Contribution of π-η Mixing to the Difference Between pp and nn Scattering Lengths

SUBHRAJYOTI BISWAS1 and PRADIP ROY2

1Rishi Bankim Chandra College, Naihati, North 24-Parganas, India
2Saha Institute of Nuclear Physics, I/AF Bidhannagar, Kolkata 700 064, India

(Received on 29 April 2014; Accepted on 22 November 2014)

We revisit the problem of charge symmetry violation (CSV) in nucleon-nucleon interactions due to π-η mixing driven by the neutron-proton mass difference. We construct the CSV potential and estimate the contribution to the difference between pp and nn scattering lengths.

Key Words : Charge Independence; Charge Symmetry; Mixing

Introduction

The study of symmetry violating phenomena of nucleon-nucleon (NN) interaction is an interesting area of research in nuclear physics. Such research might provide significant insight into the dynamics of NN interaction.

In nature, NN interaction violates both the symmetries - charge independence (CI) and charge symmetry (CS). CI means neutron-neutron (nn), proton-proton (pp) and neutron-proton (np) interactions are equal, while CS implies the equality between nn and pp interactions only. CI is violated if CS violates, but violation of CI may not lead to the violation of CS (Stevens, 1965; Henley et al., 1972; Downs et al., 1967).

In this paper we consider only CS violation (CSV) of NN interactions which can be observed in various experiments (Cheung et al., 1979) such as difference between pp and nn scattering lengths in the 1S_0 state (Miller et al., 1990), difference of binding energy between mirror nuclei (Nolen et al., 1973), decay of $\Psi'(3686) \rightarrow (J/\Psi)\pi^0$ etc (Miller et al., 2006).

There are various mechanisms leading to the violation of CS in NN interaction. For example, mixing of isoscalar-isovector mesons can generate CSV NN interactions. At the fundamental level, neutral mesons with same spin and parity of different isospins can mix because of up-down ($u - d$) quark mass difference.

*Author for Correspondence : E-mail: anjansubhra@gmail.com
which causes neutron-proton mass splitting at hadronic level. Such mass splitting may also leads to the mixing like ρ-ω mixing (McNamee et al., 1975, Coon et al., 1977; Blunden et al., 1987; Machleidt et al., 2001) and π-η mixing (Coon et al., 1982; Maltman, 1993; Piekarewica, 1993).

Here we estimate the contribution of π-η mixing to the difference between pp and nn scattering lengths. The mixing amplitude is driven by the n – p mass difference. This mixing amplitude is the essential part of the two body CSV NN potential. Note that the space-like mixing amplitude is relevant for the construction of CSV potential.

The paper is organized as follows. The formalism is presented in Section II and we summarize our results in Section III.

Formalism

To construct CSV two body NN potential one should calculate the Feynman amplitude of the diagram shown in Fig. 1. In this figure, nucleons and mesons are presented by solid and dashed lines, respectively; and the mixing is indicated by the crossed circles. The relevant Feynman amplitude is given in Eq. (1) where, u_N represents the Dirac spinors, $\Pi_{\pi\eta}(q^2)$ is the π-η mixing amplitude, $\tau_3(1)$ and $\tau_3(2)$ are isospin operators at vertices ‘1’ and ‘2’. The vertex factor and meson propagator are denoted by $\Gamma_j(q)$ ($j = \pi, \eta$) and $\Delta_j(q)$, respectively.

\[M_{\pi\eta}^{NN}(q) = [\bar{u}_N(p_3)\tau_3(1)\Gamma_\pi(q)u_N(p_1)]\Delta_\pi(q)\Pi_{\pi\eta}(q^2)\Delta_\eta(q)[\bar{u}_N(p_4)\Gamma_\eta(-q)u_N(p_2)] + [\bar{u}_N(p_3)\Gamma_\eta(q)u_N(p_1)]\Delta_\eta(q)\Pi_{\pi\eta}(q^2)\Delta_\pi(q)[\bar{u}_N(p_4)\tau_3(2)\Gamma_\pi(-q)u_N(p_2)]. \]

Figure 1: **Feynman diagram of CSV NN potential.**

One may obtain the momentum space two body NN potential from Eq. (1) substituting $q_0 = 0$. In this work we assume that the mixing is generated by the NN loops and the difference between proton and neutron loops contribute to the mixing amplitude $\Pi_{\pi\eta}(q^2)$

\[\Pi_{\pi\eta}(q^2) = \Pi_{\pi\eta}^{(p)}(q^2) - \Pi_{\pi\eta}^{(n)}(q^2), \]

(2)
where $\Pi^{(p)}(q^2)$ and $\Pi^{(n)}(q^2)$ are the p-loop and n-loop contribution to the $\pi\eta$ mixing self-energy. Isovector meson π and isoscalar meson η couple to proton with the same sign but couple with opposite sign to neutron which brings a relative sign between proton and neutron loops. The one loop contribution to the mixing self-energy is given by

$$i\Pi^{(N)}_{\pi\eta}(q^2) = \int \frac{d^4k}{(2\pi)^4} \text{Tr}[\Gamma_\pi(q)G_N(k)\Gamma_\eta(-q)G_N(k+q)],$$

where $N = p$ or n and nucleon propagator:

$$G_N(k) = \frac{k + M_N}{k^2 - M_N^2 + i\epsilon}.$$ \hspace{1cm} (4)

The vacuum contribution of $\pi\eta$ mixing self-energy for pseudoscalar (PS) and pseudovector (PV) couplings are respectively

$$\Pi^{(N)}_{\pi\eta}(q^2) = 4ig_{\pi\eta}\int \frac{d^4k}{(2\pi)^4} \left[\frac{M_N^2 - k \cdot (k+q)}{(k^2 - M_N^2)((k+q)^2 - M_N^2)} \right].$$

$$\Pi^{(N)}_{\pi\eta}(q^2) = 4i \left(\begin{array}{c} g_\pi \\ 2M_N \end{array} \right) \left(\begin{array}{c} g_\eta \\ 2M_N \end{array} \right) \int \frac{d^4k}{(2\pi)^4} \left[\frac{q^2(M_N^2 - k \cdot (k+q)) - 2q \cdot (k+q)(k \cdot q)}{(k^2 - M_N^2)((k+q)^2 - M_N^2)} \right].$$

From the dimensional counting it is found that both the integrals i.e. Eq. (5) and Eq. (6) are divergent. We adopt dimensional regularization to isolate the singularities of the above equations. Following the technique described in (Biswas et al., 2010) one obtains the approximated $\pi\eta$ mixing amplitude in vacuum:

$$\Pi^{PS}_{\pi\eta}(q^2) = \Pi^{PV}_{\pi\eta}(q^2) = -a_1 q^2,$$

where $a_1 = \frac{g_\pi g_\eta}{4\pi}$ \ln $\left(\frac{M_p}{M_\pi} \right)$. In the limit $M_p = M_\pi$ mixing amplitude vanishes. Thus CSV NN potential does not exist if $M_p = M_\pi$. This mixing amplitude is used to construct the CSV NN potential which reads

$$V_{NN}^{CSV}(q^2) = T_3^+ \frac{g_\pi g_\eta}{4M_N^2} \frac{\Pi^{PS}_{\pi\eta}(q^2)(\sigma_1 \cdot q)(\sigma_2 \cdot q)}{(q^2 + m_\pi^2)(q^2 + m_\eta^2)} \left[1 - \frac{q^2}{8M_N^2} \right] - \frac{P^2}{2M_N^2},$$

where $T_3^+ = \tau_3(1) + \tau_3(2)$ and $P = (p_1 + p_3)/2 = (p_2 + p_4)/2$. The coordinate space CSV NN potential reduces to

$$V_{eac}^{NN}(r) = -T_3^+ \frac{g_\pi g_\eta a_1}{48\pi M_N^2} \left[m_\pi^2 U(x_\pi) - m_\eta^2 U(x_\eta) \right].$$

Here

$$U(x_i) = Y_0(x_i)(\sigma_1 \cdot \sigma_2) + S_{12}(\hat{r}) Y_2(x_i)$$

$$Y_2(x_i) = \left(1 + \frac{3}{x_i} + \frac{3}{x_i^2} \right) Y_0(x_i)$$

$$S_{12}(\hat{r}) = 3(\sigma_1 \cdot \hat{r})(\sigma_2 \cdot \hat{r}) - (\sigma_1 \cdot \sigma_2).$$
where \(x_i = m_i r, \ i = \pi, \eta \) and \(Y_0(x_i) = e^{-x_i}/x_i \).

Since hadrons have internal structures one needs to incorporate vertex corrections through phenomenological form factors:

\[
F_i(q^2) = \left(\frac{\Lambda_i^2 - m_i^2}{\Lambda_i^2 + q^2} \right), \ i = \pi, \eta. \tag{11}
\]

Here \(\Lambda_i \) is the cut-off parameter. With the inclusion of form factors Eq. (9) reduce to

\[
V_{NN}^{vac}(r) = -T_3^+ \frac{g_\pi g_\eta a_1}{48 \pi M_N^2} \left[\frac{a_\pi m_\pi^5 U(x_\pi) - a_\eta m_\eta^5 U(x_\eta)}{m_\eta^2 - m_\pi^2} \right] \\
- \lambda \left(\frac{b_\pi m_\pi^5 U(X_\pi) - b_\eta m_\eta^5 U(X_\eta)}{m_\eta^2 - m_\pi^2} \right), \tag{12}
\]

where \(X_i = \Lambda_i r, \ i = \pi, \eta \) and

\[
a_i = \left(\frac{\Lambda_i^2 - m_i^2}{\Lambda_i^2 - m_i^2} \right), \tag{13a}
\]

\[
b_i = \left(\frac{\Lambda_i^2 - m_i^2}{m_j^2 - \Lambda_i^2} \right), \ i \neq j, \ (i \ or \ j = \pi, \eta) \tag{13b}
\]

\[
\lambda = \left(\frac{m_\pi^2 - m_\eta^2}{\Lambda_\eta^2 - \Lambda_\pi^2} \right). \tag{13c}
\]

These CSV \(NN \) potentials given in Eq. (9) and Eq. (12) can be now used to estimate the contribution to the difference between \(pp \) and \(nn \) scattering lengths at \(^1S_0 \) state using the following relation

\[
\Delta a = -a^2 M \int_0^\infty \Delta V_{vac} u_0^2(r) \, dr \tag{14}
\]

where \(\Delta V_{vac} = V_{vac}^{nn} - V_{vac}^{pp}, \Delta a = a_{pp} - a_{nn}, \ a^2 = a_{nn} a_{pp} \) and \(u_0(r) \) is the zero energy wave function (Kermode et al., 1990).

Summary

In this work we have estimated the contribution of \(\pi-\eta \) mixing to difference between \(pp \) and \(nn \) scattering lengths using the CSV two body \(NN \) potential. We have computed \(\Delta a \) and it is found that \(\Delta a = 0.00082 \) fm without form factors and with form factors it is \(-0.0001 \) fm.
References

1. Biswas S, Roy P and Dutt-Mazumder AK (2010) \(\pi \)-\(\eta \) mixing and charge symmetry violating \(NN \) potential in matter \textit{Phys Rev C} \textbf{81} 064002

3. Cheung CY, Henley EM and Miller GA (1979) Charge-Symmetry Test in the Reaction \(np \rightarrow d\pi^0 \) \textit{Phys Rev Lett} \textbf{43} 1215

4. Coon SA and Scadron MD (1977) On the sign of the \(\rho \)-\(\omega \) mixing charge asymmetric \(nn \) \textit{Nucl Phys A} \textbf{287} 381

5. Coon SA and Scadron MD (1982) Role of \(\pi^0 \)-\(\eta' \) mixing in nuclear charge asymmetry \textit{Phys Rev C} \textbf{26} 562

10. Maltman K (1993) \(q^2 \)-dependence of meson mixing in few-body charge symmetry breaking. \(\pi^0\)-\(\eta \) mixing to one loop in chiral perturbation theory \textit{Phys Lett B} \textbf{313} 203

11. McNamee PC, Scadron MD and Coon SA (1975) Particle mixing and charge asymmetric nuclear forces \textit{Nucl Phys A} \textbf{249} 483

