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In recent yearslarge deformation plasticity based on the additive decomposition of the stretching has becomeless popular.
Constitutiverelations of elastoplasticity have come up that are complicated in nature and mostly formul ated in Lagrangean
frame. Hereit isshown that traditiona Eulerian el astoplasticity may be aserious alternative. Itsstructureissimple and the

formulation is straightforward.
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1. Introduction

Midth of last century three-dimensiona elastoplagticity
got based on the additive decomposition of theadditive
decomposition of the stretching. This “traditional
model” seemed to be a good foundation for the
description of elastoplastic material behaviour. Since
elastoplasticity deals with moderately large
deformations, it was favourabl e that the formulation
wasin an Eulerian frame.

The disclosure of stress oscillations in simple
shear problem[12, 19], however, evidenced that such
model needed revision.

In sequence, various propositions were given
and the matter started to grow in complexity. Among
such proposals were the description in Langrangean
frame, the multiplicative decomposition of the
deformation gradient, the additive decomposition of
theLagrangean strain, theintroduction of multipleyield
surfaces or combinations of them. New internal
parameters had to find physically motivated evolution
laws. Some of them were accompanied by unwanted
side effects like incompatibility, abandoning given
definition range etc.

Thechallengeisto formulate constitutive laws
that are as simple as possible, as complex as needed
and mathematically flawless. In this sense it may be
interesting to note that asmall change in the original
formulation, namely the consequent use of the
logarithmic rate as objective rate for the Kirchhoff
stress and the backstress, may revalue thetraditional
model. Then, it may be obsolete to look out for
additional evolution lawsthat, sometimes, are hard to
justify.

2. Kinematics of Large Defor mations

Basically, large deformations of continua relate the
rotation and lengthening of aline element in dx the
actual state to its reference state dX i.e.

dx=F(X,t)dX ith F—% 1
x=F(X.DdX  with F=o0 @

The two-field deformation gradient has the
determinant (Jacobian)

J = detF. 2
F may be multiplicatevily deomposed as
F=V R=RU, RT=R?, v=VT, U=UT (3)
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R isthe line element rotation tensor. The right
stretch U characterises its lengthening in the non-
rotated state (Lagrangean configuration), the left
stretch V in the actually rotated state (Eulerian
configuration). Since elastopl astic deformations may
be moderately large, inthe following the attention is
focussed to the Eul erian configuration.

The Cauchy-Green tensor B is computed from
V by
B=V2=FFT. (4)

B has1<m<3distinct eigenvaluesh. It shares
the eigenprojections B, withV - B may be decomposed
according

B=§1,hBi (5)

The eigenprojections may be retrieved by
Sylvester formula

I, m=1,
> {n[n - ] m>l} ()
where | is the second order identity tensor. The
velocity gradient is defined by

[ =— =
oX

FFE™ )
and isan Eulerian tensor. The decomposition holds

{Dz(L+LT)/2,}
L=D+W,
W= (L-L")/2

8
D and W are known as the Eulerian stretching and
the vorticity tensor. D characterises the deformation
rate.

Thematerid timederivativesof obectivetensors
generally are not objective. Numerous objectivetime
derivatives have been proposed in the past. Hill’s class
of objectiverates[9] isdefined for p € (—==, =)

AHID = 44 AW -W A= p(AD + DA), (9

where A isan arbitrary objective Euleriantensor. E.g.,
thisclassincludesthe upper and lower Oldroyd rates
[20],i.e.

AO) = A+ AL+ A, (10)
ACU= 4_AL-L" A, (1)

and a number of corotational rates. They have the
structure

A= 4+ AQ-QA (12

where §2 is a (skew-symmetric) spin tensor, e.g.

Q' =w, Jaumann [10] (13)

QN =RR", Green/Nagdhi [18] (14

0% _W + 1+b /b, 2 B DB,
1-b /b, In(b /b,)
logarithmic[13, 23] (15)

The choice of the most appropriate objective
time derivatives has been most controversary
discussed in the past. Recommendations for the
Kichhoff stressand backstressrates are given shortly
later.

3. Traditional M odel
The specific stressrate is defined by
w=1D. (16)

Herein, 7 isthe Kirchhoff stress. It isrelated to
the Cauchy-true-stress ¢ by

T=Jo. (17

A decomposition of \i/ into recoverable and
irrecoverable parts may lead to a decomposition of
the stretching as

\fu:\[\[e-pr:T(De-'er)%D:De‘l'Dp (18)

It seems that the decomposition of D into a
recoverable (elastic) and irrecoverable (plastic) parts
hasfirst been proposed by Hill in 1958 8] and shortly
later by Lehmann [11].
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Upon attribution of elastic and plastic contitutive
lawsto D€ and DPin (18), thisdecomposition may be
considered asfoundation of el astoplastic constitutive
relations.

3.1 Considerations Concerning D¢

Very often, elasticity constitutivelaws areformul ated
as stress-strain relations (Green elasticity) or are
derived from a strain potential W(g) or,
complementary, from a stress potential W(t)

(hyperelagticity), i.e.
de ot

Both are not directly delivering an expression
for D¢, this may be of importance, see later.

(19)

Truesdell [22] proposed hypoel astic laws of the
form

T = g(D°). (20)

Herein, 7 isanot specified objective Kirchhoff
stress rate. Complementary, thislaw is

D°=g(,1), (21)

which seems to conform to the purposes here. E.g.,
the hypoelastic law of grade zerois

e 1o A% o

D®= 20 (r Tav tr(t)l j _ (22)

Herein |, u, », and are second order identity
tensor, Lameé’s compression module and Poisson’s
ratio, respectively. 1979, Dienes [6] discloses that
none of the commonly used objective rates can make
relation (21) exactly integrable, i.e. conform to
Bernstein’s integrability conditions [1]. In [24] it is
shown that objective Kirchhoff stress rates in (20),
(21) may not be of arbitrary type. A necessary
conditionfor theintegrability of thehhypoelasticrelation

isthe use of thelogarithmic Kirchhoff stressrate £

e [ ooy
D =g(r g,r} (23)

Then, hypoel asticity and hyperel asticity may be
brought together. Thisapplies, e.g., for thehypoelastic
relation of grade zero

e 1 (ot v o (log)
Dza(’c -—tr(z )Ij. (24)

3.2 Considerations Concerning DP

The plastic flow starts whenever the elastic domain
isleft. Traditionally, the delimiting surface in stress
spaceis described by the yield function f

f(t, % a)=0. (25)

Herein, x is the (scalar) isotropic hardening
parameter, and a the (tensorial) kinematic hardening
parameter. A widely used yield function for metals,
e.g0., isduetovon Misesand is expressed by

f:%(f—oc):(’t —a)-12, (26)

where thetilde denotes the deviator, i.e.

f:r—%tr(r)l. (27)

Theyield shear stress 7, may depend on .

It is assumed that the plastic work rateis equal
totherate of theisotropic hardening variable[7]. Then,
itsevolution law may be given by

=1 :D". (28)

A particular evolutionlaw for a isproposed by
Prager [21]

o =cD”, (29
where ¢(x) isthe anisotropic hardening modul us.

Apparently, the choice of the objectiveratetype

o seems to be free. Xiao et aliter show [5] that

from a weakened form of llyushin’s postulate follows
the necessity of using the same objective ratefor the
Kirchhoff stress 7 and the backstress «. In virtue of
the conclusion in thelast paragraph of subsection 3.1
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both should be of logarithmic type. Additionally [5],
the convexity of theyield surfacein Kirchhoff stress
spaceaswell asthenormality rule haveto beobserved.

In revision of above conclusion, relation (27)
needsrevision, i.e.

&~ (@)

Upon the assumption that the plastic potential is
equal to the yield function [7], the associated flow
ruleis

E(of o) of
DP ==2| —: —
h{or ’ Jt (31)

£istheplasticindicator; it takesvaluesof Oand 1 for
unloading and | oading cases. The hardening parameter
hisdeduced fromthe stationarity of theyield function
and resultsto

S A
ok ok oK doL (32)

3.3 Summarisation

Thetraditional model (18) isapplicablein afacileform,
if

e the hypoelastic relation (23) is taken for the
recoverable part and is

. checked to fulfill Bernstein’s integrability
condition;

. relation (31) together with (28), (30) and (32)
describe the irrecoverabl e part.

The notion of the strain is neither needed in D€
nor in DP. However, the strain may be evaluated from
the stretching D

o(log)

h =D. (33

h is the Hencky strain. Only the logarithmic rate of
the Hencky strain can beidentified with D. Any other
strain measure and any other objective rate are
excluded [23].

A number of publications prove the validity of

above modedl, e.g.

. Stressoscillations are not encountered insimple
shear [3, 15].

. Hypoelastic closed deformation loops remain
dissipationless[14, 17, 26].

*  Thelargedeformation Swift effectintorsionis
verified[16, 25, 4].

e The bending of an elastoplastic strip with
isotropic and kinematic hardening is examined

[2].

. Strain recovery loops, as observed in memory
alloys, may be described [28].

4. Some Remarks and Notes
Some notice should be given to thefollowing details:

1. The logarithmic Kirchhoff stress rate assures
integrability to a restricted subgroup of
hyperelastic relations only. Theintegrability has
to be checked for each hypoelastic ansatz.

2. Generally, the total strain isnot separable into
elastic and plastic parts, i.e.

o _(I0g) o (log)
h® =D° h° =#D°, (34)
sincethe deformation gradient covering thetotal
deformation isinvolved in the definition of the

objectiverate.

3. Chapter 3.6 of publication [27] presents the
genera treatment of initial material symmetry
groups.

4. Thermodynamic laws, that are based on the
stretching decomposition (18), are derived in

[27].

Though being simple in design the traditional
elastoplasticity theory presented here hasto compete
with anumber of sophisticated recent devel opments.
Some rudimentary considerations for two classes of
them are asfollows:

e The multiplicative decomposition of the
deformation gradient into recoverable and
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irrecoverable partsisasfollows
F = FOFP, (35

Thisdecomposition creates 15 additional internal
variableswith the need of defining anumber of
physically motivated evolution laws and/or the
relation between them or other variables.
Moreover, problems may occur whenever the
yield surface no more embraces the stress free
origin or when the decomposition gets
incompatible.

e Another proposal is to deompose the
Lagrangean strain as

E=EP+ (E-EP). (36)

Herein, EP is a Lagrangean measure related to
the plastic deformation. Dueto the symmetry of E, 6
additional internal variables are emerging. The
challengeis. Reasonable physically motivated laws
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