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The problem of electromagnetic wave scattering in a plasma placed in a strong external magnetic field
and its possible applications for plasma diagnostics is discussed. The scattering is associated both with
longitudinal field fluctuations (charge density fluctuations) and with transverse electromagnetic
fluctuations. Electromagnetic wave scattering by magnetic fluctuations is accompanied by wave
conversion. Low-frequency fluctuation spectra of electric and magnetic fields are calculated for a plasma
with a strong external magnetic field. Incoherent fluctuations and fluctuations associated with the
excitation of collective modes (Alfven and magnetosonic waves) are separated out. The spectral
distributions of the electric and magnetic field fluctuations in nonequilibrium plasmas are considered.
Effective temperatures are introduced both for the collective Alfven and magnetosonic fluctuations and
for the incoherent fluctuations in low-frequency range. The wave scattering cross-section is calculated
and the conditions are revealed, under which conversion is the dominant process. Peculiar features of
scattered waves spectral distribution depending on the parameters that characterize plasma state are
treated. Experimental studies of wave conversion provide additional information concerning the plasma
state which cannot be obtained from the data on the scattering by density fluctuations.
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1 Introduction

The study of electromagnetic wave scattering
spectra (both in laser and centimeter wave ranges)
is an efficient method of plasma diagnostics in
laboratory fusion research devices as well as in the
near and outer space. Electromagnetic wave
scattering is caused by fluctuations of charged
particle density and other plasma parameters:
current density, electric and magnetic fields.
Spectra of scattered waves provide information on
the density and temperature distributions in the
plasma. A peculiarity of electromagnetic wave
scattering in plasmas is coherent scattering by
collective ~ plasma  excitations—combination
scattering, that occurs along with Thompson
incoherent scattering by individual plasma
particles. Wave scattering by collective plasma

fluctuations, in particular, makes it possible to find
relative concentrations of charged particles and
temperatures of individual plasma components.
The phenomenon of electromagnetic wave
combination scattering by collective  plasma
excitations was considered for the first time in
Akhiezer et al.'. Subsequently a theory of electro-
magnetic wave scattering in plasmas was
developed®. The detailed theory of scattering and
transformation of waves in a magnetoactive plasma
was worked out in’. The useful reviews of the
electromagnetic wave scattering problem were
presented in Refs. [8,9] Kinetic and fluid treat-
ments of nonlinear wave interactions (wave mixing
and electromagnetic wave scattering) in plasmas
were compared and the difference between the two
approaches was worked out'®''. The nonlinear
kinetic equation for cold plasmas was shown to
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yield the same expression for the current that
induses scattered waves as the one obtained in the

fluid approximation. Increased activities in the
controlled fusion research and employment of
magnetic plasma confinement systems require
improved methods of plasma state analysis.
Experimental studies'>" of electromagnetic wave
conversion under the scattering by magnetic
fluctuations in plasmas were shown to be possible.
As distinct from the wave scattering by
fluctuations of charged particle density, interaction
of the incident wave and the magnetic field
fluctuations may be accompanied by the
electromagnetic wave conversion, ie.,
transformation of an ordinary electromagnetic
wave into an extraordinary one or vice versa.
Though the scattering cross-section is much greater
than the conversion cross-section, under certain
conditions one can distinguish conversion from
scattering and find the spectral distribution of
converted waves. Studies of converted wave
spectral distributions provide information on
plasma parameters other than those associated with
wave scattering, in particular on the magnetic field
fluctuation intensity distribution etc. It is obvious
that information on the plasma state can be drawn
from experimental data only, provided the
theoretical spectra of magnetic and electric field
fluctuations in the plasma are available. This paper
is just devoted to the consideration of low-
frequency electromagnetic  fluctuations and
scattering and conversion of electromagnetic

waves in a plasma with a strong external magnetic
field.

2 Plasma with Strong Magnetic Field

Electromagnetic plasma properties are completely
described in terms of the plasma dielectric

permittivity tensor € (w,E ) which depends on the

frequency @ and the wave vector k. The
dielectric permittivity tensor of a plasma. with
external magnetic field was calculated in the
kinetic approximation in**

For an equilibrium plasma or a nonisothermal
plasma in which the particles are characterized by
Maxwellian distributions with different tempera-
tures, the dielectric permittivity tensor is
determined by the expressionﬁ:
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The tensor eq. (1) is written in a coordinate
system in which the z axis is along the external

magnetic field Eo and the x axis is in the plane of

the vectors K and Bo-

In the kinetic approach, the dielectric tensor of a
magnetoplasma, unlike the tensor of the dielectric
permittivity of a cold plasma, is non-Hermitian.
The non-Hermitian part of the tensor eq. (1) is
caused by the resonant interaction of charged
particles and waves and arises if the resonance

condition
kv, =0 —nwy

take place.



LOW FREQUENCY FLUCTUATIONS & ELECTROMAGNETIC WAVE SCATTERING

In order to consider a plasma with strong

external magnetic field EO we introduce a

dimensionless parameter
2.2
2 ks
9 =75
wBl

’3T
where s =_{— is the electron thermal velocity
m

(T is the plasma temperature, m is the electron

eB,

mass) and @, =—

" Mc

frequency (e and M are the ion charge and mass,

respectively). We assume that this parameter is

small,

q° <<1.

We restrict the consideration to the spectral

range of frequencies @ lower than the electron

is the ion cyclotron

eB, .
=12 1.6,

cyclotron frequency @,
¢ mc

W<< W, ,

and employ approximate expressions for the
plasma dielectric  permittivity = components,

. . m
obtained under the assumption that X’I_ <<1 and

expanded in power series of the small parameter
g” . In the coordinate system with the z -axis along
the vector Bo and the Xx-axis in the plane of
vectors k and l}o, the components € (w ,k) of

the dielectric permittivity tensor take the form
£, =€ +1iY,,
2
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Here ¥ is the angle formed by the vectors k

2 2
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the function ¢@(z) is defined by

s the
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If z7 >>1, then we have

w?, ®
gD, £, > —E,.
Wy —® w,

In eq. (3), only the first terms of the qz-

expansions of general expressions for the
permittivity tensor -of a plasma with external
magnetic field eq. (1) are retained. We note that
individual components of the permittivity tensor
eq. (3) differ in the order of magnitude with

respect to the parameter g°. The leading term of
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the expansion of the component €,;; is

proportional to g™, and those of the components

€,, and £, are of the order of one.
The €y, of the

permittivity tensor in a plasma taking account of
ion motion is determined by

e _3M_ |279D-0W) 1
" ’ +i\/;z(e"2 +ﬂe"‘zzz)

m
2
where 4° =—.
m

component dielectric

g*cos’’

We introduce the dispersion tensor A, (@,k):

. (6)

- - k.k.
Aj(w. k) =€, (w’k)_(éu - /lczj )ﬂz

2.2

where n2 = is the square of the wave

w2
refraction index and write its determinant in the
form

Alw.k)=An*+Bn*+C (D

where

A =g, sin’ O+, cos’ ¥+ 2¢,, sind¥cos VI,

B =2(g,,6: — £1,€,; Jsin¥cos
- (‘9: €22 ‘*"5'122)5“1219 , (8

2 2 2
- (822833 + €5, )COS 9- €€ HE,

2
C =€,E,€; + €&y
2 2
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We see that the permittivity tensor components
are contained in the coefficients A, B and C ina
differing manner. If W << Wy, then

leLs] << €3] if @ <@g, then €, = £, but
less] << Je 2] = Jeu] << €ss]-

Thus, we may disregard €,, in eq. (8). We restrict
the expansions of the coefficients A, B and C by

the terms of the order of g~ and one, then the
determinant (7) reduces to
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A, k) =&,

2
€
{(n2 cos’¥—g, {nz —£, - —;-3—)+ e+

33

+ ﬂz—[-(nz ~ 6 )811 sin® 9

&3 | + 2€,,€,, sin¥cos ¥ — g, sin’ 19}

The large quantity €, =0(g™%) is put before the
curly brackets for convenience. The two first
addends between the curly brackets are of the order
of one, all the other terms are of the order of g”.
The dispersion equation that determines the

frequencies and damping rates of plasma
eigenwaves reduces to the condition
Alw,k)=0. .. (10)

The eigenfrequencies are determined by the real
part of the dispersion equation in which thermal
corrections contained in the expressions for the
dielectric  permittivity components may be
neglected, while the wave damping rate is
determined by the imaginary part of the dispersion
determinant (9) that is given rise to by the thermal
effects. In as much as imaginary corrections in the
expressions for the permittivity tensor components

are small and since for @ << @, (z,2 >>1) we
i m 2F3 .

£,y = ———@q° —€, sin¥cos DV,
3iM w

dispersion determinant eq. (9) may be written in
the approximate form

Aw,k)= (*cos’0-¢,)
(0,k) =€y x(nz_gl_goq/)_gj—i(Rq+Rl)
.. (1D

have the

where

e 1m

eEY =€, —€&, +-B =07
0 22 I 833 2M (12)

2
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33
_drm s
3 M
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n*(n’ ¢, )e,

—ze ™, ... (13)
& ((1-o(2)T +mz’e™)

xcos? 9

(0]
R, ={172(1+cos2 19)—280——-—L Y, ... (14)
w, +®

In the range of frequencies lower than the ion cy-
clotron frequency, @ << @, (when 212 >>1), we

have
2 2 o’ w? 15
€] —€; =€, (¢ - Py g, =t 2). ... (15)
W, (OB’ -

This relation was employed in deriving the
expression for R, .

In the range of very low frequencies, @ << @,

(z' << z}'), we can disregard the quantity R, in
the dispersion eq. (10), whereas for frequencies
close to the ion cyclotron frequency, @<,

(27 >> le) we can disregard the imaginary part of
‘¥ and the quantity R, .

3 Eigenwaves of a Plasma with Strong
External Magnetic Field

First of all we consider the range of frequencies
much lower than the ion cyclotron frequency,

W << @, . We note that in this range

2
e2= g1 =2g2202cos? B, 6, = € (16)
2 =3 £, —g 12°9q cos »y €, =& ..

B;

Therefore, having disregarded the addends € and
i(R,+R,) of the order of q* between the curly
brackets of the eq. (11) and put eq. (11) equal to
zero we obtain two dispersion equations, i.e.,

n*cos’¥-¢, =0, R eY)

n°-€ -€¥=0. ... (18)

After neglecting the quantity ¥ in eq. (18), we
obtain an expression for the frequency of the so-
called fast magnetosonic wave, i.e.,

a; = kv, .. {19)
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1/47L71,,M
general case, the quantity ¥ is complex. When eq.
(18) that contains ¥ is solved by means of
successive approximations, the real part of this
quantity determines the thermal correction with an
accuracy to the square of the magnetosonic wave
frequency which should be disregarded in terms of
the approximation accepted. Taking into account
the imaginary part of ¥ (¥ — i¥”), ie.,

where o, = is the Alfven speed. In the

2
r NT m -
Y= ‘/— tg 2'(9 ¢ ,
2 M b4
we find the damping rate of the fast magnetosonic
wave to be given by

E% ——kssindtgde >
3v] 1
& =—2—s_;c05219 o 2D

The electric field vector of the fast magnetosonic

—

wave is perpendicular to the plane of vectors k

and B, , hence for the polarization vector we have

% =(0,1,0). .. (22)

Since the component €, is real in this
approximation, eq. (17) yields only the Alfven

wave frequency given by

w, =kv, cos? .. (23)

The electric field vector of the Alfven wave is

perpendicular to BO and lies in the plane of

vectors k and B, , hence

e =(1,0,0). .. 29

In order to find the damping rate of the Alfven
wave, we have to consider the term of the
dispersion equation that is associated with the
addends which have been disregarded in eq. (9) in
course of deriving (17). Thus, we rewrite the
determinant eq. (9) as
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where

2
&P = _{5122 +l?_[ (772 "522)

33

X, sin’ ¥+ 2¢,,€,, sin ¥

2
X cos ¥ :I}/[nz -&,, _fa)
€3

Then the dispersion equation for the Alfven wave
takes the form
n’cos’9—¢,~€,P=0. ... (26)

We retain only the
(P - iP") ineq. (26),

imaginary part -of P

cprof g*cos’ ¥
0 3 2 2
3 (77 - 85 ) + (E(ﬂj )
2e6,5¥" ’

X 20002 2 _ .2 )
+ @ 61)(772 803521219 e
M Etl[(l_¢(z)) +nze ]
. (27

and find the damping rate of the Alfven wave to be
given by

2Ve M 5
, tg’0 2
xcosﬂ{ctg'ﬁ+ d — }e A
[1"‘P(ZA)F+”ZA3 - ’
L) .. (28)
gt

The damping rates of both Alfven and fast
magnetosonic waves were derived for the first time
(see Ref. 15). We note that the ratio of Alfven to
magnetosonic wave damping rates is of the order

of qz.
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Now let us consider the wave dispersion in the

frequency range @<®,. We rewrite the
dispersion determinant as
A(w,k)
=&, f1" cos? 0 —n*(1+cos? V)e, +£2 —£2 - iR},
... (29)
where
R=[*cos’®—¢ )ef"+R,+R. ... (30)

If z7>>1, then, within the context of (15), the
dispersion equation reduces to

n*cos>¥-n*(1+cos’ V¥)g, +€, —iR =0.
... (3D

We neglect the imaginary part and thus obtain an
equation whose solutions determine the frequency-
dependences of the refraction indices of plasma
eigenwaves, i.e.,

—
¥ 2cos’®
2 - 2 2.2 2 ]
X1 +cos” Vg, +\[(1+cos ¥)"g; —4cos” g |

... (32)

The eigenwave with the refraction index n? is

referred to as ordinary wave (the coefficient before

nz in eq. (31) is negative), the wave with the

refraction index T]i is called extraordinary wave.
Bearing in mind the relation of the refraction

index to the frequency, i.e., n’= we can

2 b
reduce eq. (31) to the dispersion equation which
determines the eigenwave frequency as a function
of the wave vector, i.e.,

oy
o' (0, -©?)
4 27.2,.2
W -0kv, X
* 4. .4 2 —iR::O
(1+cos> 9 +& cos? B)+ k*v} cos® ®
, ... 33
where
£ =k2c2 :kzvj
-4
0, o

Pi
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We note that wave damping rates Yy and
absorption indices K satisfy the relation

) 1+cos’ ¥ +&E%cos’ ¥
2_ 1,202
w; =—k“v,
2 i\/(l+cos219+€2cos2t9)z—4coszl9
.. 34)

The solution @} corresponds to the fast

magnetosonic wave,
2 _ 2
O, =W,

whereas the one @> is associated with the Alfven
wave,

o’ =w}.
Indeed, for small values of the parameter &°

(% << 1), we have

o’ =w? =k (1+E%ctg®D),

0’ =)= kzl)fx(l-—ﬁzctgzﬁ)cos2 02 ... (3%)

Having taken into account the imaginary part of eq.
(33), we obtain the equation for the damping rates
of the magnetosonic and Alfven waves, i.e.,

1 ] Rw)
Vs = 7 2 ’
2e, w, — w5 €,(;)
1 0 R
Y, + K@, ... (36)

= 22 ’
2e, w5 —w, £(w,)

For f <<1, i.e., in the frequency range 2% << 212
but zf >>1, these equations reduce to egs. (21)
and (28). In the frequency range z’ >> 212 >>1,
the quantities ¥” and R, in eq. (30) may be
disregarded and the damping is determined by the
quantity R;.

We note that the solution 7)2.of the dispersion
eq. (31) determines the refraction index of the fast
magnetosonic wave and the one 7)° describes the
refraction index of the Alfven wave, i.e.,

nl=n;,. N =0;.

The imaginary term in eq. (31) yields
approximate expressions for the absorption indices
of the magnetosonic and Alfven waves, i.e.,

. (37
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We neglect the imaginary part of eq. (33) and thus
find the squared eigenfrequencies to be given by

K1 R(y)
Ny 2cos’¥ms(n; —1n3)
K, _ 1 R(m,)

Ny 2cos’ 805, —1;)

... (38)

As the eigenwave frequency @ approaches the
ion-cyclotron frequency @, , the refraction index

of the Alfven wave tends to inﬁnity'(’,

2 1+cos’®

Na >
@>%  cos’ 1)

£,(w), but z7 >>1,

... (39

whereas the refraction index of the magnetosonic
wave remains finite,

772 > 1 €
§ ooy T14cost O

... (40)

For @ — @, , the absorption indices of the Alfven

and magnetosonic waves are given by the
expressions

Ka €0 \/; -z}
A=y M,)=—/|zle, ... (41
n 2@, Y2 |

kg 1 &
;7—‘:5‘—'9“82(&”%(%)

’ LS N )
1 /2_”_2'_}_ COSD 124

4V3 M, fi+cos’s

2
@, —D

where zl2 =§M ( % ) . In the vicinity of

2 m k’s*cos’®
the ion cyclotron frequency @, , the wave-vector-

dependences of the Alfven and magnetosonic wave
eigenfrequencies, @, and @, are given by

2

— , (Kt >>ek) ... (43)
®p 1+cos’V '

k%c? cos’®

@, =-

1+

0? =k*(1+cos’®) = @y . . (44)
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At last, if the eigenfrequency is equal to the ion
cyclotron W=, (ie, when

... (45)

frequency,

zf = 0), the expressions for the dielectric
permittivity components in eq. (3) yield the

dispersion equation
1
n*cos’ ¥+ Zn2 (l +cos? D),
2

—————i[772(1+cos2 9)- EO]I;/] =0

In the limiting case 7> — oo, this equation
reduces to

' /BﬂM cl+cos’ ¥
Yeos?9—— [ e £ =0.... (46
1 2Y2 m s cos’® (46)

The solution of the latter equation is given by

/3
B+ill B m c1+c05219]
_ _ R XS B @
2 2V2 m s cos’ ¥

Y]

Thus, the Alfven wave is strongly damping
(Imn~Ren) for the resonance frequency

0=, .

4 General Description of Fluctuations in
Equilibrium Plasmas

Both electric and magnetic field fluctuations in
equilibrium plasmas are completely determined by
the plasma dielectric permittivity tensor €, (@, k).

According to the fluctuation-dissipation theorem,
the spectral distribution of electric field
fluctuations is given by®:

(EE,) = 4m£—{A;.§. —(A)*}, ... (48)

where T is the plasma temperature and A—; is the

inverse of the dispersion tensor eq. (6). We
introduce the algebraic complement /‘lﬁ of the

tensor eq. (6)

AAy = A8, A= "Au“ ’
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then the inverse tensor may be represented in the
form

- _ N

In the coordinate system in which the Z-axis is

... (49)

directed along the magnetic field B, and the x-

axis lies in the plane of vectors k and B, the
components of the algebraic complement A 5 are

described by the equations
Ay = (772 —€n )(772 sin® 0 - £, )+ €3,

Ay = (772(3052 79"811)(772 sin’ ’9—‘933)
- (n2 sind¥cos +£,3)2

’

133=(n2c05219—£1,)(n2—522)+e,22, ... (50)

A, =—Ay = (n2sin229—€33)€12
- _(172 sin19c0519+€13)€23 ’

2 2
Ay =4y 2(77 —%Xﬂ Sl“ﬂc°30+£13)+812£23’

>
It

—Ay, = (772 cos’¥-¢, )623
~ (n2 sindcos ¥ + 813}:12. .

The spectral distribution of magnetic field
fluctuations is related to the electric field
fluctuation distribution as given by

k k
(BB)). =1 € e, —I’;!—{(E,,E")Ew, .. (5D)

where €, is a completely antisymmetric third-
rank tensor. We make use of the relation

5, & 8,
CmEn=[0y Oy Ol
6»9' 6ml 6mu

and thus obtain a relation between the spectral
distributions of magnetic and electric field
fluctuations in the plasma, i.e.,
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[t -t )

kk
Jor-5 oo,

.. (52)

5 Spectral Distributions of Electric Field
Fluctuations
Making use of the eq. (3) for components of the
dielectric permittivity tensor in the case g° <<1

we give the algebraic component tensor.eq. (50) in

the form
2

n—&y _in 0 0
33
A, = A" —€y 0 n*cos’d-¢, 0
0 0 0
... (53)

ikj

where A" = T]z(nz —£y )7- is longitudinal

part of tensor A ; which we can disregard in the

range of frequencies @ > , ’émﬁqu 4 cos?}. Thus,

only the components A,, and A, are of the same
order of magnitude in the limiting case g> =0,
1e.,

Ay = €8, (07 =k} +io® P/ 0?,

Ay, = €,:.€, (0" =k} cos’ ¥)/ @*

(all the other components A,,,A,,,4,, and A,

are of higher orders of smallness).
In the range of frequencies @ much lower than the

ion cyclotron frequency @, , the dispersion

determinant reduces in the limiting case g> =0
to the form
A@,k) = £,62(@" - k0 cos’ O +iw*P’)
x (@ — k02 + i ") o, .
... (54)

We remind the reader that r[’ '|<<1 and the
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quantity P” = 0(¢”) must be taken into account

only under the condition ®” — k*v’ cos’ 8 — 0.
We make use of egs. (53) and (54) and,
according to the definition eq. (48), obtain a
formula for the spectral distribution of electric
field fluctuations in a plasma with strong external
magnetic field in the range of frequencies much

lower than the ion cyclotron frequency
(W <<wgy ) ltis given by
(=5,
2 2p”

ST s il

c (0% - k™% cos? o) + (0P}
+e®e® h

C (a)2 —kzvj)2 +(cohjl”’)z

... (55)

where € and ¢’ are the polarization vectors of
the Alfven and magnetosonic waves eqs. (24) and
(22). We see that the spectral distribution of
fluctuations has two maxima associated with
Alfven and magnetosonic fluctuation oscillations.
These maxima are manifested in different
components of the fluctuation spectral distribution
tensor because of differing polarizations of the
fluctuation electric field vectors. The maximum
associated with the Alfven fluctuation oscillations
occurs in the spectral distribution of the component

(E‘2>E whereas the one corresponding to the
@

magnetosonic fluctuation oscillations is manifes-
ted, respectively, in the spectral distribution of the

component <E22 >E . These distributions were
(0]
derived in [7] for the limiting case ¥, << ®, and
},S << wS *
The components <E2> and <E2> of the
o 2/kw

tensor spectral distribution of electric field
fluctuations are shown in Fig. 1 (a,b) as functions

~_ @
of the dimensionless frequency z EE and the
angle ¥} . Numerical calculations were performed'’

302
4 and

for the values of the parameters e’ 55—2
s

q* which correspond to the actual conditions of
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real plasma with the concentration
n,=1.2-10"cm™, temperature T =10* eV, and

external magnetic field B, =3.4-10* Gs. These

values are @>=0.01 and g° =0.1 (the spectral
distributions are normalized to the quantity

2
<ET>k,00/ W
.

W=87t——T—).

2
<E3>y, 0l W
0.0015¢
0.0010%

0.0005¢

(a)
Ll|| '5

The spectral distribution <E12>;,,,’ (Fig. 1a) shows a

broad maximum produced by the low-frequency
incoherent fluctuations along with the narrow

Ry

Fig. 1 The spectral distributions of the electric field fluctuations <E'2>E (a) and
()]

<E22 >E (b) in the frequency range @ << @ as functions of the dimensionless
(1] g

fi Z \[3'(0 d th gl U (w=8r
requenc = L — an e angle =
caueney 2 ks [
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maximum at the frequency Z =©cosd
(@ = kv, cos??) that is given rise to' by the

Alfven fluctuation oscillations. In <E12 >i , a
(0]

maximum at the frequency 2 =© (@ =kv,) js
also observed; it is given rise to by the
magnetosonic fluctuation oscillations. The value of

max (SEF>, /W)

491

this maximum is by several orders of magnitude
lower than the Alfven fluctuation maximum in the

spectrum of <E12 )E . The value of the Alfven
w
fluctuation maximum in the spectral distribution
<E‘2>E , is given in Fig. 2(a) as function of angle
w

¥ . The minimal value of this maximum lies in

(a)
4
1 JK
4 0+ :
4107 71 0 004 0.12 J
©,rad /
- /
2;104<F
0 . ; . N
0.2 0.4 0.6 0.8 1.0 1.2 1.4
Q,rad
max(<E22>kw/W)
b
6] (b)
3004 5
% ]
4
O + +
2007 \ 10 12 14
o,rad
%
100¢
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
6,rad

Fig. 2 The values of the maxima in the spectral distributions of the electric field ﬂuctuatior}s
which are associated with Alfven fluctuation oscillations (a) and with magnetosonic

fluctuation oscillations (b) as function of the angle 9.
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range of angle ¥ = 0.04 rad; the width of the
maximum attains its greatest value in this range.

The spectral distribution <E22 )E has two maxima
(5]

(Fig.1 b). The broad maximum in the low-
frequency range is associated with incoherent

fluctuations. The narrow maximum at the
frequency Z =0 (w=kv,) corresponds to the
magnetosonic  fluctuation  oscillations. ~ This

maximum is by several orders of magnitude higher
that the broad low-frequency maximum. In the

spectral distribution (EZ)_ , the minimal value of
p 2 /i

w
the maximum associated with magnetosonic
oscillations and the maximal value of its width are
attained for ¥ = 1,4 5 rad, Fig.2 (b).
Fig.1 gives the spectral distributions of <E,2>_

ka

and <E22 >E for angles ¥ fromOto 7 /2. Spectral
w

distributions in the angle ranges from 0 to 7 /2
and from /2 to 7 are related as given by

e =

The magnetosonic perturbation is transverse
(the polarization vector of the fast magnetosonic
wave is perpendicular to the wave vector,

ek =0. the electric field of Alfven
perturbations has a longitudinal component as
well. To find the spectral distribution of the
longitudinal electric field, we multiply the total

o<o<k.
2

-

k, k
distribution eq. (55) by —~ and thus separate out

the longitudinal component
2\(4)
<E’ >ia)
2 2p”
LA @°P
=81tT—-’2‘—(usm219 22 . 2.a\2 T2
c (w—-k™v,cos" ) +(@°P)
.. (56)
The spectral distribution of charge density

fluctuations associated with Alfven perturbations
in the plasma is determined by the relation

2
e - e

The spectral distribution of the charge density

. (57

A G SITENKO

fluctuations eq. (57) has a maximum - for
frequencies corresponding to Alfven fluctuation
waves and a broad maximum in the range of low
frequencies associated with incoherent plasma
fluctuations.

For very low frequencies, one has to take into
account the ion motion which determines the
freql\;ency-dependence of the quantities ¥” and
P

—_—

m

[} Z N 7t—m~tg219—e—-—,z2 «< . (58)
M b4 M
M >
M,
P xle9l— P < . (59)
M z M
2 m
In the low-frequency range z° << }\—4—’ the
spectral distribution eq. (57) takes the form
2 2 M 22
(07} = IJE 'y 07 5 asintr g0 |
ko 6V2 0, @, v;
2 T
a = 3
4mn e . (60)

We note that intensities of both charge density

(4)
and longitudinal electric field fluctuations < p2>im

2\(A)
and <E[ >Em
range.

In the low-frequency domain dominant

contribution to the incoherent charge density
fluctuations is associated with the longitudinal

field A™ .

incoherent fluctuations is described by

tend to zero in the low-frequency

The spectral distribution of such

M,

2 Tm
(p*); :i\/";’e Popig ., <<
ko 7D 2 o, cost M
. (61)

The spectrum of electron density incoherent
fluctuations in the low-frequency domain is as
follows

3t |M e’*’;z
k‘u \l \‘ ks cosﬁ

2 m
7 << —
M

.. (62)
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The low-frequency longitudinal fluctuations in
the case of an anisotropic plasma with different

temperatures 7, and T“ with respect to the strong
external magnetic iield Eo were considered in

detail in Refs. [19, 20].
We pass to the consideration of short-

wavelength electric field fluctuations kv, <@, ,

i.e., fluctuation excitations in the frequency range
near the ion cyclotron frequency @ <@, . We take

the dispersion determinant in the form (29) which
can be rewritten as

£, (@) (wz

4

A(@,k) =€y,

-} +2ia>AyA) L (63)

x(@? - 02 +2iwy; )

where @) and @]
and magnetosonic wave frequencies given by eq.
(34), and y, and ¥ are the relevant damping
rates eq. (36).

We employ eqs. (53), (63), and (48) of the
spectral distribution of electric field fluctuations to
obtain the general expressions which hold for a

wide frequency range @ <@, . These expressions
are given by

EY) =8a7%x
< 1>m

are the squares of the Alfven

[((02—(1),4) +4wA7A] [w wS)z+4a)SYS] ... (64)
Y

<E22 >Ea) ,

( 2 2 2 kic’ 2 ( 2 2)
0 -0, | 0 — cos“ V¥ 20,y +lw° -
{ A{ £ (@) ) sVs s

2.2
x| @ =K Los? s 20,7,
£, ()

-0} 2w |

[(co coA)z+4coAyAH(w a)s)z+4a)sys]
. (65)
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As distinct from the long-wavelength
fluctuations, the short-wave Alfven and
magnetosonic fluctuation excitations are not
separated in individual components of the spectral
distribution. The distributions of both components
eqs. (64) and (65) have maxima associated with
both Alfven and magnetosonic fluctuation
excitations. We remind the reader that the
expression for the dispersion determinant (63) and
hence the spectral distributions egs. (64) and (65)
are valid provided the condition z} >>1 is
satisfied.

If z° << z, (ie, ©@<< @; ), then the spectral

distributions eqs. (64) and (65) reduce to
2(0,4},,4

EY). =s8aT24 . (66)
< ')m 2 oA (a) —o )2+4wAYA
(£3)=8nr Yog, — 20s¥s
c (a)2 —wi) +40iy?
. (67)

Near the maxima corresponding to the Alfven
and magnetosonic fluctuation excitations, these
distributions do not differ from eq. (55); however,
they do not hold for very low frequencies,

® << kv, , as distinct from eq. (55).
2 2
The components <E1 >Ew and <E2 >Ew of the
spectral distribution of electric field fluctuations in

frequency range @ <@, are shown in Figs. 3 and

Fig. 4 as functions of the dimensionless frequency

~ ()] .- . .

@-=——[Ref. 17]). Numerical calculations were
Bi

performed for the values of the parameters which

correspond to the actual conditions of real plasma

with  the n,=1.2-10%cm>,
temperature T =10? eV, and external magnetic
field By =3.4-10* Gs. Spectral distributions are

shown for different values of the parameter

concentration

k
£ =L (parameter & is proportional to the wave
Pi
vector magnitude k). These values are
£=0.2;0.4;0.7516;1.0, and angle ¥ =0.5rad.



A G SITENKO

494

..nS o
— )} " —— Q
(U] - (U]
Kouanbayy ssajuorsuswip aYy) Jo suonouny se v o~ 98ues Louanbayy Kouanbayy sso[uolsusWIp 9Yy) JO suopduUny se a8ues Kouonbayy
o>m ‘o>m
my
ayp u -Awmv suonemON(J pey S99 3y Jo suonnguisip fendsads ayy, ¢ 'S4 ay ur o1 AN_MV suonendnyy pleY dOLIdAd ay Jo suonnguisip fenoads ayy, € ‘Siyg
@ Q
o'l 80 90 %0 0 0 o)} 80 90 7°0 [A] 0
i I m—.lO—. m_.lo—
-+
7°0 20=32 +
o '915L°0 1 !
3 ! o0 . Tot
- Sy o — I 1 -
- \‘l 1 el —— ﬂ‘ -ww
c VS 1 401
" 4 ml
¢ 152 1
m + + 1
41 4
+ - 1.0t
poJ G°0=8 S
o 4 oIt 01SE T
PDIG0=6 oy QLB ] g0 0! e 6 ew +
xeuwiy Xeul ]
™y 7 / @ xA 3>
M \ e Nm > z



LOW FREQUENCY FLUCTUATIONS & ELECTROMAGNETIC WAVE SCATTERING

Each spectral distribution <E‘2>Ew and <E22 >_ has

kw
four maxima. Two maxima in the low-frequency
range @ <0.01 and in the range of ion cyclotron
frequency @ =1 (@ =@, ) are associated with
incoherent fluctuations. Two narrow maxima
correspond to the Alfven (at the frequency @, )

and magnetosonic (at the frequency @) collective

oscillations (@, < ®;). These
maxima are by several orders of magnitude higher
than the maxima associated with incoherent
fluctuations. Position and magnitude of the
maxima which correspond to the Alfven and
magnetosonic fluctuation .oscillations depend on
parameter &. When & increases the @, and

fluctuation

@, also increase (to narrow maxima are shifted to
the range of the higher frequency), however

0, <0, (@, =24 <1). When & =0.7516 the
j ®,

maximum associated with magnetosonic collective
fluctuations is located at the frequency @ =1
(incoherent maximum is also situated at this
frequency). When & =1 the maximum associated
with magnetosonic collective fluctuations lies
outside the shown frequency range. For the values
of parameter £ =0.2;0.4 the maximum associated
with magnetosonic fluctuation oscillations is by
several orders of magnitude higher than maximum
associated with Alfven fluctuation oscillations.
The magnitude of the maximum in the range of ion
cyclotron frequency @ =1 (@=w,) which
associated with incoherent fluctuations is
increasing when parameter & is increasing (the
case when parameter £ =0.7516 is an exception:
two maxima have the same position). The
difference between the spectral distributions
(E‘2>Ew and <E22 >Em is significant for the small
valies of the parameter & (§ <<1) when maxima
associated with Alfven and magnetosonic
fluctuations are located in low-frequency region
(@ <<1).

If the condition z° >>z, >>1 is satisfied, i..,
in the frequency range near the ion cyclotron
frequency @, , the damping rates ¥, and 7 are
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determined only by the component R, contained in
eq. (30). The spectral distributions egs. (64) and
(65) are applicable as well in the limiting cases
when Alfven or magnetosonic perturbation
frequency approaches the ion cyclotron frequency,

Wy —® )<< @, , provided the condition

2
W, —W 2m

I>>| 22— | >>Zg%cos’ ¥
Wy 3IM

is satisfied. In the ion cyclotron resonance range,
2
D, — 2 m
——— | <<=—q?cos’ ¥, both electric
Wy 3IM :

field fluctuation spectra <E' 2 >£m and <E22>Em

have a maximum associated with incoherent

cyclotron fluctuations. It is given by

(0] 2
(53), = 2m for 2L L2 g,
ko mao, o, s

<E22>Ew =cos> 19<E,2>

ko
... (68)

where

2__§M (wB —w)z

z —

2 ; k*s? cos? 9

1
E’cos’ ¥

and ¢(&)= for £2>1.

6 Spectral Distribution of Magnetic Field
Fluctuations

Making use of the relation eq. (52) between the
distributions of electric and magnetic field
fluctuations and the spectral distribution of electric
field fluctuations eq. (55), we find the spectral
distribution of long-wavelength fluctuations

(kv, <<, ) of magnetic field in a plasma with
strong external magnetic field to be given by

_ T 5 20
(B, Bj>Em—87rZ)—k V(b

g @*P"cos’ ¥
@ — k02 cos’ D) + (@*P")’
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o’y”
2

+bSp®
@ - k) + (oY)

= << Wy
... (69)

When deriving eq. (69), we introduced the
magnetic field polarization vectors for the Alfven
and magnetosonic waves, i.e.,

b® =(010), b =(-cos80,sind) ... (70)

Similarly to the spectral distribution of electric
field fluctuations, the spectral distribution of
magnetic field fluctuations (69) has two maxima
given rise to by Alfven and magnetosonic
fluctuation oscillations and a low-frequency
maximum associated with incoherent fluctuations.
Like in the case of electric field fluctuations,
differing polarizations of Alfven and magnetosonic
waves are responsible for the fact that relevant
magnetic field fluctuation maxima are manifested
in different components of the spectral distribution
tensor. The maximum associated with the Alfven

. excitations appears in the spectral distribution of

the <322 >E component whereas the maximum
w
corresponding to the magnetosonic fluctuations is

manifested in the spectral distributions of <BIZ>E ,
(/)]

<B32)za, (B,B,),, and (B,B,). .

2
<8, >k,m [W

.

A G SITENKO

As distinct from the case of electric field
fluctuations, the maximum of incoherent
fluctuations of the magnetic field corresponds to
the zero frequency. Bearing in mind that ion
motion should be allowed for in the case of very

. m .
low frequencies (zz << —A—/I—) we . obtain the

expressions for the spectral distributions of
incoherent Alfven and magnetosonic fluctuations,
ie.,
M
(4) amT , . -—z
<B§> =2, |———¢ sindtgde ™ |
ke 6 M ks

o << kv, cost} .. (71)
) ()3
(BB,). =bb 8
M
2?”;";— kT sin g ve m W << kv, (72)
UA

The widths of the distributions eqs. (71) and (72)
are determined by the ion thermal velocity.

The components <B12 >1Zm , <B22 >Em and <B32 >/Zw

of the spectral distribution of magnetic field
fluctuations are shown in Fig. 5 (a-c) as functions
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100 |

50+ |

Fig. 5 The spectral distributions of the magnetic field fluctuations <B’2>Em (a), (BZZ >Ew b)

and <B§ >E (c) in the frequency range @ << () as functions of the dimensionless
3 o ;

f 7 J?Tw d the angle ¥
requenc = — — an c .
equency e
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. . ~
of the dimensionless frequency Z =k— and the
s

angle ©¥¥ . Numerical calculations were available'®
for the values of the parameters ©?=0,01 and

g> =0,1. Each spectral distribution <B'2>E and
w

<B3’ >E has two maxima (Fig. 5 a,c). The broad
- w

maximum in the low-frequency range is associated
with  incoherent - fluctuations. The narrow
maximum at the frequency Z =0 (w=kv,)

corresponds to the magnetosonic fluctuation
oscillations. This maximum is by several orders of
magnitude higher than the broad low-frequency

maximum. The spectral distribution <322 >E (Fig.
[

5b) shows a broad maximum produced by the low-

frequency incoherent fluctuations along with
the narrow maximum at the frequency
Z=0Ocost (w=kv,cos¥) that is given rise

to by the Alfven fluctuation oscillations. The
frequency associated with the latter maximum

depends on the angle ¥ . In <B22 >E , @ maximum
w

at the frequency 7 =0 (w=kv,) is also

observed; it is given rise to by the magnetosonic
fluctuation oscillations. The value of this
maximum is by several orders of magnitude lower
than the Alfven fluctuation maximum ‘in the

spectrum of <322 >E and the magnetosonic
w

fluctuation maxima in the spectral distributions of
<B,2>< and <B32 >_ . of the
kw kw
magnetosonic fluctuation maxima in the spectral
distributions <B‘2>E and <B:' >E are given in Fig.
w N ()

The values

6 (a,b) as functions of the angle ¥ . The minimum
values of these maxima lie in the angle range
¥ = 1,45 rad; the widths of the maxima attain their

greatest values in this range. In the spectral
distribution of <B; >E , the minimum value of the
o

maximum associated with Alfven fluctuation
oscillations and the maximum value of its width
are attained for ¥ = 0,04 rad (Fig. 7); the value of
the maximum (as distinct from the dependence in
Fig. 6a) steeply increases for small values of the
angle ¥ and less steeply growth towards the angle
v=r/2.

A G SITENKO

7 Fluctuations in Nonequilibrium Plasmas

To find the spectral distributions of electric and
magnetic field fluctuations in a nonequilibrium
plasma, we have to know the spectral distribution
of the Langevin current along with the dielectric
permittivity tensor. The spectral distribution of
current density fluctuations in the plasma
disregarding the Coulomb interaction of charged
particles is usually taken for the spectral
distribution of the Langevin current. If the charged
particle distribution is axially symmetric with
respect to the external magnetic field, the spectral
distribution is given by*":

(7 e =
e’ Tdte'"’"J'dﬁj'dﬁ’viij,E (0,0%) £, (D),

... (73)

where W; (D,0’) is the probability density in

the phase space for the particle transition from the
point U to the point D for the time f. If the
particle interactions are neglected, the transition
probability density is given by

—ia[sin(wpt+a )-sin a ik o

WE (1—).,1—).,’t) =e

5@ —v, cos(w,t +))

x5(vr’\‘ +vlsin(a)3t+a))5 (v’l—v “) . (74)
kv N oo

where a=-—=—= and the initial velocity is

Wy

determined as
U= (vl cosQ,— D, sina,v IJ'

The spectral distribution (73) may be written in the
form

. . 0 — T
(Jii), = e [dOW, (0,0 ;0,K) fo(vL,)),
... (75)
where
W, (v, v 0k)=

]"- dre 2.[%)[‘_ Jav v W @50, 7
—oo 0
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2.(s)
<BT>
max (<B; k,o__)/W)
spooo4 | (@
300t
200
100¢
0 + ottt sy
1.3 1.5
30000+ o,rad
0 0.2 0.4 0.6 0.8 1.0 1.2 14
©,rad
2 (s)
max (<83>k,m [ W)
20000
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T
..r
10000+
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Fig. 6 The values of the maxima in the spectral distributions of the magnetic field fluctuations
(B 12>,; (a) and (332 ) i, (® which are associated with magnetosonic fluctuation
()

@

oscillations as function of the angle s .
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, max (< B> ¢, /W)

8.10 P
6-10
0
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0.2 0.4 0.6 Q8 1.0 1.2 1.4
8, rad

Fig. 7 The values of the maxima in the spectral distributions of the magnetic field fluctuations

<Bz >; which are associated with Alfven fluctuation oscillations as function of the
w

angle G .

Expanding the exponents in the expression (74) Thus, the spectral distribution of current density

according to
eiasimp _ 2\]" (a)eimp,
n

where J (a) is the n th order Bessel function, and
performing the integration in (76), we obtain
W;(0,0 0.k =

(n)
Z”ZH,-, W,V PS(@—kp,—nwy) ... (77
where the tensor l_[ ij") (v,,v I) is defined by

]
%-J"(aa)
-iv,J(a,) k

v J,(@a,)

| J

J,,(aa,),ivl.l,',(a,,,),v| J,,(aa)}

(n.a)
I, @y =

[,

ky
_kuv,
a wB

...(78)

fluctuations in an ensemble of non-interacting
charged particles, the distribution function of
which is axisymmetric relative to the magnetic
field, is as follows:

(it ),
=2wy el [dby [Ty w,,v))

X&(W—k v | —nwy ) fo, (U, V)

... (19)

In the case of a nonequilibrium plasma the
dielectric permittivity tensor may be found on the
basis of inverting the fluctuation-dissipation
relationship®:

£, (@.k)=8,
2

+4r Y K3 (@.k)= 1—2(1;;: Sy »

(Jid Ve

= ... (80)
o -w-i0 (

’
()]

O o
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N d ;. .\0a : :
where -é—é—< JiJ i)im is the correlation function

averaged over the derivative of the energy
distribution:

3 < Oa. 27'[8 (n.a)
“SE, Jidi);
x(v)6(w—nw3” —kE Y )
nw, o 0
x k , .
X o, 3UL+"31)| 0a(vlvl) (81)

For the potential (longitudinal electric) field, the
spectral distribution of the Langevin source and the
dielectric permittivity of a magnetoactive plasma

with the distribution function f,(U) being axially

symmetric with respect to B, are given by

() = 27:2 [ avs (k;‘:l )

... (82)
X8(w—-na, —k v ) fo(v,y)),
(@, k)=1+
i
47e’ - Wy
d
Ea:mkzz,,"J vco—na),,—klvl +i0
nw, J d
k , . (83
X o, é’vl+ “9U|| NON UI) (83)

For the strong external magnetic field, in the low-
frequency range (@ << @, ) the terms with n =0
are significant only in eq. (82) and in the
contribution from the second term in the brackets
in eq. (83). The contribution from the first term to
the latter equation includes all terms with n# 0.
Thus, eqs. (82) and (83) may be approximated by
the formula'® *;

().,

-ZnIva (k }6((0 k) fow,y)
a)B
. (84)
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E@,k)=1+41Y K, (@.k)=¢€,(k)

wn

® =k vy +i0 g 81) Sy

+

47e?
e Idv
. (85)

£,(k)

where &, (k) is result after the summation over n
4me’
=14y —
~ . mk

wB
1 9
X——fo(0,,1 )
J a J 0 1 I

. (86)

When particle distributions are Maxwellian with
temperatures 7, and TI with respect to the

external magnetic field direction, eqs. (84) and
(85) yield

<5nz>(j =2r ! e‘ﬂlo(ﬁ)e_z'z, . (87)
kw kl sl
e(@,k) =€,(k)
1 |1-9(g )+i«/;z| e ,
X 1+—_;'2—2 _
KN 1 Z,(1-p(ug ) +iNTpz €
. (88)

where Z, is the ion charge number,

- 1 _
(k) =1+ Y —— (1= 1,(B)).
= ak
a2 = T_L , a ’ = Ti ’
T ame U amge?
o _ &k s gk kT,
eP1,(B) H mw)’

2 T“ 1 w
S ==, J =—F=
o \/Ek“sn
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We note that the spectral distribution of fluctuation
sources in this case (strong magnetic field) is
determined by the longitudinal temperature only.
According to the general theory [6], the correlation
function for the electron density fluctuations in the
case of potential interactions between particles
takes the form

- 12
4rnx,(w,k)
(8 )z, = 1'% Con
. (89)
471’K (o, k) z <5n >0
e(w, k) kw

Here, plasma discreteness reveals itself in the

0

spontaneous density fluctuations <5nf>i
(]

and

0

<5n,.2>‘z , due to the random motion of individual
w

The factors near the

. . 0 0 .
correlation function <6n“2>1? and <6n,.2>’Z , in eq.
w @

non-interacting particles.

(89) govern plasma polarization by the shielding
cloud of electrons and ions around the test particle.
Comparing egs. (87) and (88) with those for a
nonmagnetized plasma, we observe that these
equations are related by the scaling transformation

27, a’* > a*, n,—on,=ne1,(B)

and K(w,E) - Ky(k)+ x(a),E) .

This makes it possible to reproduce the above
analysis using the appropriate results for a
nonmagnetized plasma”.

The spectral distribution of electric field
fluctuations in a nonequilibrium plasma is
determined by the expression21

16 1
<EiEf>km n A’xkl]l(-’kh)kw

@ |Af

and the spectral distribution of magnetic field
fluctuations in a nonequilibrium plasma is given by

16x* n?
@%M=zrgf%

. (90)

. 91)

xe ,, ‘mm< A

For equilibrium plasmas, we have

A G SITENKO

.. \0 . @ .
(3id;),, = i—T(K;=A,) . (92)

and thus the spectral distribution eq. (91) reduces
to eq. (48). In the plasma transmittance range, the
imaginary part A” of the dispersion determinant
is much smaller than the real part

A’ (A” << A’), and the algebraic complement
may be treated as Hermitian, i.e.,

Ay=R;.

The spectral distribution in the vicinity of the
eigenoscillation frequency in the equilibrium case
reduces then to

(E"E1>z - 8”

We note that in the plasma transmittance range
in the vicinity of the eigenoscillation frequency a
relation occurs

Ahy = A

. (93)

Then the expression for the spectral distribution of
electric field fluctuations in the transmittance
range of a nonequilibrium plasma reduces to the
form similar to eq. (93), i.e.,

8’ ~ - v

(EE,)). =T (@b)1,6(A), . (94)
kw w I
where f(w,l? ) is the effective temperature,
-

~ - 2n*A 0
T(@,k)=—=2(j.j): - . (95

e i (95)
Near the -eigenfrequencies, the algebraic

complements l,.j are directly related to the electric

field polarization vector,

A, =eeSpA.

Thus we have

(EE,). =§f—T(m k)ere,SpAS(A") ..

The spectral dlstnbutlon of magnetic field
fluctuations near the eigenoscillation frequencies is
given by

- (96)

2
(BB), = %—T(w,k)nzb,.‘bj SpAS(A”).
. (97)
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We note that the effective temperature f(co, E )

depends on the frequency and the wave vector. It is
obvious that the value of the effective temperature
for the frequency equal to the eigenoscillation
frequency should be regarded as the temperature of
the relevant eigenoscillations,

T, =T (kv, cos k)T, =T (kv, k). ... (98)

The values of T, and 7, can differ considerably.

The condition of plasma stability with respect to
collective excitations reduces to the requirement

that the damping rate ¥, of the relevant

collective excitation must be greater than zero. The
effective temperature of relevant excitations grows
infinite at thé stability boundary.

The spectral distribution of incoherent
fluctuations of the magnetic field is maximum for
zero frequency. We multiply the total spectrum eq.

(91) by b,.(A)b;A) and b,.(s)b;s) and thus separate the

incoherent  fluctuations of  Alfven
magnetosonic types, respectively. We thus have

b*(BB,). b\

kw’

and

=16n’ n” ,coszﬂLZL,<jkj,>g’

w*[A|

2
() ) _ 2 !N . V()
b <BiBj>,;wbj =16m ﬁlzklll(]k.]l);w

’|A|
, ... (99)
where
L= 1(772 —&y )533 —£5 ]cos V+E€,€, 800,
L, =¢€,€;,;cos0+€,€,8in,

e

We employ expression (3) for the permittivity

—£€5 )E“ - efz ]sinﬂ— €,€,; COSV.

tensor components in the limiting case q2 <<1
and thus find that

2
b (BB;), b\¥ =16n’ -w%kzu2

Pi

<Jl ><0)

v2 cos 19)2 +(@*P)*

... (100)

xcos* ¥

(a)2 —k?

503

. . (101
Y P V) aon
=16n"—-k"v, 7 2,2 ~2
w,, (@ - k02 } + (@¥")

The ratios of the intensities of these spectral
distributions for zero frequencies to the quantities

b (B.B;) b IT and b*(BB;) b IT

in terms of which the spectral distribution
corresponds to eq. (69), may be regarded as
effective temperatures of the relevant incoherent
fluctuations, i.e.,

T =86n

©)
M 10 s >h( I . (109
m q° w v, kv, sin’¥cos?
2 J (0) s
2\fo COST
=.J6r ’ ’; 7 \ew . (103)
sin 19

We note that effective temperatures of incoherent
fluctuations are always finite, as distinct from the
temperatures of  collective  Alfven  and
magnetosonic fluctuations. Thus, it is convenient
to describe the state of a nonequilibrium plasma in
terms of the sets of temperatures T,,7; and

TN TN, the diagnostics of states of a none

quilibrium plasma with strong external magnetic
field may be reduced to the calculation of these
temperatures.

Let us generalize the transition probability eq.
(76) for the case of a turbulent plasma state'’. We
consider plasmas with developed turbulence and
assume that there occur large-scale turbulent
pulsations. This means that microscopic motion of
noninteracting particles reduces to the motion of
particles under the influence of the field averaged
over a small macroscopic volume, and the
stochastic motion of the latter volume. We assume
thermal motion of individual particles and chaotic
turbulent  large-scale  motions to  occur
independently. Therefore, the transition probability
density for a turbulent system is given by

5 “,)*J-’“’.[d-

@7 )WA 0,0 +07),

. (104)

kww
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where P, (') is the factor determined by the

stochastic Brownian motion of small macroscopic
volumes. If the elementary volume is involved in
the diffusion-drift motion {19], then

2k’D
(@—kii,)? +k*D*’
... (105)

P, =[d0" P, @7 =

where U, is the drift velocity and D is the

diffusion coefficient. The more pragmatic model
was proposed” in which one imagines that small
macroscopic plasma volumes move chaotically
across the magnetic field and the characteristic
function is a Gaussian

‘/Eexp{(w*wr)z}

... (106)
Ve 2y;

where the mean (drift) velocity #, and the root
mean square velocity u, associated with fluid-like
motion, determine the Doppler frequency
@, =kii, (at which the spectrum has its
maximum) and the spectral width ¥y, =k u,

respectively.
The spectral distribution of the Langevin current
for a turbulent system is defined by

<jijj >Zw = %%P;w_w'<jijj>zw, .

The dielectric permittivity tensor for a turbulent
plasma is determined by the formula (80) in which

... (107)

0
the correlation function ( JiJ f>i has to be
@

T

changed to <j,. jj>
The detailed consideration of the spectral

ko’

distributions of the potential fluctuations in a

turbulent plasma with large-scale random motions
was done in papers [Ref. nos.19, 20, 22, 23]. In the
case of potential field the spectral distribution of
the fluctuation source and the electric
susceptibility for a turbulent plasma are given by

(o) =[G )y, 0w
xr(w,i)=J‘12:’I3Ew_w,x(w',i), ... (109)
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where

ko

.= _Jda)' F,
2t ' -w-10

Making use of the characteristic function in eq.
(106), we find the spectral distribution for
spontaneous fluctuations®:

~  _{o-wp)

<5n2>7 = ’gf_”ie 2077
ke C v

and the dielectric permittivity for an electron

plasma

e(@,k)

... (110)

-3

""1 s @ — 0
{ J2cy,
(w0-of )2

. -0, 2
+iNT —L¢ 77

\/2Cyr

Yr =ks“ is the frequency spectral width for

4/

spontaneous microscopic density fluctuations in a

macroscopically steady plasma. The shape
parameter
) 2
k
C=1+ Ye | o] fa
Yr k 5

changes in the range from unity to infinity, as it
depends on the ratio between the magnitudes of the
wavevector perpendicular and parallel components
and the ratio between the root mean square
turbulent velocity and the particle thermal velocity.
The spectral distribution of electron density
fluctuations for a turbulent plasma is related to
result for a nonmagnetized plasma by the scaling
transformations:

0 -0,
Jc

The characteristic length scale, which separates
incoherent and collective fluctuations according to

Ca*k’e(k) ~1 depends on the effects of fluid
(C>0, -drift
(e(k)>1) The

T>CT>T, 0— , atsCa’.

motion particle  polarization

and finite Larmor radius.
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characteristic scale length is large when these
effects are important. The spectra are broader for
larger C, with collective features being less

pronounced. The frequency scale +2Cy, depends
on particle thermal motion along the magnetic field
and on fluid, and it decreases with ki . In Fig. 8,

( i <5r12> ;, is plotted

as functions of gy = and various values of

(0]
‘/_2_71
This figure shows the well-known

sharp peaks in the spectrum due to collective
electron plasma oscillations.

y=a’k®.

8 Electromagnetic Wave Scattering and
Conversion in Magnetized Plasma

The main problem in calculating the cross-sections

E ()

—< n >
Ng &ne k w

0.2+

0.11
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of electromagnetic wave scattering in plasmas is to
find the current produced by the nonlinear
interaction of the incident wave with the
fluctuations of electron density and their velocity,
and the fluctuations of electric and magnetic fields.
This current determines the scattered wave field.
The nonlinear constitutive equation for the plasma,
and hence the scattered-wave-inducing current,
may be derived from kinetic or hydrodynamic
equations for the electron and ion plasma
components. Since the difference between electron
and ion masses is very large, the consideration may
be restricted to the electron component only. The
results of the fluid-approximation study of
nonlinear processes in plasmas, obtained within its
applicability range, are shown to be in accordance
with the results of the kinetic treatment'®'". In the
cold plasma, when thermal effects in the dispersion
of incident and scattered waves may be completely

0.0 .

Fig. 8 The spectral distributions of the electron density fluctuations

functions of the dimensionless frequency Zl

y=a’k? (Ref. 20).

w
=———— and various values of

J2 ksI
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disregarded, the scattered-waves-inducing current
is given by the expression:

- @, R ~ - -
I, =i -’—liﬁnm,x(wo )E® + 8l y, (koR(w,)E®)

0

+ wR ()] ([&qm,B J+ .88, ])

~d4n =2 20 (o650 )R (@) E + ity [GR (00 E° )]}
pe ... (111)
Here we introduced following denotations: @, and

k, are a frequency and a wave vector of the

incident wave; @ and k are a frequency and a
wave vector of the scattered wave; AW =0 -,

and §=k —k,; E° and B° are the electric and
magnetic fields of the incident wave; (‘)‘n‘7 Ao and

&26&0 are fluctuations of the electron density and

velocity; 58:74«; is fluctuations of the magnetic
field; K (@) is the dielectric permittivity tensor of
the cold magnetoactive plasma,

) =1+4rKk(w),

o’ 2
4nx, (@) = Z {5 +1w " bk—%bibj},
. (112)

b is the unit vector in a direction of the external
magnetic field B,. Using the linear connections

between fluctuations of physical quantities in a
plasma and the linearity of incident wave, we can
present eq. (111) in the form:

0By, }
+y,, —R2AED,
o M BT

. (113)

where the fluctuations of all quantities are
expressed in terms of the longitudinal fluctuations
of charge density and the transversal magnetic
fluctuations. Let us consider the scattering of
waves with a small change of frequency
(Aw << w,). In this case, we can use the

approximate expression

AW

J(@,k) =—~iwx, (co){oc,,k

4
o, =08, —quk‘)'x'k (w,),
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(114)

wOwB
Y =47 pe € i K (@) AW << @y. ...

r
Ordinary and extraordinary electromagnetic
waves with equal frequencies but different
refraction index and polarization can propagate in
a plasma with the external magnetic field. The

polarization vectors of the ordinary and
extraordinary waves €, and €, respectively
satisfy the orthogonality condition

€;€0:€x; =0. . (115)

For the waves that propagate along the magnetic
field (¥ =0),

Mox =€ F&, &, =(01Fi0), . (116)
in the other words, these waves are transversal
with the circular polarization. For the waves that

propagate in the direction perpendicular to the

T
magnetic field (¥ = By ):

Ne =&€,,€,=(00,);

2
£ . €
ny =e,—£—2, €, =(1~i-10).

1 82

. (117)

If the incident electromagnetic wave propagates

along the magnetic field k| BO, then
a, — 0 ,; at the same time the scattering of
waves on the longitudinal charge density

fluctuations takes place. Because orthogonality of
the polarization vectors €, and €, it is
impossible the wave conversion on the charge
density fluctuations.

If the incident
perpendiculary to the direction of magnetic field
k,LB,, then kK(w,)é,=0 and again we get
A =0
transformation of the ordinary electromagnetic
wave in the extraordinary one occurs due to the
interaction  with the transversal magnetic
fluctuations only.

The general expression for the differential cross-
section of electromagnetic wave scattering in
magnetoactive plasmas was derived in Ref. [6]

wave (let e,) propagates

Therefore, the wave conversion or
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from the hydrodynamic equations. In the case of
electromagnetic wave scattering by electron
density fluctuations, the differential cross-section
is given by

2
d2=%(’::2 J “’(if’z RE*|(8n)  dwdo,

Pe

... (118)
where

3
n . 0
R= — JE=e/(e) —8,)e;

-2 Ieoko| .
Mo o] - o Fitul
0

This formula determines the plasma parameters
(density, temperature, etc.) in terms of observed
electromagnetic wave scattering spectra.

The differential cross-section of electromagnetic
wave conversion under scattering can be calculated
in the same manner as in [Ref. 6]. The importance
of electromagnetic wave scattering by magnetic
fluctuations was worked out by Thompson®. We
restrict the consideration to the electromagnetic
wave conversion with small frequency shift
(Aw << @), then the differential cross-section of

conversion is described by the expression
1
21 ¢*B?
X Rz (e:Kij (w)yjkleg ) (e:xij (w)Yju'ef )
L
x(5B,6B;) _dwd0

g

... (119
We note that

(6B,0B;) =6,(6B})

GAw GAw

and make use of the expression for the coefficient
Y then the differential cross-section reduces to

2V 6
e n, @
2]R

mc mc? @°
Pe

the form

dY = 327:2[

x}l:le:x,.j (@) € ot K @p)el] (oB7).,, dwdo
... (120)
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We consider the case when the incident ordinary
electromagnetic wave is converted into an
extraordinary electromagnetic wave. Suppose the
process occurs in the plane perpendicular to the

external magnetic field B,. The polarization
vector of the ordinary wave €, =&’ =(0,0,1) is
directed along the magnetic field l-'jo, hence the

azimuthal angle of the wave vector k, of the

incident wave is insignificant. The polarization
vector of the extraordinary wave, €, , lies in the

plane perpendicular to Bo and depends on the

azimuthal angle @ of the wave vector Kk , i.e.,

L £ . . L E,
€y =€=|cosQ+i—sing, sing—-i—cosp, 0
) 2

We consider the case when the wave vector

change under conversion g = k —EO is small, then

we can assume that glk. We choose the
coordinate system in a way that the vector g is

directed along the x -axis, then the azimuthal angle
¥/

¢=—5-

Therefore, the polarization vector of the converted
wave is given by

of the converted wave vector is

... (121)

We do not normalize the converted wave
polarization vector since the cross-section in eq.
(120) does. not depend on the normalization
condition). Thus we obtain an expression for the
differential cross-section of the electromagnetic
wave conversion in magnetized plasma, i.e.,

2
1 [ & n
d¥, ,x = 8n2(mc2] Rmz_z
@ /s @+, )
X F(ggl ) Pt

2
Pe

o w (5322)%‘0 dwdo,

... (122)

where

3 2 2 .2

R= n _ }31 —-€&, &
- * - 2
M€, €;€; £¢&, &
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We remind the reader that in this Section the
notation for the dielectric permittivity tensor of a
cold plasma is

g -—ig, O
g;()=l+4nx (@) =|ie, € 0 |... (123)
0 0 &g
2
[0
gw)=1-) —F—,
]( ) ;wZ_wZ
o,
£, s(w)-l Z

a

The first term within the curly braces in eq.
(122) describes the conversion of an ordinary
electromagnetic wave into an extraordinary one
due to the interaction with magnetosonic
fluctuation excitations in the plasma, the second

term 1is associated with Alfven fluctuation
excitations. We note that, for an equilibrium
plasma, the integral contribution of Alfven

excitations in the conversion is much greater than
the contribution of magnetosonic excitations,

.
zS

In nonequilibrium plasmas, this ratio can be both
greater and smaller than one for various plasma
states. In the case of conversion by incoherent
magnetic fluctuations with very small frequency
shift, the value of this ratio is determined by the
inverse ratio of the Langevin sources, i.e.,

(@* +(Oi)2 ,
2 2 >
OROH

_Zi - <j’2>(:‘0 '
7

It should be noted that the analysis of experimental
data must take into account the fluid-like turbulent
motion in the plasma which can considerably
influence the character of the converted wave
spectrum, similarly to the effect of such motions
on the spectra of wave scattering by particle
density fluctuations®®*. Various aspects of plasma
diagnostics are considered in detail in Ref. (26).

9 Conclusions

The main purpose of this review is to consider the

A G SITENKO

low-frequency properties of a plasma with strong
magnetic field, in particular, the specifics of
collective excitations, dispersion, polarization, and
damping of Alfven and magnetosonic waves. Low-
frequency  fluctuations of charge density,
longitudinal and transverse electric field, and
magnetic field in a magnetized equilibrium plasma
are considered in detail; spectral distributions of
such  fluctuations are found; incoherent
fluctuations caused by chaotic motion of individual
particles are separated as well as the collective
fluctuations  associated  with  Alfven and
magnetosonic plasma excitations. In the range of
very small frequencies (much smaller than the ion
cyclotron frequency) the Alfven and magnetosonic
long-wave fluctuations are manifested in different
components of the fluctuation spectral distribution
tensor, i.e., Alfven and magnetosonic fluctuations
are separated due to different characters of
polarization of these excitations. The positions of
the maxima of fluctuation spectra are determined
by the frequencies of relevant plasma
eigenoscillations. As the wave number increases,
the maxima of fluctuation spectra are shifted to the
ion cyclotron frequency range and separation of
Alfven and magnetosonic waves disappears; the
maxima associated with Alfven and magnetosonic
fluctuations are manifested in all components of
the spectral distribution; the magnetosonic
maximum rapidly approaches the ion cyclotron
frequency as the wave number grows. In the
vicinity of the ion cyclotron frequency, a cyclotron
resonance occurs which leads to the damping of
collective excitations. In the ion cyclotron
frequency range, incoherent cyclotron fluctuations
occur; their spectral distribution is also found in
the paper.

Much attention is paid to the fluctuations in
nonequilibrium plasmas. The Langevin fluctuation
sources are introduced in order to find the effective
temperatures which are responsible for the
collective fluctuation levels for the electric and
magnetic fields. The effective temperatures are
found as well for the incoherent magnetic field
fluctuations  associated  with  Alfven and
magnetosonic excitations. The temperatures thus
introduced make it possible to describe the
nonequilibrium plasma states quantitatively.
Fluctuations are also considered in a plasma with
large-scale turbulent pulsations. The influence of
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such fluid-like chaotic motions on the fluctuation
spectra is analyzed. Such motions must be taken
into account when the plasma state is studied in
terms of fluctuation spectra and electromagnetic
wave scattering in the plasma..

Electromagnetic wave scattering is one of the
most efficient methods of plasma diagnostics both
-in controlled fusion devices and in ionospheric and
space plasmas. The study of electromagnetic wave
conversion resulting from wave-plasma interaction
provides additional possibilities to obtain
information on the plasma state, in particular the

References

1 A1 Akhiezer, I G Prohoda and A G Sitenko Sov Phys
JETP 6 (1958) 576

2 J P Dougherty and O T Farley Proc Roy Soc A259, (1960)
79; O T Farley, J P Dougherty and D W Barron Proc Roy
Soc A263, (1961) 238

3 A ] Akhiezer, I A Akhiezer and A G Sitenko Sov Phys
JETP 14 (1962) 462

4 E E Salpeter Phys Rev 120 (1960) 1528; ibid 122 (1961)
1663,

5 M N Rosenbluth and N Rostoker Phys Fluids 5 (1962)
776

6 A G Sitenko Electromagnetic Fluctuations in Plasma
Academic Press New York (1967)

7 A G Sitenko and Yu A -Kirochkin Sov Phys Uspekhi 9
(1966) 430

8 D E Evans and J Katzenstein Rep Prog Phys 32 (1969)
207

9 ) Sheffield Plasma Scattering of Electromagnetic
Ragdiation Academic Press New York (1975)

10 A G Sitenko Plasma Phys Control Fusion 37 (1995) 163

11 A G Sitenko and S M Zinevych Plasma Phys Control
Fusion 38 (1996) 627

12 T Lehner, J M Rax and X L Zou Europhys Lett 8 (1989)
759

13 L Vahala, G Vahala and N Bretz Phys Fluids B4 (1992)
619

509

character of magnetic field fluctuations.

10 Acknowledgements

The auther is deeply thankful to A V Kharchenko
for the numerical calculation of spectral
distributions quoted in the review. He is also
thankful to V M Khryapa for his help in preparing
this review for publication. The author
acknowledges the financial support of the
International Science Education Program (grant N
QSU082182).

14 A G Sitenko and K N Stepanov Sov Phys JETP 4 (1957)
512

15 K N Stepanov Sov Phys JETP 7 (1958) 892; ibid 11
(1960) 192

16 T H Stix The Theory of Plasma Waves McGraw-Hill New
York (1962)

17 A G Sitenko and A V Kharchenko Plasma Phys Control
Fusion (in press)

18 A G Sitenko and A V Kharchenko Ukr J Phys 43 (1998)
545

19 A G Sitenko and A G Zagorodny Ukr J Phys 40 (1995)
390

20 P P Sosenko, N Maafa and D Gresillon J Atmospheric and
Terrestrial Physics 58 (1996) 1047

21 A G Sitenko Fluctuations and Non-Linear Wave
Interactions in Plasmas Pergamon Press Oxford (1982)

22 P P Sosenko Quasiparticles in Macroscopically Agitated
Magnetized Plasma—Palaiseau (PMI 2827) (1993)

23 P P Sosenko, A G Sitenko and D Gresillon Ukr J Phys 42
38 1997

24 W B Thompson J Plasma Physics 5 (1971) 225

25 D Gresillon and B Cabrit Proc 1989 Int Conf on Plasma
Phys New Delhi India Invited Papers Indian Academy of
Sciences Bangalore (1991) 173

26 1 H Hutchinson Principles of Plasma Diagnostics
Cambridge University Press Cambridge (1987)



