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Special Lecture

Non-coding RNAs have Key Roles in Cell Regulatidh
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As a corollary to the “central dogma of molecular biology” that genetic information carried in DNA is utilized to produce
proteins which determine the phenotype, concepts of “junk” or “selfish” DNA were advanced to explain the “C-value
paradox”, leading to ignorance of parts of genomes that were not involved in protein synthesis. However, the ever-
increasing numbers of studies during the past 10-15 years have confirmed that bulk of the nuclear DNA is indeed
transcribed and that the non-coding transcripts actually provide a complex multi-layered regulatory network essential for
the self-oganized state. Commensurate with the evolutionary increase in biological comthexityon-coding” RNAs
(ncRNAS) have also diversified. This brief review highlights the various classes of ncRNAs in eukaryotes taking examples
of actions of some of the earliest known long ncRNAs like the Xist and roX, implicated in dosage compensation in
mammals an@rosophila respectivelyand the hsrw long ncRNAs Birosophila Among the 7 transcripts produced by
theDrosophilahstw gene, the long nuclear transcripts that contain >5kb of tandem repeat sequences organize the omega
speckles, which act as nucleoplasmic stores of a variety of RNA-binding and some other proteins to regulate their
availability. Such long ncRNAs act as hubs in cellular networks through their interactions with diverse arrays of proteins.
In view of the increasing evidence and realization of the importance of non-coding components of human and other genomes
in maintaining normal homeostasis and because of their critical involvement in many human disorders, it is necessary to
proactively explore their diversity and functions in different organisms.
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Non-coding RNAs Emerge from the Shadows of sometimes even between very closely related species
“Junk” and “Selfish” DNA (Britten and Davidson 1969A more confounding
fact is that in any given eukaryotic species, the
genome contains much more DNA than required for
production of the various proteins known or estimated

_ N to exist in the organism (Britten and Davidson, 1969;
of molecular biology”, to produce the mRNAs that Ohno, 1972; Eddy2008) These anomalies, the “C-

?re t_ranslated into various prot?mhe proteins ) value paradox”, have been perplexing geneticists,
unction as enzymes or structural components t atevolutionary biologists and molecular biologists for
carry out the various cellular activities and, thus

d ine the ph h | c many decades. Indirect evidences obtained in 1960s
eterm_met €p enotype. The tota DNA, content (C- and 1970s using painstaking experimental approaches,
value) in genomes of different taxonomic groups of

) . _ indicated that bulk of the nuclear DNA in many higher
eukaryotes generally correlates with their evolutionary organisms was actually transcribed and that much of
and biological complexityHowever there are many

: . . these transcripts were retained within the nucleus
examples of very large differences in C-values in (Soeiro et al., 1968; Shearer and McCarth§67:
different species in a taxonomic group, including Goldstein an,dTresc’ott, 1970Weinbeq, 1973)’.

It is established that DNA is the genetic material in
most organisms and that this information is utilized,
as originally proposed by Crick in the “central dogma
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Significance, if anyof such transcripts was not non-coding RNAs (IncRNA), some of which, like the
understood at that timAs a corollary to the “central ~ Xist in mammals, roX1 and roX2 and lsin
dogma” and to explain the C-value paradox, conceptsDrosophilg and a few others (Lakhotia, 1996) had
of “junk” or “selfish” DNA were advanced (Ohno, already been recognized to have functional
1972; Dollittle and Sapienza, 1980; Orgehl, 1980) significance, even while the shadow of selfish DNA
which suggested that bulk of the genomic DNA in continued to loom large.

eukaryotes, even if transcribed, is of no immediate
consequence for the genome but it persists becausFem
of its “junk” or “selfish” nature. In view of the very

The past two decades have witnhessed a
arkable turnaround as an ever-increasing number
id d quick fh P of studies are confirming the earlier indirect evidence
wide and quick acceptance of the concept of jun that bulk of the nuclear DNA is indeed transcribed so

o_r selfish” DNA, the_nature and _S|gn|f|cance of th(_e that the non-coding transcripts are now believed to
diverse nucleus-retained transcripts reported earlier

. . provide a very complex multi-layered regulatory
remained ignored and unknown. On the other hand’network essential for generating and maintaining the

those see_kmg to understgn_d the complex rE.zguIatoryseIf-organized state of living organisms (Lakhotia,
networks in eukaryotes did indicate that the increase; 996 5012 Baman and Spectop014; Cech and

in C-value in biologically more complex organisms Steitz, 2014'_ Rinn and Guttman 2014"Shibayama
was not due to more structural or protein-coding genes. 20’14, Fe’ltimaat al. 2015 Iyer’et al 2’015_ Jose
Thus Britten and Davidson (1969) in their seminal 2(')'15_ Qu’aret al 201£_ Chuicet al 20'i6)Wi';h the,
baper on gene r'egulr?mon networks stated' QUIteevolutionary increase in biological complexitiie
possibly the principal dll_ferfance between aporlferan regulatory networks have also evolved to greater
and a mammal could lie in the degree of Inteqr"’I[eclcomplexities and commensurate with this, the so-

cellular 'act|V|ty an_d thus in a vastly mt_:reased called “non-coding” transcripts too have diversified
complexity of regulation, rather than avastlymcreased(l_akhotia 1996, 1999, 2012; Szymanekal.,2003:

numberl c;f pr_oo!;cer genes.tMucg t%f the DNAdEArosius andTiedge, 2004; Costa, 2005; Clark and
a:f‘t:ﬁm“ ating '”F. € ??e”.owtetsh °""r‘?r € “ppfrt.e” attick, 201L; Robertst al.,2013; Khalilet al.,2013;
ot the curve in ™g. > mig €h have a regulative Hiroseet al., 2014; Lieberset al., 2014; Jiao and

function”. Evolutionary biologists like Mayr (1970), Slack 2014; lyeet al.,2015; Hirose and Nakagawa
worried about the consequences of considering only ' y ' ’

) . S 2016). It thus appears that, considering the “non-
the structural or protein coding genes of significance, coding” DNA/RNA as “junk” or “selfish” was more
obseryed _day will come when_ muc_h of population a consequence of our lack of understanding, rather
genetics will have to be re-written in terms of the than being based on clear evidents.was stated
interaction between regula_tor e_md structural genes”'earlier (Lakhotia, 1996) ‘non-coding transcripts are
Howelv::-r,lsqch prgphetlc :/lewls Wberf nearl;:j no longer mere curiosities or vagaries of the biological
comp/etely ighored as maolecuiar blology an diversity These seem to have established themselves
biotechnology marched ahead, believing dogmatically as a distinct class of genes with very important
in the “central dogma” and theories of “junk” and . : A

. ; L : functions. Understanding of the significance of such
“selfish” DNA. This strong belief in selfish DNA g g

prevented active search for possible functions of thegenes has been thwarted by the common "selfish
large varieties of non-coding RNAs that were being genetic element” applied to them. With RNAbeing

: e the first “living molecule”, it is but to be expected that
identified in cells. even today biological systems continue to utilize this
Realization in the 1990s that phenomena like versatile molecule directly’. Of course, the realization
quelling or transgene co-suppression (Cogamil.,  that RNA can function as RNA with phenotypic
1996), post-transcriptional gene silencing, RNA consequences has also necessitated a re-definition of
interference or RNAI etc (Firet al., 1998; Cogoni  “gene” (Lakhotia, 1997).
and Macino, 2000) are dependent upon short non-_ _ )
coding RNAS (Hannon, 2002; Schramke Atishire, Diversity of Types and Functions of ncRNAs
2004) encouraged appreciation of the involvement of The large variety of non-coding transcripts being
RNA in regulatory circuits. These revelations identified in diverse organisms has been paralleled
catalyzed search for possible functions of other longwith a variety of names and classifications (Costa,
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2005; Cech and Ste, 2014; Hirose and Nakagawa, Mammals and Drosophila, respectively in
2016)A common empirical grouping is based on length Opposing Ways.
of the transcripts such that those less than 100-200 Differences in the number of X chromosomes
nucleotides are grouped as small ncRNAs, while, the, :
longer ones are called long ncRNA (IncRNA). Several in males and females in mammals and several other

house-keeping non-coding transcripts like the rRNAs, groups, mc_ludm@rosopr_ula, are necessary for sex-
determination so that while normal females have two

tRNAs, snRNAs, snoRNAs etc have been recognized
X chromosomes, males have only one X chromosome.

for long to have essential roles in translation of )
. The homologue of X chromosome in males of these
MRNAs and for maturation of the nascent hnRNAs , o .
and pre-rRNAsAnother functional class is often groups is th& chromosome which is mostly devoid
pre- uncti ! of genes that are present on the X chromosome. Since

lr.‘l?rq(ﬁd agéllgzreg;ﬁg‘)rs_Srlllim(t:lu?heismgll nCIR’\(;ASX chromosome in these organisms carry many genes
ie the mi » S Pl etc, thatare InVoved. ot control a variety of functions independent of sex

In gene silencing through dlffergnt pathways including of the individual, this numerical difference in the copies
R_NA-lr_lterference or RNAI (Grosshans and of X-linked genes in males and females calls for a
F|I|p0W|c;, 2008; Bere2|kg\2011; _CIoonan, 2015; special regulatory mechanism, named dosage
Kalantariet al., 2016). Ribo-switches are short compensation (Muller1950). Equalization of
segments of RNA that bind small molecules and SWitChexpression of X-linked genes in somatic cells is
between two different conformations and thereby ,-nieved through inactivation of one of the two X
regulate gene expression (Chen and Gottesman, 2014} romosomes in female mammals and through

Some ribo-switches increase translation by their hyperactivation of the single X chromosome in male
interaction in trans with the target mMRNA prosophila(Lyon, 1961; Mukherjee and Beermann,
(Krishnamurthyet al, 2015), while others act in cis 1965; Smith and Lucchesi, 1969; Ggievet al.,2011;
through structural motifs in UTRs of the mRNA (de  Gartler 2014; Lakhotia, 2015). Roles of the INCRNAs
la Fuentest al, 2012). Besides these, an increasing |ike Xist (and several others, see below) in mammals
diversity of short and long ncRNAs are now known ang roX1 and roX2 imrosophilain establishment

to regulate Ce”ular a.CtiVitieS in mu|t|p|e WayS that and maintenance Of the inactive_x and hyperactive_
include; promoter activation, anti-sense transcriptional X in the two groups, respectiveljrave been
regulation and, more importantlyy providing sites  extensively reviewed in recent years (Georgieal.,

for binding of proteins for sequestration or modulation 2011; Koya and Meller2011; Horabin, 2012; Mank,

of their activity and by affecting the higher order 2013:vallot and Rougeulle, 2013; Briggs and Reijo
chromatin organization (Lakhotiat al., 1999; Pera, 2014; Chery and Larschan, 2014; Fegtai,
Lakhotia, 201, 2012, 2015; Bgmann and Spector  2014; Gartler 2014; Marchese and Huarte, 2014;
2014; Cech and Steitz, 2014, Legeai and Derrien, 2014Nakagawa and Kageyama, 2014; Peeteas, 2014;
Boguet al, 2015;lyeretal, 2015; Quaet al.,2015; Keller andAkhtar, 2015; Lakhotia, 201%alencia and
Betancuy2016; Blytheet al, 2016; Chujetal, 2016;  Wutz, 2015Yueet al.,2016; Betancy2016) A brief
Kanduri, 2016; Kastet al.,2016; Li andVang, 2016;  view of these IncRNAs is presented here to illustrate
Wilusz, 2016)Yueet al, 2016). their pivotal roles in epigenetic modifications of

. : : chromatin organization at a whole chromosome level.
Here, | will briefly illustrate key roles of

INcRNAs in cellular regulation, taking examples of Soon after the X-inactivation hypothesis was
some of the earliest known ncRNAs, like Xist and proposed by fon (1961), a cis-regulatory X-
roX, which affect chromatin organization across inactivation centre (Xic) or X-controlling element was
whole chromosome, and the hswclear transcripts  identified as the locus from which inactivation spreads
in Drosophilathat regulate the availability of a subset in cis to bring about chromosome-wide inactivation
of RNA-binding and other proteins involved in diverse of one of the two Xs in female somatic cells (Russell,
regulatory events. 1963). Identification of the humaXiSTand mouse
Xist (X-inactive specific transcript) non-coding genes
Xist and roX IncRNAs Determine the  (Brownet al, 1991; Brockdorffet al, 1991), that
Transcriptional Status of X-chromosomes in mapped at the Xic and were transcribed exclusively
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from the inactive X, provided the then unexpected 1998; Luccheset al., 2005) triggers production of
evidence for IncRNA to be essential for the male-specific lethal-2 (Msl-2) protein, a core
heterochromatinization of one of the two X component of the male specific dosage compensation
chromosomes. The mouse Xist RNA is 15 kb with complex (DCC) that catalyses the nearly two-fold
six exons, while the human XIST is 17 kb long with up-regulation of transcriptional activity of the single
eight exons; these two transcripts show significant X chromosome in males (Kelleyt al, 1997; Kelley
overall sequence divergence although 5 repetitiveand Kuroda, 2000; Gegievet al, 2011; Mank, 2013;
sequence motifs in exons 1-6 are relatively betterStraubet al, 2013; Chery and Larschan, 2014; Ferrari
conserved (Spusta and Goldman, 19881z et al, et al, 2014, Keller andkhtar, 2015; Lakhotia, 2015).
2002). The XIST/Xist is exclusively transcribed from The DCC includes the two IncRNAs, roX1 and roX2,
the Xic of the inactive X and these transcripts spreadand several proteins including male-specific lethal-1
along the length of X chromosome in cis to bring about (Msl-1), Msl-2 (RING finger protein), Msl-3

its inactivation. XIST/Xist in combination with the (chromodomain protein), Males-absent-on-the-first
Polycomb group repressive protein complex, PRC2, (Mof, histone acetyl transferase) and Maleless (Mle,
brings about di- or tri-methylation of H3K27 along DNA/RNA helicase), paints the male X chromosome
the length of the XIST/Xist transcribing X along its length and thereby keeps the histone H4
chromosome to render it inactive (Pinteal, 2012; hyperacetylated at lysine 16 (Kelley al, 1995;
Marchese and Huarte, 2014). The X chromosomeLucchesi, 1998; Lucchesit al, 2005; Gelbart and
coated with XIST/Xist RNA gets organized into a Kuroda, 2009; Gegievet al, 2011; Lakhotia, 2015).
compact and efficiently silenced Barr body chromatin These epigenetic modifications brought about by the
through interaction with SPB1 (Brockdorf, 2009), DCC cause a greater opening of the single X
while the nuclear matrix associated SAF-A/hnRNP chromosome in males, so that the active genes can
U protein may act as a platform to immobilize Xist transcribe at a higher rate to achieve dosage
RNA along the X chromosome (Fackelmayzf05; compensation. The roX1 and roX2 IncRNAs are
Hasegawat al, 2010). Recent studies have revealed critical for the orderly distribution of the DCC along
that besides the XIST/Xist, the Xic region produces, the male X chromosome since absence of both of
in either directions, several other INcRNAs like Jpx, them disrupts dosage compensation and results in male
Ftx, RepeatARepA), Tsix, Xite, XACT etc which lethality (Lucchesi, 1998; Lucchestial, 2005; Chery
interactively promote or suppress Xist expression andand Larschan, 2014; Lakhotia, 2015).

thus X-inactivation (®llot and Rougeulle, 2013; Briggs

. It is interesting that as divergent organisms as
and Reijo Pera, 2014; Marchese and Huarte, 2014; : .
Lakhotia, 2015Yueet al., 2016). mammals andDrosophila achieve dosage

compensation through chromosome wide

Unlike the inactivation of one X chromosome in reorganization of chromatin to either inactivate or
mammalian female somatic cells, dosage hyperactivate large domains and employ IncRNAs to
compensation irDrosophilais achieved by the epigenetically modify the chromatin in opposing
“hyperactive male X” model, so that its genes can mannerSuch opposing ffcts of chromosome-wide
transcribe at higher rates to produce nearly as manypainting” with INcRNAs reflect the versatility of RNA
transcripts as the two Xs together in correspondingmolecules.
female cells (Mukherjee and Beermann, 1965; .

Lucchesi, 1998; Lucchesit al, 2005; Kelleyet al, Multlple IncRNAs Produced by the hsrw Gene
1999; Kelley and Kuroda, 2000; Mank, 2013; Straub !N Prosophila Integrate Several Regulatory

et al, 2013; Chery and Larschan, 2014; Fergdri Pathways to Maintain Cell Homeostasis

al., 2014; Keller and\khtar, 2015; Lakhotia, 2015).  TheDrosophila93D gene, later named hsrw, was
The DrosophilaroX1 and roX2 IncRNAs are one of the first developmentally active and cell stress-
essential for epigenetic modifications of chromatin inducible gene to be identified as non-coding yet
organization of the single X chromosome in male so essential for viability of the organism (Lakhotia and
that it is poised for the hyperactivity required for Singh, 1982; Mohler and Pardue, 198gsétket al.,
dosage compensatiokbsence of the functional SxI  1985; Garbet al.,1986; Lakhotia, 1987). Subsequent
protein in early mal®rosophilaembryos (Lucchesi, studies in our and some other labs (reviewed by
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Lakhotia 201) have unraveled unexpected very interesting although a homolog of tis&v gene
complexities of the transcripts produced by this geneexists in all the species Drosophilathat have been
and the multiple functions of these diverse INCRNAs. examined, its base sequence varies significantly even
As annotated at the Flybase (wwilybase.og), this between related species (Gagbal.,1989; Lakhotia,
gene produces 7 INcCRNAs, ranging from 1.2 to ~21 2011).

kb, through alternative transetion start and
termination sites and variable splicing of the single
intron. In addition, 3 potential mMiRNAs from its 3' end
are also predicted (see Fig. 1A). The smaller 1.2 kb
cytoplasmic transcript (hsrc or hsw-RA) is
produced by splicing out the ~700b long intron in the
1.9 kb nuclear hsrpre-c or hsp-RC. The hsp-c
includes a small translatable ORF (ORF-omega) which
encodes a 27aa polypeptide (Fihal.,1989; Rashmi
Ranjan Sahu and Lakhotia, unpublish&@yy little is
known about the recenthnnotated Hsr-RD, Hsrw-

A major focus of studies on the hidranscripts
has been on the repeat containing nucleaw R
(hstw-n1) and Hsp-RG (hstw-n2) transcripts, which
are present in the nucleoplasmic omega speckles and
at thehsrw gene locus (Fig. 1B).The omega speckles
act as stores for a variety of heterogeneous RNA-
binding proteins (hnRNPs) and several other proteins
(Table 1) and thus regulate their availability for
transcription, RNA processing and other activities
(Lakhotiaet al.,1999; Prasantét al.,2000; Lakhotia,

RF and Hsp-RH transcripts (wwyilybase.og). The 2011; Mallik ar_ld Lakhotia, 201, Singh and Lgkhotia,
three longer nuclear transcripts (H9RB or Hsw- 2015a).A variety of c_el! stresses that dlsrqpt the
n1, Hst-RG or Hst-n2 and Hsp-RF) include 5-10 normal r_1uclear transg:rlptlon and RNA processing lead
kb long stretch of tandem repeats of 280bp Iengthto ara_pld accumu_latlon of the various omega speckle
that are unique to this locusdkhotia, 201). It is associated proteins almost exclusively at lisev

3R

" 1 " " " " " " " " " 1 "
21300k 21310k
Gene Span

Hsromega

mir-4951
r
Transcript miRNA :mir-4951-RM1
ncRNA tHsromega-RO . .
rd T ——— miRMNA:mir-4951-RA
1

ncRNA tHsromega-RH . .
rd ] miRNA :mir-4951-RE
1

" nhoRNA: Hsromega-RA
fa—mm omega-c (Cytoplasmic)
ncRNﬁ Hsrome ? -RE

T omega-n1
< NCRNA :Hsromega-RG p tandem repeats

omega-n2
-.l nCRMA :Hsromega-RC unique to tnis iocus 9
Q—o ¢

mega-pre-c B
- ncRNﬂ:Hsromegg—FfF (> 5kb)

A

Fig. 1. The hsrw gene ofDrosophila melanogaster produces multiple transcripts of which the 280bp repeat containing nuclear
transcripts organize the omega specklesA. Genomic coordinates and the multiple RNAs of thehsrw gene (see
www.flybase.org); the single intonic region is indicated by thin line; cellularlocalization of some transcripts, whee
known, is indicated as Nuclear or Cytoplasmic and, where not clearly known, by “?”. omega-c, omega-nl, omega-n2 and
omega-pre-c refer to alternative common names of the indicated transcripts; the gren vetical bar, marked with an
arrowhead below the exon 1 of the omega-c (Hsromega-RA) transcript represents the ORF-omega that encodes a 27aa
polypeptide; the region on three transcripts (green outlined box) indicates the region of tandem repeats of 280bp units
that span about 5 to 10kb. B. Confocal projection image of unstressed late larval Malpighian tubule nucleus showing
distribution of the 280bp repeat containing hsw nuclear transcripts (red) at the gene locus (arrow head) and in the
large number of nucleoplasmic omega speckles (arrow); the DAPI-stained chromatin is in blue. C. Confocal projection
image of heat shocked (30min at 3T) late larval Malpighian tubule nucleus showing Hrp36 protein (red) which is normally
present in omega speckles and on active chromatin regions but gets nearly exclusively localized at the hsrw gene locus (arrowhead)
following heat shock; DAPI stained chomatin is in white. Images in B and C ae provided by Dr. Sonali Sengupta and
Dr. Anand K. Singh, respectively
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gene locus (Fig. 1C), which is reversed as the cellsdifferent hnRNPs are involved in a wide variety of
recover from the stress (Prasamghal.,, 2000; RNA processing events, including alternative splicing,
Lakhotia, 201; Lakhotiaet al, 2012).Absence or  packaging, transport and translation (Daneholt, 2001;
conditionally altered levels (down- or up-regulated) Guisberiet al, 2005; He and Smith, 2009; Chaudhury
of these nuclear hsfIncRNAs affects the stres et al, 2010; Haret al, 2010; Piccolet al.,2014).
induced accumulation of hnRNPs and other proteinsin addition, some of them also have roles in chromatin
at thehsrw gene locus and their movement back organization (Piacentinét al, 2009), DNA repair
during recovery to normal locations (Lakhagizal., (Smith and Jackson, 1999), cell signaling (Madter
2012; Singh and Lakhotia, 2015a). Most interestingly al., 2000; Carpenteet al.,, 2006), telomere
the restoration of RNA polymerase Il to maintenance (La Branchet al, 1998; Singh and
developmentally active gene sites in cells recoveringLakhotia, 2015b) and in neurodegeneration (Sengupta
from stress was also affected when these transcriptand Lakhotia, 2006; Sofokt al, 2007; Mallik and
were conditionally up- or down-regulated during heat Lakhotia, 2010). The other interacting proteins listed
shock (Lakhotieet al., 2012).All such individuals in Table 1, like chromatin remodelers, nuclear matrix
show delayed lethalifapparently because of a failure  components, histone acetyl transferases, Ras signaling
to restore normal gene activityive cell imaging in pathway components, apoptosis regulating protein like
our lab has recently shown that when a cell is stressedDIAP1, proteasomal components and the Hsp83, are
the omega speckles rapidly disappear in thewell known to have multiple connections in cellular
nucleoplasm and the associated proteins mdveto regulatory networks. In view of such wide networking,
gene locus in a diffuse form with assistance of someit has been suggested (Argaal., 2007; Lakhotia,

of the nuclear matrix associated proteins; the 2011, 2012) that the IncRNAs like those of thsw
movement of these proteins to tiew gene locusis  gene act as hubs in cellular networks and thereby
directly dependent upon its transcriptional activity help maintain cellular homeostasis.

(Singh and Lakhotia, 2015&s cells recovefrom _ L _

the stressful condition, the accumulated proteins and It is very significant that I'ke, the omega
the hsw transcripts rapidly emerge out of their caged speckles, most of the nuclear bodies (nucleolus,

state at thdasrw gene locus as fully formed omega \éarlouc? speckledq (jomlaln;’,\m(\:e:tjal :qd|es ch) are
speckles; several different chromatin remodeling ependent upon distinct nc s fortheir organization

proteins including the ISWI were shown to be essential and function (Lakhotia, 2012; Kawaguchi and Hirose,

for the biogenesis of omega speckles during recoveryzhojlé_ghujoet al.,2_016).These n%RNﬁs help kleep
from stress as well as under normal cell conditionst e different proteins, RNAs and other regulatory

(Onoratiet al.,2011; Singh and Lakhotia, 2015a). molecules, involved in distinct sets of functions, in
assorted compartments.

As shown ifTable 1, the repeat containingsr
nuclear transcripts have been showndtcalize in Non-coding RNAs Come ofAge
normal and/or stressed cells with a variety of regulatory
proteins including the RNA processing and transport Although in the past significance of such non-coding
proteins, chromatin remodelers, transcription genes was not appreciated because they were
regulators, nuclear matrix and nuclear lamina commonly considered as “selfish genetic elements”,
components, molecular chaperones, cell signalingthe increasing numbers of original research articles
proteins etc Proteins like inhibitors of apoptosis, and reviews that are being published in recent years
proteasome components, some chromatin remodeler§onfirm an early statement (Lakhotia, 1996) that the
and members of dosage compensation complex hav&on-coding transcripts are “no longer mere curiosities
not been seen to colocalize with these transcripts, bufr vagaries of the biological diversity”. There is a

they are known to interact geneticallyable 1). widespread realization that the ncRNAs indeed
constitute distinct classes of genes with very important

It is significant that the proteins with which the fynctions (Lakhotia, 2012, 2015; Bergmann and
larger nuclear transcripts have been found to associat&pectoy 2014; Cech andt&itz, 2014; Legeai and
or genetically interact are involved in some of the perrien, 2014; lyeet al., 2015; Quaret al., 2015;
very important regulatory networks. For example the getancuy 2016: Blytheet al., 2016; Chujoet al,
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Table 1. Proteins known to associate or genetically interact with the hsrtranscripts

Proteins colocalizing with nucleoplasmic omega speckles and/or witisthe References
gene locus
hnRNPs: Hrb87F or Hrp36 (hnRN¥L/A2), Hrb98DE or Hrp38 (hnRNB), Saumwebeket al.1980; Prasantkt al., 2000;

Hrb57A (hnRNP K), Rumpelstiltskin or Hrp59 (hnRNP M), Squid or Onoratiet al.,2011; Singh and Lakhotia, 2015a
Hrp40 (hnRNP D); NonA

Other RNA processing proteins: Sxl, PEP
Unidentified nuclear non-histone proteins: recognized by Q14, Q16, T29, P75

antibodies

Nuclear matrix and lamina associated proteins: Tpr or Megator, Snf (Sans-fille),Zimowska and Padd®002; Singh and Lakhotia,
SAF B 2015a
Molecular chaperone: Hsp83 Morcillo et al.;1993; Lakhotia and R&996

Chromatin remodelers and transcription regulators: ISWI, HP1, Poly-adenosyl-Ji and Tulin, 2009; Mallik and Lakhotia, 2010;
ribose polymerase MRP), CBPor P300 (histone acetyl transferase) Onoratiet al.,2011; Singh and Lakhotia, 2015a

Cell signaling: cGMPUDbiquitin Specific Protease-7 (USP7), GMP Spruillet al. 1978; Pete¥errijzer and Jan van
Synthase (GMPS) der Knaap, personal communication

Proteins known to genetically interact with higranscripts Ray and Lakhotia, 1996; Mallik and Lakhotia,
Cell signaling: Ras, Egfr, INK 2009a, 2009b, 2010, 2011; Singh and Lakhotia,
Nuclear matrix and lamina: Lamin C 2016

Inhibitor of apoptosis: DIAP1
Proteasome complex

Chromatin remodelers: NURF 301, NURF 38, GCN5 Chaturvedi, D. and Lakhotia, unpublished
Dosage compensation complex: Msl-1, Msl-2, MOF

2016; Hirose and Nakagawa, 2016; Kanduri, 2016; and, therefore, has a widespread integrative effect.

Kashiet al.,2016; Li andVang, 2016Wilusz, 2016; Such integrative actions are important in the context
Yueet al.,2016). of evolution, since living organisms have to
) ] ] . continuously adjust their cellular activities in relation

Itis true that functions of many of the identified  yhe yarying external and internal environmental

ncRNAs are not yet known and in some cases theyyqgitions Adaptability of related species depends
may appear to be without function since their absence,, iheir ability to respond to the subtly varying

does not seem to have any deleterious consequencgyironmental stresses. In this context, it is important
However it should be realized thatganisms donot 4 o6 that since proteins associate with RNA
live under the “ideal” conditions that prevail in through short sequence motifs other regions of
laboratory setting where such studies are undertakenncRNAS can accumulate sequence changes. Such
Since many ncRNAs are now known to undergo .oniq sequence divergence is indeed a common
changes in abundance and/or processing under d'VerSf%ature of many of ncRNAs, because of which they
cell sFress conditions (Lakhotia, ZQPZnara!et al., were earlier often ignored as “junk” or “selfish”. When
2013; Place and Noonan, 20T&ni andTorimura, —|,51eq at from the adaptability point of vigtive rapid

2013,; Soleet al., 2015/Audas and Lee, 2016), divergence of ncRNA sequences actually provides
functions of such ncRNAs need to be pursued MOreg|egant modules for adaptability to changing

extensively under naturally varying environmental o ironment since it promotes novel RNA-protein
conditions or under conditions of applied stress. Then; e 4 ctions, which in turn can modulate the structure
only it would be possible to uncover their subtle, yet 5,4 tnctions of the interacting molecules in distinct

very important roles in the ganisms life. ways (Lakhotia, 2012)
As evident from the examples discussed here, _ _ _ _ o
a given IncRNA often targets more than one protein In view of increasing evidence and realization

with key role/s in the cascade of regulatory events©f the enormous importance of non-coding RNAs of
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human and other genomes in maintaining normal Cytogenetics Laboratory have significantly helped in
homeostasis and because of their critical involvementpursuing studies on ncRNAs. The generous and “no-
in many human disorders, it is necessary that theirquestions asked” approach of the fly community in
diversity and functions in different organisms be sharing various reagents has been a remarkable
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