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In recent years large deformation plasticity based on the additive decomposition of the stretching has become less popular. 

Constitutive relations of elastoplasticity have come up that are complicated in nature and mostly formulated in Lagrangean 

frame. Here it is shown that traditional Eulerian elastoplasticity may be a serious alternative. Its structure is simple and the 

formulation is straightforward.
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1. Introduction

Midth of last century three-dimensional elastoplasticity 
got based on the additive decomposition of the additive 
decomposition of the stretching. This “traditional
model” seemed to be a good foundation for the
description of elastoplastic material behaviour. Since 
elastoplasticity deals with moderately large 
deformations, it was favourable that the formulation 
was in an Eulerian frame.

The disclosure of stress oscillations in simple 
shear problem [12, 19], however, evidenced that such 
model needed revision.

In sequence, various propositions were given 
and the matter started to grow in complexity. Among 
such proposals were the description in Langrangean 
frame, the multiplicative decomposition of the 
deformation gradient, the additive decomposition of 
the Lagrangean strain, the introduction of multiple yield 
surfaces or combinations of them. New internal 
parameters had to find physically motivated evolution 
laws. Some of them were accompanied by unwanted 
side effects like incompatibility, abandoning given 
definition range etc.

The challenge is to formulate constitutive laws 
that are as simple as possible, as complex as needed 
and mathematically flawless. In this sense it may be 
interesting to note that a small change in the original 
formulation, namely the consequent use of the 
logarithmic rate as objective rate for the Kirchhoff 
stress and the backstress, may revalue the traditional 
model. Then, it may be obsolete to look out for 
additional evolution laws that, sometimes, are hard to 
justify.

2. Kinematics of Large Deformations

Basically, large deformations of continua relate the 
rotation and lengthening of a line element in dx the 
actual state to its reference state dX, i.e.

d ( , )d x F X t X     with
x

F 

X (1)

The two-field deformation gradient  has the 
determinant (Jacobian)

J = detF. (2)

F may be multiplicatevily deomposed as

F = V R = RU, RT = R–1, V = VT, U = UT (3)
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R is the line element rotation tensor. The right
stretch U characterises its lengthening in the non-
rotated state (Lagrangean configuration), the left
stretch V in the actually rotated state (Eulerian
configuration). Since elastoplastic deformations may
be moderately large, in the following the attention is
focussed to the Eulerian configuration.

The Cauchy-Green tensor B is computed from
V  by

B = V2 = F FT. (4)

B has 1 m  3 distinct eigenvalues bi. It shares
the eigenprojections Bi with V . B may be decomposed
according

1

m

i i
i

b


B B (5)

The eigenprojections may be retrieved by
Sylvester formula
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B B I (6)

where I is the second order identity tensor. The
velocity gradient is defined by

-1.
 

x

L F F
x

(7)

and is an Eulerian tensor. The decomposition holds

( ) / 2,
,

( ) / 2.

T

T

=

=
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  

D L L
L D W

W L L (8)

D and W are known as the Eulerian stretching and
the vorticity tensor. D characterises the deformation
rate.

The material time derivatives of obective tensors
generally are not objective. Numerous objective time
derivatives have been proposed in the past. Hill’s class
of objective rates [9] is defined for p  (– , )

Å(Hill) = ( ),p   A AW W A AD DA (9)

where A is an arbitrary objective Eulerian tensor. E.g.,
this class includes the upper and lower Oldroyd rates
[20], i.e.

Å(Ol) = ,TA+ A L + L A (10)

Å(Ou) = ,T A A L L A (11)

and a number of corotational rates. They have the
structure

Å(cor) = A+ A A (12)

where  is a (skew-symmetric) spin tensor, e.g.

J , W Jaumann [10] (13)

GN T ,  R R    Green/Nagdhi [18] (14)

log 1 / 2
,

1 / ln( / )
r s

r
r s r s

b b

b b b b

 
      sW B D B

logarithmic [13, 23] (15)

The choice of the most appropriate objective
time derivatives has been most controversary
discussed in the past. Recommendations for the
Kichhoff stress and backstress rates are given shortly
later.

3. Traditional Model

The specific stress rate is defined by

.w  D (16)

Herein,  is the Kirchhoff stress. It is related to
the Cauchy-true-stress  by

.J  (17)

A decomposition of w into recoverable and
irrecoverable parts may lead to a decomposition of
the stretching as

e p e p e p( )w w w      D D D D D (18)

It seems that the decomposition of D into a
recoverable (elastic) and irrecoverable (plastic) parts
has first been proposed by Hill in 1958 [8] and shortly
later by Lehmann [11].
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Upon attribution of elastic and plastic constitutive
laws to De and Dp in (18), this decomposition may be
considered as foundation of elastoplastic constitutive
relations.

3.1 Considerations Concerning De

Very often, elasticity constitutive laws are formulated
as stress-strain relations (Green elasticity) or are
derived from a strain potential W( ) or,

complementary, from a stress potential ( )W 
(hyperelasticity), i.e.

,
W W  
 

 
 

(19)

Both are not directly delivering an expression
for De; this may be of importance, see later.

Truesdell [22] proposed hypoelastic laws of the
form

o e( ).g D (20)

Herein,
o
 is a not specified objective Kirchhoff

stress rate. Complementary, this law is

oe ( , ),gD   (21)

which seems to conform to the purposes here. E.g.,
the hypoelastic law of grade zero is

o oe 1
tr( )

2 1


 
    

D I  . (22)

Herein I, , , and  are second order identity
tensor, Lamé’s compression module and Poisson’s
ratio, respectively. 1979, Dienes [6] discloses that
none of the commonly used objective rates can make
relation (21) exactly integrable, i.e. conform to
Bernstein’s integrability conditions [1]. In [24] it is
shown that objective Kirchhoff stress rates in (20),
(21) may not be of arbitrary type. A necessary
condition for the integrability of the hypoelastic relation

is the use of the logarithmic Kirchhoff stress rate o (log)


o (log)e , .g  
 

   
D (23)

Then, hypoelasticity and hyperelasticity may be
brought together. This applies, e.g., for the hypoelastic
relation of grade zero

o o(log) (log)e 1
tr( ) .

2 1


 
 

   
D I  (24)

3.2 Considerations Concerning Dp

The plastic flow starts whenever the elastic domain
is left. Traditionally, the delimiting surface in stress
space is described by the yield function f

f( , ,  ) = 0. (25)

Herein,  is the (scalar) isotropic hardening
parameter, and   the (tensorial) kinematic hardening
parameter. A widely used yield function for metals,
e.g., is due to von Mises and is expressed by

2
0

1
( ) : ( ) ,

2
f         (26)

where the tilde denotes the deviator, i.e.

1
tr( ) .

3
    I (27)

The yield shear stress 0 may depend on .

It is assumed that the plastic work rate is equal
to the rate of the isotropic hardening variable [7]. Then,
its evolution law may be given by

p: .  D (28)

A particular evolution law for   is proposed by
Prager [21]

o p ,c D (29)

where c( ) is the anisotropic hardening modulus.

Apparently, the choice of the objective rate type
o seems to be free. Xiao et aliter show [5] that

from a weakened form of Ilyushin’s postulate follows
the necessity of using the same objective rate for the
Kirchhoff stress  and the backstress . In virtue of
the conclusion in the last paragraph of subsection 3.1
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both should be of logarithmic type. Additionally [5],
the convexity of the yield surface in Kirchhoff stress
space as well as the normality rule have to be observed.

In revision of above conclusion, relation (27)
needs revision, i.e.

(log)o pc D (30)

Upon the assumption that the plastic potential is
equal to the yield function [7], the associated flow
rule is

(log)o
p : .

f f

h




      
D 

 (31)

is the plastic indicator; it takes values of 0 and 1 for
unloading and loading cases. The hardening parameter
h is deduced from the stationarity of the yield function
and results to

: : .
f f f f

h c
  
          


 (32)

3.3 Summarisation

The traditional model (18) is applicable in a facile form,
if

• the hypoelastic relation (23) is taken for the
recoverable part and is

• checked to fulfill Bernstein’s integrability
condition;

• relation (31) together with (28), (30) and (32)
describe the irrecoverable part.

The notion of the strain is neither needed in De

nor in Dp. However, the strain may be evaluated from
the stretching D

(log)o

h D. (33)

h is the Hencky strain. Only the logarithmic rate of
the Hencky strain can be identified with D. Any other
strain measure and any other objective rate are
excluded [23].

A number of publications prove the validity of

above model, e.g.

• Stress oscillations are not encountered in simple
shear [3, 15].

• Hypoelastic closed deformation loops remain
dissipationless [14, 17, 26].

• The large deformation Swift effect in torsion is
verified [16, 25, 4].

• The bending of an elastoplastic strip with
isotropic and kinematic hardening is examined
[2].

• Strain recovery loops, as observed in memory
alloys, may be described [28].

4. Some Remarks and Notes

Some notice should be given to the following details:

1. The logarithmic Kirchhoff stress rate assures
integrability to a restricted subgroup of
hyperelastic relations only. The integrability has
to be checked for each hypoelastic ansatz.

2. Generally, the total strain is not separable into
elastic and plastic parts, i.e.

(log) (log)o o pe e p, ,h h D D (34)

since the deformation gradient covering the total
deformation is involved in the definition of the
objective rate.

3. Chapter 3.6 of publication [27] presents the
general treatment of initial material symmetry
groups.

4. Thermodynamic laws, that are based on the
stretching decomposition (18), are derived in
[27].

Though being simple in design the traditional
elastoplasticity theory presented here has to compete
with a number of sophisticated recent developments.
Some rudimentary considerations for two classes of
them are as follows:

• The multiplicative decomposition of the
deformation gradient into recoverable and
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irrecoverable parts is as follows

F = FoFp. (35)

This decomposition creates 15 additional internal
variables with the need of defining a number of
physically motivated evolution laws and/or the
relation between them or other variables.
Moreover, problems may occur whenever the
yield surface no more embraces the stress free
origin or when the decomposition gets
incompatible.

• Another proposal is to deompose the
Lagrangean strain as

E = Ep + (E – Ep). (36)

Herein, Ep is a Lagrangean measure related to
the plastic deformation. Due to the symmetry of E, 6
additional internal variables are emerging. The
challenge is: Reasonable physically motivated laws

have to be formulated for a measure, that furthermore
is Lagrangean, i.e. related to the undeformed body.
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6. Conclusion

The traditional formulation based on the additive
decomposition of the stretching into recoverable and
irrecoverable parts may be considered as a powerful,
though simple, instrument to describe moderately large
deformations; moreover, it has the advantage of being
formulated in an Eulerian frame, which is related to
the deformed body. The use of the logarithmic
backstress and Kirchhoff rate is essential.
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