —iasin(naa ))]

a _a()
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ZIA e -yl

a_a()

(aycos (naa)—iasin(naa)). .. (28)

Using (13)and (16)in (28), we get

yH

" 2iaye ™ e
y cosh yH a’—a;  ycoshyH

yH

(§(a)e ™ + ¢ (~a)e™)

[a, cos(naa ) —iasin(naa )] — 2ig(a )sin(naa ) ¢, (k)

21A,e 7oH

a’—a;

[a,cos(naa )—iasin(naa )] ... (29)

Similarly, from (14), (17)and (21), we get

yH . ¥ = yH eyH
Fola)t Fo(-a)) =S =T HBWAL
ycoshyH a —a; ycoshyH
. ~ yoH
B (30)
0

Factorization and Decomposition

Let us now factorize coshyH exp( — yH). We write

exp(—yH)=exp[-T.(a)-T_{a)] o (31)
where

T.(a)=yHn '"cos '(a/k)~iaHx "log(2a/k) ... (32)
as |a}—~ % and

T (a)=T.(—a) ... (33)

The factorization of coshyH exp{— yH)/yH as an infinite product is (Noble
(1958))

exp( — yH)cosh yH
yH

Ha)=L.(a)L_(a)=

_exp[~T.(a)-T (a)] f'il
H(a +k)1/2(a— k)l/l s

1-kb: b2 . ... (34)

where

_exp|X(a) . 2 172 —iaH
" Ha- k)]“2 Hl Kb ya) e, ”ﬂex‘)( (n—1/2))’

... (35)
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b, ,,=H/(n—1/2)nx and X(a) is an arbitrary function to give a suitable beha-
viour of L_(a) as |a|— ©. The behaviour of L_(a) as |a| — < is given by

exp[X(a)+iaHz ' log(—2a/k)] = iaHx ™' iaHn ™'
L (a)= 1+ - .
(a) (H{a-k)]" n, n-172 [P\ " no12
. (36)
The infinite product in (36) is approximated by the result® (ex. 10, p. 41)
ﬁ 1+—2 exp | — ¢ ~expla+1/2—-C,a)2™ ™ ... (37)
n=1 n—1/2 n—1/2
where C, =0.5772 is Euler’s constant. Therefore,
exp[X(a)+iaHz "' (1 ~C, +log(n/2kH))— aH/2]
L (a)~ : 72 (38)
[H{a~k)]
is asymptotic to (a )~ 2 as a— 0, if
X(a)= —iaHn ' (1~ C, +log(n/2kH))+ aH/2. ... (39)

Using (34)in (30) and decomposing the resulting equation, we obtain

¢7'—(a ) + 2iayyoAve i 1 1

Hla—~k)L-(a) Hlat+a,) [(a—k)(a=ay)Ll-(a) 2ag+k)al-(~a,)

F(~aw)  iAe ™ {at+k)L.(a)

+
Hla—k)L_{a) a~— ag
e (F(—a)-F (=)
Hia—kL_(a) P "@) ¢ ("m
_ iysA0€” i _ 2iayAge i [L+(a)(a +k)
Hla+ay) (ap+klL_(—a)  (a—ay) a+ta,
_Li(ag){ag+k) (40)
T

where a,=k, a,* a, are zeros of L_(a)=0. By analytic continuation and Li-
ouville’s theorem, each member is zero and we have |
_ = 2iagyAe ™ (a—k)L_(a) 1

atag (a—k)Xa—a,)L_(a)

¢-(a)
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1 -

" 2(ap+K)aL-(— ao) ¢- (o)
_iAe "™ (ay+k)L.(a))H(a—k)L (a) (41)
(a—ap)

Similarly decomposing (29), we get
- ='—, inala — am} IA)YOG1< )(a—k)L—(a) inaa - yoH
Bl e e e R~ ) ©

~2ig(a)sin(naa) ¢". (k) (a +k) (a—k) H L{a)

2iAe "™ Hia~k)L-(a) [Gl(a)(a+k)1(a)

(a—ay) (a+ay)L_(a)
_ G (ag)(ag +k) Lay)
2ay L (a) ] 42

where
G,(a)=aycos(naa)—iasin(naa) ... (43)

Adding (41) and (42), we get

-7 _ T ina{a - on) ’-A()YOGI( ao)(a—k)L—-(a) inaa, -~ yoH
PlaI= g lam) T (ot oo+ K oL~ a0)©

- 2ig(a)sin(naa) ¢’ (k) (a+kYa—kH L a)
2iAe "™ ™ H(a—k)L_(a >[Gl< aa+kla)

(a=ay,) (a+ag)L_{a)

+

Gi(agXag+k)Lag) |
— ¢ (—a,)

(2a9) L-(a)

iAee ™" (ay+k) L. (a)H(a—k)L_(a)
a—a

_2iagyAe ™ (a=k)L_(a) [ 1
(a+ay) (a—kla—ay)L_(a)

1
2(ay+k) aoL_(-ao)] - (44)
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Reflected and Transmitted Waves

The potential function ¢(x, z) is obtained by the inverse Fourier transform

1 © +il a‘;(a)e-y(z—}i)e—iax
¢(X, Z)— 1 _mJ-.Hr y da e (45)

To evaluate the integral (45), the contour is taken along the line I'=Im(a,)
as shown in Fig. 2, avoiding the points a= t a, a= tk are the branch
points. The condition Re(y)=0 on the branch cut as discussed by Ewing and

o =-0g & =tp
T\
=

D A

Y

~-K

Im(Y)<0 Im(Y)>0

cCB
Fig 2 Contour of integration in lower half of the complex plane

Press’ gives the points of hyperbola to be used as branch cuts with a= tk as
branch points. The presence of the factor exp(—iax) makes the integral vanish
along the infinite circular arcs AB and CD. The contribution of identations are

$i(x, z)= A" e " (1+e ™ cosh yH), a=a, x<0 ... (46)
di(x, z)= A ™ e (1 +e ™ cosh y,H), a= —ay, x>0 ... (47)

In (46), we have waves transmitted to the region x <0 and in (47) we have
waves reflected from the barriers in the region x> 0.

Scattered Waves

We now evaluate the integral (45) along the branch cut L, L_(a) being analyt-

ic in the lower half plane does not change its value on two sides of branch cut.

Im(y) has different signs on the opposite sides of branch cut. The main con-

tribution comes from the neighbourhood of the branch point a= -k, then.
= —k ~iu, uis small, since Re(y)= 0 on the branch cut, therefore,

y=+Ja'— K=+ Jk+u) -k = £,2ik, +ik;) u—u’
=1/-(2k,u+u’), k=0

= tiy, y =/(Zku+ul). ... (48)
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Integrating (45) along two sides of the branch cut, we get

s —kyx @ 7 —ylz—H) - - ylz—H)
e R

—K)x
; H —H
- | { i(ujcosy,(z )+ 2H,(u)cosy,H siny,z

T oo 14!

H )
—2H3(u)w}e "™ du ... (49)

Vi
Expanding H;(u) around u =0,

7

H,(u)=Hj(o0) +uH{o) + = H'(o) + .. (50)

2!
and retaining H,(0) only, we have

o~ Kux—na o [H,(O)COS (2ku+u’) (z—H)

fx, z)= == I, J2kut o)

+ Ha(0) (sin y{2ku+u’) (z+ H)+sin /(2k,u +u”) (z - H))

_Hj(o) (cos | (2k3u+u2)(z+H)+cos,/\Zk,u+u2)(z—H)) - g
J2ku+u) ¢

2A,7,G{ — ay) kL (—iks)e yoH
(—ik,+ a) (@, +ik;)aL (= ay)

Hi(0)= = ' (aple ™"

28 M HKGL (k)G — ay ) (o +iko Ly (a)
(—iks — ay)ay

q-ﬁ—'_(-am)+2Aoe_""H(a(, ik, )L, (a,Hk,L_( ~ik,)

+
enak; ( _ lk'7 a“) nak

4 2o ML~ iks) 1
(—ik, = ay)e™ ik,(ik, + @ )L_( —ik,)

1
(aptiky) aOL_(—ao)}’ ... (52)
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iAe ™" G,(—ik,) _sinh(nak,)g", ik;)

H,(o)= ~ > 5 ... (53
(o) (k3 + ad) 2k, (53)

H (o) = sinh{nak,)¢", (ik,) . ... (54)

To evaluate the integral in (51), we use results by Oberhettinger®,

ie.,
e cos((2ku +u?) P 2)

e ™ TR exp( — ux)du =K (k.r) ... (55)
—k>x—na: T - 211172 kzz

e v [ sin{(2k,u +u?)!?z) exp( —ux)du=—= - K;(k.r) .. {56)

0 (r)

where K, (x) is the modified Hankel function of order n. Using (55) and (56) in
(51), we get

I(x. )= = | Hy(0) Kyfksr,)+ Hilo) (M K, (kory)
n (r:)

+% Ki(k.r,))— Hslo) (Kn(kzrz)*’Ku(k:f}))} (5T

where

5

ri=(x-na) +(z—H), ri=(x—na) +(z+H)

5

Conclusions

The transmitted waves in (46) are independent of the distance between the
barriers as well as number of barriers but the reflected waves in (47) are found
to depend on the distance and number of barriers. The scattered waves are
obtained in (57). For small values of r, K,(k.r)~(log z—1log k.r~C) and for
large r, K (k,r) ~ exp( —kzr)/\/;. The scattered waves behave as a decaying cy-
lindrical wave at distant points originating at the tips (na, H) of the barriers
and at their images (na, —H) in the free surface. Close to the tips, when r,
and r, are small, the scattered field possesses a logarithmic singularity implying
very large amplitude close to the scatterer. The amplitude of the scattered
wave increases exponentially if the number of barriers is increased. If the inte-
gral is evaluated along the branch cut at a=k, similar scattered waves are ob-
tained.
Hweputa=0orn=0in(57), we get

exp(— yH—-17/2)
(2K, mx)""?

{H‘(O)ek“‘ +H,(0) (e ¥ +e )

—]—(x—z H.{o) {(z +H)e " +(z—H) e'k”‘”



418 P S DESHWAL AND S RATHI

A

[
07}
0st
03}
01}

i | | 1 1 1 1 i . K
0 02 04 06 08

Fig 3 Amplitude of scattered wave vs the wave number

which is same as (97) obtained by Deshwal and Mann?. Thus, if a=0 or n=0,
the problem reduces to one discussed by Deshwal and Mann? in the case of a
single plane rigid barrier in the surface of the deep ocean. If n— , then the
problem of an infinite number of plane barriers in the surface can be deduced
as a particular case of the problem.

The numerical calculations for the amplitude of the scattered waves have
been obtained for n=10, a=0.01km, r,=0.1km, r,=12km, z=H and
H=6km. The amplitude of the scattered wave (Fig. 3) has been plotted versus
the wave number k. The amplitude decreases rapidly as the wave number in-
creases very slowly.
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